Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinct triggering and expression mechanisms underlie LTD of AMPA and NMDA synaptic responses

Abstract

Although long-term depression (LTD) of AMPA receptor–mediated postsynaptic currents (AMPAR EPSCs) has been extensively examined, little is known about the mechanisms responsible for LTD of NMDA receptor (NMDAR)-mediated EPSCs. Here we show differences in the intracellular signaling cascades that mediate LTD of AMPAR EPSCs versus NMDAR EPSCs in rat hippocampus. Both forms of LTD were blocked by inhibitors of protein phosphatase 1, but only LTD of AMPAR EPSCs was affected by inhibition of calcineurin. Notably, in contrast to LTD of AMPAR EPSCs, LTD of NMDAR EPSCs was unaffected by endocytosis inhibitors. A role for calcium-dependent actin depolymerization in LTD of NMDAR EPSCs was supported by the findings that the actin stabilizer phalloidin and a cofilin inhibitory peptide each blocked LTD of NMDAR EPSCs but not AMPAR EPSCs. These results suggest that the same pattern of afferent activity elicits depression of AMPAR- and NMDAR-mediated synaptic responses by means of distinct triggering and expression mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LTD of NMDAR-mediated synaptic transmission at Schaffer collateral–CA1 synapses is Ca2+-dependent and requires activation of NMDARs and not mGluRs.
Figure 2: Protein phosphatase 1/2A inhibitors block LTD of NMDAR EPSCs.
Figure 3: The protein phosphatase 2B (calcineurin) inhibitor FK-506 blocks LTD of AMPAR EPSCs but not LTD of NMDAR EPSCs.
Figure 4: LTD of NMDAR EPSCs is not blocked by inhibitors of dynamin-dependent endocytosis.
Figure 5: In vivo expression of a dominant-negative form of dynamin blocks LTD of AMPAR EPSCs but not LTD of NMDAR EPSCs.
Figure 6: LTD of NMDAR EPSCs is blocked by the actin stabilizing agent, phalloidin, and a peptide that inhibits cofilin.
Figure 7: Dual-component EPSCs demonstrate selective block of LTD of either AMPAR or NMDAR components by D15 and phalloidin, respectively.
Figure 8: Graph summarizing the effects of all of the experimental manipulations on LTD of NMDAR EPSCs and LTD of AMPAR EPSCs.

Similar content being viewed by others

References

  1. Malenka, R.C. & Bear, M.F. LTP and LTD: an embarrassment of riches. Neuron 44, 5–21 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Watt, A.J., Sjostrom, P.J., Hausser, M., Nelson, S.B. & Turrigiano, G.G. A proportional but slower NMDA potentiation follows AMPA potentiation in LTP. Nat. Neurosci. 7, 518–524 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Gean, P.W. & Lin, J.H. D-2-amino-5-phosphonovaleate blocks induction of long-term depression of the NMDA receptor-mediated synaptic component in rat hippocampus. Neurosci. Lett. 158, 170–172 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Xiao, M.Y., Wigstrom, H. & Gustafsson, B. Long-term depression in the hippocampal CA1 region is associated with equal changes in AMPA and NMDA receptor-mediated synaptic potentials. Eur. J. Neurosci. 6, 1055–1057 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Selig, D.K., Hjelmstad, G.O., Herron, C., Nicoll, R.A. & Malenka, R.C. Independent mechanisms for long-term depression of AMPA and NMDA responses. Neuron 15, 417–426 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Montgomery, J.M. & Madison, D.V. State-dependent heterogeneity in synaptic depression between pyramidal cell pairs. Neuron 33, 765–777 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Xie, X., Berger, T.W. & Barrionuevo, G. Isolated NMDA receptor-mediated synaptic responses express both LTP and LTD. J. Neurophysiol. 67, 1009–1013 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Dingledine, R., Borges, K., Bowie, D. & Traynelis, S.F. The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61 (1999).

    CAS  PubMed  Google Scholar 

  9. Kotecha, S.A. & MacDonald, J.F. Signaling molecules and receptor transduction cascades that regulate NMDA receptor-mediated synaptic transmission. Int. Rev. Neurobiol. 54, 51–106 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Carroll, R.C., Beattie, E.C., Von Zastrow, M. & Malenka, R.C. Role of AMPA receptor endocytosis in synaptic plasticity. Nat. Rev. Neurosci. 2, 315–324 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Vissel, B., Krupp, J.J., Heinemann, S.F. & Westbrook, G.L. A use-dependent tyrosine dephosphorylation of NMDA receptors is independent of ion flux. Nat. Neurosci. 4, 587–596 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Nong, Y. et al. Glycine binding primes NMDA receptor internalization. Nature 422, 302–307 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Roche, K.W. et al. Molecular determinants of NMDA receptor internalization. Nat. Neurosci. 4, 794–802 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Morishita, W. et al. Regulation of synaptic strength by protein phosphatase 1. Neuron 32, 1133–1148 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Lisman, J. A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc. Natl. Acad. Sci. USA 86, 9574–9578 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mulkey, R.M., Endo, S., Shenolikar, S. & Malenka, R.C. Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369, 486–488 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Lüscher, C. et al. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 24, 649–658 (1999).

    Article  PubMed  Google Scholar 

  18. Schmid, S.L., McNiven, M.A. & De Camilli, P. Dynamin and its partners: a progress report. Curr. Opin. Cell Biol. 10, 504–512 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Carroll, R.C. et al. Dynamin-dependent endocytosis of ionotropic glutamate receptors. Proc. Natl. Acad. Sci. USA 96, 14112–14117 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marie, H., Morishita, W., Yu, X., Calakos, N. & Malenka, R.C. Generation of silent synapses by acute in vivo expression of CaMKIV and CREB. Neuron 45, 741–752 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, S., Ehlers, M.D., Bernhardt, J.P., Su, C.T. & Huganir, R.L. Calmodulin mediates calcium-dependent inactivation of N-methyl-D-aspartate receptors. Neuron 21, 443–453 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Wyszynski, M. et al. Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature 385, 439–442 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Rosenmund, C. & Westbrook, G.L. Calcium-induced actin depolymerization reduces NMDA channel activity. Neuron 10, 805–814 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Sattler, R., Xiong, Z., Lu, W.Y., MacDonald, J.F. & Tymianski, M. Distinct roles of synaptic and extrasynaptic NMDA receptors in excitotoxicity. J. Neurosci. 20, 22–33 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lei, S., Czerwinska, E., Czerwinski, W., Walsh, M.P. & MacDonald, J.F. Regulation of NMDA receptor activity by F-actin and myosin light chain kinase. J. Neurosci. 21, 8464–8472 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Krupp, J.J., Vissel, B., Thomas, C.G., Heinemann, S.F. & Westbrook, G.L. Interactions of calmodulin and alpha-actinin with the NR1 subunit modulate Ca2+-dependent inactivation of NMDA receptors. J. Neurosci. 19, 1165–1178 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Furukawa, K. et al. The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons. J. Neurosci. 17, 8178–8186 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim, C.H. & Lisman, J.E. A role of actin filament in synaptic transmission and long-term potentiation. J. Neurosci. 19, 4314–4324 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carlisle, H.J. & Kennedy, M.B. Spine architecture and synaptic plasticity. Trends Neurosci. 28, 182–187 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Witke, W. et al. Hemostatic, inflammatory, and fibroblast responses are blunted in mice lacking gelsolin. Cell 81, 41–51 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. dos Remedios, C.G. et al. Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol. Rev. 83, 433–473 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Zhou, Q., Homma, K.J. & Poo, M.M. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44, 749–757 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Ehlers, M.D., Zhang, S., Bernhadt, J.P. & Huganir, R.L. Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell 84, 745–755 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Mulkey, R.M., Herron, C.E. & Malenka, R.C. An essential role for protein phosphatases in hippocampal long-term depression. Science 261, 1051–1055 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Rosenmund, C., Feltz, A. & Westbrook, G.L. Calcium-dependent inactivation of synaptic NMDA receptors in hippocampal neurons. J. Neurophysiol. 73, 427–430 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Li, B. et al. Differential regulation of synaptic and extra-synaptic NMDA receptors. Nat. Neurosci. 5, 833–834 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Carroll, R.C., Lissin, D.V., von Zastrow, M., Nicoll, R.A. & Malenka, R.C. Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nat. Neurosci. 2, 454–460 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Ehlers, M.D. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 28, 511–525 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Lin, J.W. et al. Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization. Nat. Neurosci. 3, 1282–1290 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Man, H.-Y. et al. Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization. Neuron 25, 649–662 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Allison, D.W., Gelfand, V.I., Spector, I. & Craig, A.M. Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors. J. Neurosci. 18, 2423–2436 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wenthold, R.J., Prybylowski, K., Standley, S., Sans, N. & Petralia, R.S. Trafficking of NMDA receptors. Annu. Rev. Pharmacol. Toxicol. 43, 335–358 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Tovar, K.R. & Westbrook, G.L. Mobile NMDA receptors at hippocampal synapses. Neuron 34, 255–264 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Groc, L. et al. Differential activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors. Nat. Neurosci. 7, 695–696 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Okamoto, K., Nagai, T., Miyawaki, A. & Hayashi, Y. Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat. Neurosci. 7, 1104–1112 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Li, B., Otsu, Y., Murphy, T.H. & Raymond, L.A. Developmental decrease in NMDA receptor desensitization associated with shift to synapse and interaction with postsynaptic density-95. J. Neurosci. 23, 11244–11254 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cummings, J.A., Mulkey, R.M., Nicoll, R.A. & Malenka, R.C. Ca2+ signaling requirements for long-term depression in the hippocampus. Neuron 16, 825–833 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Nagerl, U.V., Eberhorn, N., Cambridge, S.B. & Bonhoeffer, T. Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron 44, 759–767 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S.Y. Lee for technical assistance and members of the Malenka lab for constructive comments. This work was supported by US National Institutes of Health grant MH063394 to R.C.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C Malenka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Schematic diagram illustrating working model of the different signal transduction pathways involved in LTD of AMPAR EPSCs and LTD of NMDAR EPSCs. (PDF 907 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morishita, W., Marie, H. & Malenka, R. Distinct triggering and expression mechanisms underlie LTD of AMPA and NMDA synaptic responses. Nat Neurosci 8, 1043–1050 (2005). https://doi.org/10.1038/nn1506

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1506

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing