Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Design and implementation of high-throughput RNAi screens in cultured Drosophila cells

Abstract

This protocol describes the various steps and considerations involved in planning and carrying out RNA interference (RNAi) genome-wide screens in cultured Drosophila cells. We focus largely on the procedures that have been modified as a result of our experience over the past 3 years and of our better understanding of the underlying technology. Specifically, our protocol offers a set of suggestions and considerations for screen optimization and a step-by-step description of the procedures successfully used at the Drosophila RNAi Screening Center for screen implementation, data collection and analysis to identify potential hits. In addition, this protocol briefly covers postscreen analysis approaches that are often needed to finalize the hit list. Depending on the scope of the screen and subsequent analysis and validation involved, the full protocol can take anywhere from 3 months to 2 years to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General outline of a genome-wide RNA interference (RNAi) screen.
Figure 2: Comparison of one-step and two-step PCR.
Figure 3: Common approaches for assay detection in RNA interference (RNAi) screens.
Figure 4: Postscreen strategy to evaluate initials hits in a screen.
Figure 5: Examples of acceptable and unacceptable double-stranded RNA (dsRNA) products.
Figure 6: The Heatmap tool: Heatmap views of plates showing experimental artifacts.
Figure 7: Quantile–Quantile plots.
Figure 8: The Heatmap tool: comparison of two normalization methods.

Similar content being viewed by others

References

  1. Adams, M.D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

    PubMed  Google Scholar 

  2. Hannon, G.J. RNA interference. Nature 418, 244–251 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Dykxhoorn, D.M., Novina, C.D. & Sharp, P.A. Killing the messenger: short RNAs that silence gene expression. Nat. Rev. Mol. Cell Biol. 4, 457–467 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Tomari, Y. & Zamore, P.D. Perspective: machines for RNAi. Genes Dev. 19, 517–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Moffat, J. & Sabatini, D.M. Building mammalian signalling pathways with RNAi screens. Nat. Rev. Mol. Cell Biol. 7, 177–187 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Clemens, J.C. et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl. Acad. Sci. USA 97, 6499–6503 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Hammond, S.M., Bernstein, E., Beach, D. & Hannon, G.J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Lum, L. et al. Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 299, 2039–2045 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Kiger, A.A. et al. A functional genomic analysis of cell morphology using RNA interference. J. Biol. 2, 27 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Foley, E. & O'Farrell, P.H. Functional dissection of an innate immune response by a genome-wide RNAi screen. PLoS Biol. 2, e203 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Boutros, M. et al. Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 303, 832–835 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Ramet, M., Manfruelli, P., Pearson, A., Mathey-Prevot, B. & Ezekowitz, R.A. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416, 644–648 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Feske, S. et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441, 179–185 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Vig, M. et al. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312, 1220–1223 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, S.L. et al. Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc. Natl. Acad. Sci. USA 103, 9357–9362 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Perrimon, N. & Mathey-Prevot, B. Applications of high-throughput RNA interference screens to problems in cell and developmental biology. Genetics 175, 7–16 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kennerdell, J.R. & Carthew, R.W. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95, 1017–1026 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Kennerdell, J.R. & Carthew, R.W. Heritable gene silencing in Drosophila using double-stranded RNA. Nat Biotechnol 18, 896–898 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Kim, Y.O., Park, S.J., Balaban, R.S., Nirenberg, M. & Kim, Y. A functional genomic screen for cardiogenic genes using RNA interference in developing Drosophila embryos. Proc. Natl. Acad. Sci. USA 101, 159–164 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Koizumi, K. et al. RNA interference screen to identify genes required for Drosophila embryonic nervous system development. Proc. Natl. Acad. Sci. USA 104, 5626–5631 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Ma, Y., Creanga, A., Lum, L. & Beachy, P.A. Prevalence of off-target effects in Drosophila RNA interference screens. Nature 443, 359–363 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Kulkarni, M.M. et al. Evidence of off-target effects associated with long dsRNAs in Drosophila melanogaster cell-based assays. Nat. Methods 3, 833–838 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Echeverri, C.J. et al. Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat. Methods 3, 777–779 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Perrimon, N. & Mathey-Prevot, B. Matter arising: off targets and genome scale RNAi screens in Drosophila. Fly 1, e1–e5 (2007).

    Article  Google Scholar 

  25. Armknecht, S. et al. High-throughput RNA interference screens in Drosophila tissue culture cells. Methods Enzymol. 392, 55–73 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Friedman, A. & Perrimon, N. High-throughput approaches to dissecting MAPK signaling pathways. Methods 40, 262–271 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Kallio, J. et al. Functional analysis of immune response genes in Drosophila identifies JNK pathway as a regulator of antimicrobial peptide gene expression in S2 cells. Microbes Infect. 7, 811–819 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Björklund, M. et al. Identification of pathways regulating cell size and cell-cycle progression by RNAi. Nature 439, 1009–1013 (2006).

    Article  PubMed  Google Scholar 

  29. Boutros, M., Bras, L. & Huber, W. Analysis of cell-based RNAi screens. Genome Biol. 7, R66 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang, X.D. et al. Robust statistical methods for hit selection in RNA interference high-throughput screening experiments. Pharmacogenomics 7, 299–309 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Fuchs, F. & Boutros, M. Cellular phenotyping by RNAi. Brief Funct. Genomic. Proteomic. 5, 52–56 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Mathey-Prevot, B. & Perrimon, N. Regulatory RNAs: Cold Spring Harbor Symposia on Quantitative Biology Vol. LXXI. (eds. Stillman B. & Stewart D.) (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2007).

    Google Scholar 

  33. Cully, M.J. & Leevers, S.J. RNA interference pinpoints regulators of cell size and the cell cycle. Genome Biol. 7, 219 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Echeverri, C.J. & Perrimon, N. High-throughput RNAi screening in cultured cells: a user's guide. Nat. Rev. Genet. 7, 373–384 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Hild, M. et al. An integrated gene annotation and transcriptional profiling approach towards the full gene content of the Drosophila genome. Genome Biol. 5, R3 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Malo, N., Hanley, J.A., Cerquozzi, S., Pelletier, J. & Nadon, R. Statistical practice in high-throughput screening data analysis. Nat. Biotechnol. 24, 167–175 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Makarenkov, V. et al. An efficient method for the detection and elimination of systematic error in high-throughput screening. Bioinformatics 23, 1648–1657 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Gentleman, R., Carey, V.J., Huber, W., Irizarri, R. & Dudoit, S. Bioinformatics and Computational Biology Solutions using R and Bioconductor (Springer, New York, 2005).

    Book  Google Scholar 

  39. Sims, D., Bursteinas, B., Gao, Q., Zvelebil, M. & Baum, B. FLIGHT: database and tools for the integration and cross-correlation of large-scale RNAi phenotypic datasets. Nucleic Acids Res. 34, D479–D483 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Flockhart, I. et al. FlyRNAi: the Drosophila RNAi screening center database. Nucleic Acids Res. 34, D489–D494 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386 (2000).

    CAS  PubMed  Google Scholar 

  42. Carpenter, A.E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bera, A.K. & Jarque, C.M. Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Econ. Lett. 6, 255–259 (1980).

    Article  Google Scholar 

  44. Friedman, A. & Perrimon, N. A functional RNAi screen for regulators of receptor tyrosine kinase and ERK signalling. Nature 444, 230–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Wheeler, D.L. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 35, D5–D12 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. O'Brien, K.P., Remm, M. & Sonnhammer, E.L. Inparanoid: a comprehensive database of eukaryotic orthologs. Nucleic Acids Res. 33, D476–D480 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Hirsh, A.E. & Fraser, H.B. Protein dispensability and rate of evolution. Nature 411, 1046–1049 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Jordan, I.K., Rogozin, I.B., Wolf, Y.I. & Koonin, E.V. Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. Genome Res. 12, 962–968 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Crosby, M.A., Goodman, J.L., Strelets, V.B., Zhang, P. & Gelbart, W.M. FlyBase: genomes by the dozen. Nucleic Acids Res. 35, D486–D491 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Grumbling, G. & Strelets, V. FlyBase: anatomical data, images and queries. Nucleic Acids Res. 34, D484–488 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Pacifico, S. et al. A database and tool, IM Browser, for exploring and integrating emerging gene and protein interaction data for Drosophila. BMC Bioinformatics 7, 195 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  52. DasGupta, R., Kaykas, A., Moon, R.T. & Perrimon, N. Functional genomic analysis of the Wnt-wingless signaling pathway. Science 308, 826–833 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Schneider, I. Cell lines derived from late embryonic stages of Drosophila melanogaster. J. Embryol. Exp. Morphol. 27, 353–365 (1972).

    CAS  PubMed  Google Scholar 

  54. Yanagawa, S., Lee, J.S. & Ishimoto, A. Identification and characterization of a novel line of Drosophila Schneider S2 cells that respond to wingless signaling. J. Biol. Chem. 273, 32353–32359 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Echalier, G. & Ohanessian, A. [Isolation, in tissue culture, of Drosophila melanogaster cell lines]. C. R. Acad. Sci. Hebd. Seances. Acad. Sci. D 268, 1771–1773 (1969).

    CAS  PubMed  Google Scholar 

  56. Haars, R., Zentgraf, H., Gateff, E. & Bautz, F.A. Evidence for endogenous reovirus-like particles in a tissue culture cell line from Drosophila melanogaster. Virology 101, 124–130 (1980).

    Article  CAS  PubMed  Google Scholar 

  57. Ui, K. et al. Newly established cell lines from Drosophila larval CNS express neural specific characteristics. In Vitro Cell. Dev. Biol. Anim. 30A, 209–216 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Ui, K., Ueda, R. & Miyake, T. Cell lines from imaginal discs of Drosophila melanogaster. In Vitro Cell. Dev. Biol. 23, 707–711 (1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all members of the Perrimon laboratory as well as all past and present DRSC screeners for sharing their experience with us. None of the protocols described here would have been possible without their contributions. Work at the DRSC is supported by grant R01 GM067761 from the NIGMS. N.P. is an investigator of the Howard Hughes Medical School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Mathey-Prevot.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramadan, N., Flockhart, I., Booker, M. et al. Design and implementation of high-throughput RNAi screens in cultured Drosophila cells. Nat Protoc 2, 2245–2264 (2007). https://doi.org/10.1038/nprot.2007.250

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.250

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing