Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TRPC channels promote cerebellar granule neuron survival

Abstract

Channels formed by the transient receptor potential (TRP) family of proteins have a variety of physiological functions. Here we report that two members of the TRP cation channel (TRPC) subfamily, TRPC3 and 6, protected cerebellar granule neurons (CGNs) against serum deprivation–induced cell death in cultures and promoted CGN survival in rat brain. In CGN cultures, blocking TRPC channels or downregulating TRPC3 or 6 suppressed brain-derived neurotrophic factor (BDNF)–mediated protection, BDNF-triggered intracellular Ca2+ elevation and BDNF-induced CREB activation. By contrast, overexpressing TRPC3 or 6 increased CREB-dependent reporter gene transcription and prevented apoptosis in the neurons deprived of serum, and this protection was blocked by the dominant negative form of CREB. Furthermore, downregulating TRPC3 or 6 induced CGN apoptosis in neonatal rat cerebellum, and this effect was rescued by overexpressing either TRPC3 or 6. Thus, our findings provide in vitro and in vivo evidence that TRPC channels are important in promoting neuronal survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TRPC3 and 6 are required for BDNF's neuroprotective effect.
Figure 2: PLC and IP3R are necessary for the BDNF neuroprotection.
Figure 3: TRPC3 and 6 contribute to BDNF-triggered [Ca2+]i elevation in CGNs' soma.
Figure 4: TRPC3 and 6 are required for BDNF-induced CREB and ERK activation.
Figure 5: Activation of CREB is necessary for TRPC3 and 6 neuroprotective effects.
Figure 6: Expression pattern of TRPC channels in developing cerebellum and establishment of in vivo electroporation in neonatal rat cerebellum.
Figure 7: TRPC3 and 6 channels promote CGN survival in vivo.

Similar content being viewed by others

References

  1. Minke, B. Drosophila mutant with a transducer defect. Biophys. Struct. Mech. 3, 59–64 (1977).

    Article  CAS  Google Scholar 

  2. Montell, C., Jones, K., Hafen, E. & Rubin, G. Rescue of the Drosophila phototransduction mutation trp by germline transformation. Science 230, 1040–1043 (1985).

    Article  CAS  Google Scholar 

  3. Clapham, D.E., Runnels, L.W. & Strubing, C. The TRP ion channel family. Nat. Rev. Neurosci. 2, 387–396 (2001).

    Article  CAS  Google Scholar 

  4. Clapham, D.E. TRP channels as cellular sensors. Nature 426, 517–524 (2003).

    Article  CAS  Google Scholar 

  5. Montell, C., Birnbaumer, L. & Flockerzi, V. The TRP channels, a remarkably functional family. Cell 108, 595–598 (2002).

    Article  CAS  Google Scholar 

  6. Montell, C. The TRP superfamily of cation channels. Sci. STKE 2005, re3 (2005).

    PubMed  Google Scholar 

  7. Montell, C. et al. A unified nomenclature for the superfamily of TRP cation channels. Mol. Cell 9, 229–231 (2002).

    Article  CAS  Google Scholar 

  8. Aarts, M. et al. A key role for TRPM7 channels in anoxic neuronal death. Cell 115, 863–877 (2003).

    Article  CAS  Google Scholar 

  9. Segal, R.A. & Greenberg, M.E. Intracellular signaling pathways activated by neurotrophic factors. Annu. Rev. Neurosci. 19, 463–489 (1996).

    Article  CAS  Google Scholar 

  10. Bibel, M. & Barde, Y.A. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev. 14, 2919–2937 (2000).

    Article  CAS  Google Scholar 

  11. Huang, E.J. & Reichardt, L.F. Trk receptors: roles in neuronal signal transduction. Annu. Rev. Biochem. 72, 609–642 (2003).

    Article  CAS  Google Scholar 

  12. Pettmann, B. & Henderson, C.E. Neuronal cell death. Neuron 20, 633–647 (1998).

    Article  CAS  Google Scholar 

  13. Minichiello, L. & Klein, R. TrkB and TrkC neurotrophin receptors cooperate in promoting survival of hippocampal and cerebellar granule neurons. Genes Dev. 10, 2849–2858 (1996).

    Article  CAS  Google Scholar 

  14. Schwartz, P.M., Borghesani, P.R., Levy, R.L., Pomeroy, S.L. & Segal, R.A. Abnormal cerebellar development and foliation in BDNF−/− mice reveals a role for neurotrophins in CNS patterning. Neuron 19, 269–281 (1997).

    Article  CAS  Google Scholar 

  15. Bonni, A. et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286, 1358–1362 (1999).

    Article  CAS  Google Scholar 

  16. Brunet, A., Datta, S.R. & Greenberg, M.E. Transcription-dependent and transcription-independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr. Opin. Neurobiol. 11, 297–305 (2001).

    Article  CAS  Google Scholar 

  17. Li, H.S., Xu, X.Z. & Montell, C. Activation of a TRPC3-dependent cation current through the neurotrophin BDNF. Neuron 24, 261–273 (1999).

    Article  CAS  Google Scholar 

  18. Shim, S. et al. XTRPC1-dependent chemotropic guidance of neuronal growth cones. Nat. Neurosci. 8, 730–735 (2005).

    Article  CAS  Google Scholar 

  19. Li, Y. et al. Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature 434, 894–898 (2005).

    Article  CAS  Google Scholar 

  20. Wang, G.X. & Poo, M.M. Requirement of TRPC channels in netrin-1–induced chemotropic turning of nerve growth cones. Nature 434, 898–904 (2005).

    Article  CAS  Google Scholar 

  21. Shaywitz, A.J. & Greenberg, M.E. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem. 68, 821–861 (1999).

    Article  CAS  Google Scholar 

  22. Riccio, A., Ahn, S., Davenport, C.M., Blendy, J.A. & Ginty, D.D. Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286, 2358–2361 (1999).

    Article  CAS  Google Scholar 

  23. Hardingham, G.E., Fukunaga, Y. & Bading, H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat. Neurosci. 5, 405–414 (2002).

    Article  CAS  Google Scholar 

  24. Rosen, L.B., Ginty, D.D., Weber, M.J. & Greenberg, M.E. Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras. Neuron 12, 1207–1221 (1994).

    Article  CAS  Google Scholar 

  25. Dolmetsch, R.E., Pajvani, U., Fife, K., Spotts, J.M. & Greenberg, M.E. Signaling to the nucleus by an L-type calcium channel–calmodulin complex through the MAP kinase pathway. Science 294, 333–339 (2001).

    Article  CAS  Google Scholar 

  26. Wu, G.Y., Deisseroth, K. & Tsien, R.W. Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc. Natl. Acad. Sci. USA 98, 2808–2813 (2001).

    Article  CAS  Google Scholar 

  27. Kornhauser, J.M. et al. CREB transcriptional activity in neurons is regulated by multiple, calcium-specific phosphorylation events. Neuron 34, 221–233 (2002).

    Article  CAS  Google Scholar 

  28. Fahlman, C.S., Bickler, P.E., Sullivan, B. & Gregory, G.A. Activation of the neuroprotective ERK signaling pathway by fructose-1,6-bisphosphate during hypoxia involves intracellular Ca2+ and phospholipase C. Brain Res. 958, 43–51 (2002).

    Article  CAS  Google Scholar 

  29. Finkbeiner, S. et al. CREB: a major mediator of neuronal neurotrophin responses. Neuron 19, 1031–1047 (1997).

    Article  CAS  Google Scholar 

  30. Atabay, C., Cagnoli, C.M., Kharlamov, E., Ikonomovic, M.D. & Manev, H. Removal of serum from primary cultures of cerebellar granule neurons induces oxidative stress and DNA fragmentation: protection with antioxidants and glutamate receptor antagonists. J. Neurosci. Res. 43, 465–475 (1996).

    Article  CAS  Google Scholar 

  31. Marshall, J. et al. Calcium channel and NMDA receptor activities differentially regulate nuclear C/EBPbeta levels to control neuronal survival. Neuron 39, 625–639 (2003).

    Article  CAS  Google Scholar 

  32. Merritt, J.E. et al. SK&F 96365, a novel inhibitor of receptor-mediated calcium entry. Biochem. J. 271, 515–522 (1990).

    Article  CAS  Google Scholar 

  33. Zhu, X., Jiang, M. & Birnbaumer, L. Receptor-activated Ca2+ influx via human Trp3 stably expressed in human embryonic kidney (HEK)293 cells. Evidence for a non-capacitative Ca2+ entry. J. Biol. Chem. 273, 133–142 (1998).

    Article  CAS  Google Scholar 

  34. Groschner, K. et al. Trp proteins form store-operated cation channels in human vascular endothelial cells. FEBS Lett. 437, 101–106 (1998).

    Article  CAS  Google Scholar 

  35. Hofmann, T., Schaefer, M., Schultz, G. & Gudermann, T. Subunit composition of mammalian transient receptor potential channels in living cells. Proc. Natl. Acad. Sci. USA 99, 7461–7466 (2002).

    Article  CAS  Google Scholar 

  36. Maruyama, T., Kanaji, T., Nakade, S., Kanno, T. & Mikoshiba, K. 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release. J. Biochem. 122, 498–505 (1997).

    Article  CAS  Google Scholar 

  37. Gafni, J. et al. Xestospongins: potent membrane permeable blockers of the inositol 1,4,5-trisphosphate receptor. Neuron 19, 723–733 (1997).

    Article  CAS  Google Scholar 

  38. Matthews, R.P. et al. Calcium/calmodulin-dependent protein kinase types II and IV differentially regulate CREB-dependent gene expression. Mol. Cell. Biol. 14, 6107–6116 (1994).

    Article  CAS  Google Scholar 

  39. Bito, H., Deisseroth, K. & Tsien, R.W. CREB phosphorylation and dephosphorylation: a Ca2+- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87, 1203–1214 (1996).

    Article  CAS  Google Scholar 

  40. Hatten, M.E. & Heintz, N. Mechanisms of neural patterning and specification in the developing cerebellum. Annu. Rev. Neurosci. 18, 385–408 (1995).

    Article  CAS  Google Scholar 

  41. Konishi, Y., Stegmuller, J., Matsuda, T., Bonni, S. & Bonni, A. Cdh1-APC controls axonal growth and patterning in the mammalian brain. Science 303, 1026–1030 (2004).

    Article  CAS  Google Scholar 

  42. Kuan, C.Y., Roth, K.A., Flavell, R.A. & Rakic, P. Mechanisms of programmed cell death in the developing brain. Trends Neurosci. 23, 291–297 (2000).

    Article  CAS  Google Scholar 

  43. Kuida, K. et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384, 368–372 (1996).

    Article  CAS  Google Scholar 

  44. Tang, J. et al. Identification of common binding sites for calmodulin and inositol 1,4,5-trisphosphate receptors on the carboxyl termini of trp channels. J. Biol. Chem. 276, 21303–21310 (2001).

    Article  CAS  Google Scholar 

  45. Cheng, A., Wang, S., Yang, D., Xiao, R. & Mattson, M.P. Calmodulin mediates brain-derived neurotrophic factor cell survival signaling upstream of Akt kinase in embryonic neocortical neurons. J. Biol. Chem. 278, 7591–7599 (2003).

    Article  CAS  Google Scholar 

  46. Egea, J. et al. Neuronal survival induced by neurotrophins requires calmodulin. J. Cell Biol. 154, 585–597 (2001).

    Article  CAS  Google Scholar 

  47. Datta, S.R. et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–241 (1997).

    Article  CAS  Google Scholar 

  48. Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  Google Scholar 

  49. Levi, G., Aloisi, F., Ciotti, M.T. & Gallo, V. Autoradiographic localization and depolarization-induced release of acidic amino acids in differentiating cerebellar granule cell cultures. Brain Res. 290, 77–86 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.W. Putney, Jr., T. Gudermann, D.J. Linden, M.E. Greenberg, L. Li and Z.J. Cheng for providing constructs, C. Montell for TRPC3 antibody, Y.Q. Ding for pCAGGS-GFP, M.M. Poo for comments and Q. Hu for confocal imaging. This work was supported by grants from the 973 Program (2006CB806600) and 30225025, 30621062, U0632006 from National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Contributions

Y.J. and J.Z. conducted the experiments and wrote the manuscript. Y.T. prepared some RNAi constructs, and Y.W. supervised the project and wrote the manuscript.

Corresponding author

Correspondence to Yizheng Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Effect of a putative inhibitor of TRPC channels, SKF96365, on BDNF protective effect on cultured CGNs. (PDF 2229 kb)

Supplementary Fig. 2

Transfection efficiency of chemically synthesized siRNA and plasmid on cultured CGNs. (PDF 3899 kb)

Supplementary Fig. 3

An IP3R antagonist, 2-aminoethoxydiphenyl borate (2ApB), suppressed BDNF-dependent neuroprotective effect. (PDF 3491 kb)

Supplementary Fig. 4

Quantitative analysis of the peak ΔR/R stimulated by BDNF together with EGTA. (PDF 721 kb)

Supplementary Fig. 5

The surface expression of TRPC3 and 6 is not altered by BDNF. (PDF 1302 kb)

Supplementary Fig. 6

Effects of SKF96365 on CRE-luciferase activity stimulated by BDNF. (PDF 458 kb)

Supplementary Fig. 7

Wild-type form of human TRPC3 or mouse TRPC6 (pCAGGS-TRPC3/6-IRES-GFP) can be expressed in cultured CGNs. (PDF 773 kb)

Supplementary Fig. 8

Quantitative analysis of phosphorylation of CREB and ERK shown in Figure 5c. (PDF 437 kb)

Supplementary Fig. 9

In vivo electroporation in rat developing cerebellum. (PDF 7082 kb)

Supplementary Fig. 10

The proportion of GFP-positive cells in different layers of rat cerebella as shown in Figure 7b. (PDF 2066 kb)

Supplementary Fig. 11

Schematic diagram depicting a working model for TRPCs neuroprotective effect. (PDF 930 kb)

Supplementary Fig. 12

Effect of downregulation of TRPC3 and 6 on neuronal protective effect of BDNF and IGF-1. (PDF 625 kb)

Supplementary Table 1

siRNA sequences of rat TRPC1, 3, 6 and PLCγ-1. (PDF 589 kb)

Supplementary Methods (PDF 475 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, Y., Zhou, J., Tai, Y. et al. TRPC channels promote cerebellar granule neuron survival. Nat Neurosci 10, 559–567 (2007). https://doi.org/10.1038/nn1870

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1870

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing