Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Gaussia luciferase reporter assay for monitoring biological processes in culture and in vivo

Abstract

Secreted reporters are a useful tool in the monitoring of different biological processes in the conditioned medium of cultured cells as well in the blood and urine of experimental animals. Described here is a protocol for detecting the recently established naturally secreted Gaussia luciferase (Gluc) in cultured cells as well as in blood and urine in vivo. Furthermore, the assay for detecting the secreted alkaline phosphatase (SEAP), the most commonly used secreted reporter in serum, is also presented. The Gluc reporter system has several advantages over the SEAP assay, including a much reduced assay time (1–10 min versus 1.5–2 h), 20,000-fold (in vitro) or 1,000-fold (in vivo) increased sensitivity and a linear range covering over five orders of magnitude of cell number. Additionally, the Gluc signal can be detected in urine and the signal can be localized in animals using in vivo bioluminescence imaging.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vitro detection of secreted reporters.
Figure 2: Blood monitoring of in vivo processes.

Similar content being viewed by others

References

  1. Badr, C.E., Hewett, J.W., Breakefield, X.O. & Tannous, B.A. A highly sensitive assay for monitoring the secretory pathway and ER stress. PLoS ONE 2, e571 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bao, R. et al. Activation of cancer-specific gene expression by the survivin promoter. J. Natl. Cancer Inst. 94, 522–528 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Bao, R., Selvakumaran, M. & Hamilton, T.C. Use of a surrogate marker (human secreted alkaline phosphatase) to monitor in vivo tumor growth and anticancer drug efficacy in ovarian cancer xenografts. Gynecol. Oncol. 78, 373–379 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Hewett, J.W. et al. Mutant torsinA interferes with protein processing through the secretory pathway in DYT1 dystonia cells. Proc. Natl. Acad. Sci. USA 104, 7271–7276 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Hiramatsu, N. et al. Secreted protein-based reporter systems for monitoring inflammatory events: critical interference by endoplasmic reticulum stress. J. Immunol. Methods 315, 202–207 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Meng, Y. et al. Real-time monitoring of mesangial cell-macrophage cross-talk using SEAP in vitro and ex vivo . Kidney Int. 68, 886–893 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Meng, Y. et al. Continuous, noninvasive monitoring of local microscopic inflammation using a genetically engineered cell-based biosensor. Lab. Invest. 85, 1429–1439 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Wurdinger, T. et al. A secreted luciferase for ex vivo monitoring of in vivo processes. Nat. Methods 5, 171–173 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Berger, J., Hauber, J., Hauber, R., Geiger, R. & Cullen, B.R. Secreted placental alkaline phosphatase: a powerful new quantitative indicator of gene expression in eukaryotic cells. Gene 66, 1–10 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. Cullen, B.R. & Malim, M.H. Secreted placental alkaline phosphatase as a eukaryotic reporter gene. Methods Enzymol. 216, 362–368 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Hiramatsu, N., Kasai, A., Hayakawa, K., Yao, J. & Kitamura, M. Real-time detection and continuous monitoring of ER stress in vitro and in vivo by ES-TRAP: evidence for systemic, transient ER stress during endotoxemia. Nucleic. Acids Res. 34, e93 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hiramatsu, N. et al. Alkaline phosphatase versus luciferase as secreted reporter molecules in vivo . Anal. Biochem. 339, 249–256 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Shiraiwa, T. et al. Establishment of a non-invasive mouse reporter model for monitoring in vivo pdx-1 promoter activity. Biochem. Biophys. Res. Commun. 361, 739–744 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Abruzzese, R.V. et al. Ligand-dependent regulation of plasmid-based transgene expression in vivo . Hum. Gene Ther. 10, 1499–1507 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Chastain, M. et al. Antigen levels and antibody titers after DNA vaccination. J. Pharm. Sci. 90, 474–484 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Muller, L., Saydam, O., Saeki, Y., Heid, I. & Fraefel, C. Gene transfer into hepatocytes mediated by herpes simplex virus–Epstein–Barr virus hybrid amplicons. J. Virol. Methods 123, 65–72 (2005).

    Article  PubMed  Google Scholar 

  17. Phuong, L.K. et al. Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme. Cancer Res. 63, 2462–2469 (2003).

    CAS  PubMed  Google Scholar 

  18. Hewett, J.W. et al. siRNA knock-down of mutant torsinA restores processing through secretory pathway in DYT1 dystonia cells. Hum. Mol. Genet. 17, 1436–1445 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tannous, B.A., Kim, D.E., Fernandez, J.L., Weissleder, R. & Breakefield, X.O. Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo . Mol. Ther. 11, 435–443 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Suzuki, T., Usuda, S., Ichinose, H. & Inouye, S. Real-time bioluminescence imaging of a protein secretory pathway in living mammalian cells using Gaussia luciferase. FEBS Lett. 581, 4551–4556 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Ruecker, O., Zillner, K., Groebner-Ferreira, R. & Heitzer, M. Gaussia-luciferase as a sensitive reporter gene for monitoring promoter activity in the nucleus of the green alga Chlamydomonas reinhardtii . Mol. Genet. Genomics 280, 153–162 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Lee, J.Y. et al. Development of a dual-luciferase reporter system for in vivo visualization of MicroRNA biogenesis and posttranscriptional regulation. J. Nucl. Med. 49, 285–294 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Morlighem, J.E., Petit, C. & Tzertzinis, G. Determination of silencing potency of synthetic and RNase III-generated siRNA using a secreted luciferase assay. Biotechniques 42, 599–600, 602, 604–606 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Remy, I. & Michnick, S.W. A highly sensitive protein–protein interaction assay based on Gaussia luciferase. Nat. Methods 3, 977–979 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Venisnik, K.M., Olafsen, T., Gambhir, S.S. & Wu, A.M. Fusion of Gaussia luciferase to an engineered anti-carcinoembryonic antigen (CEA) antibody for in vivo optical imaging. Mol. Imaging Biol. 9, 267–277 (2007).

    Article  PubMed  Google Scholar 

  26. Contag, C.H. & Ross, B.D. It's not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology. J. Magn. Reson. Imaging 16, 378–387 (2002).

    Article  PubMed  Google Scholar 

  27. Weissleder, R. & Ntziachristos, V. Shedding light onto live molecular targets. Nat. Med. 9, 123–128 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Gross, S. & Piwnica-Worms, D. Spying on cancer: molecular imaging in vivo with genetically encoded reporters. Cancer Cell 7, 5–15 (2005).

    CAS  PubMed  Google Scholar 

  29. Negrin, R.S. & Contag, C.H. In vivo imaging using bioluminescence: a tool for probing graft-versus-host disease. Nat. Rev. Immunol. 6, 484–490 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Adams, J.Y. et al. Visualization of advanced human prostate cancer lesions in living mice by a targeted gene transfer vector and optical imaging. Nat. Med. 8, 891–897 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Luker, G.D. et al. Noninvasive bioluminescence imaging of herpes simplex virus type 1 infection and therapy in living mice. J. Virol. 76, 12149–12161 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Luo, J., Lin, A.H., Masliah, E. & Wyss-Coray, T. Bioluminescence imaging of Smad signaling in living mice shows correlation with excitotoxic neurodegeneration. Proc. Natl. Acad. Sci. USA 103, 18326–18331 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Sena-Esteves, M., Tebbets, J.C., Steffens, S., Crombleholme, T. & Flake, A.W. Optimized large-scale production of high titer lentivirus vector pseudotypes. J. Virol. Methods 122, 131–139 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Tiscornia, G., Singer, O. & Verma, I.M. Production and purification of lentiviral vectors. Nat. Protoc. 1, 241–245 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Tannous, B.A. et al. Metabolic biotinylation of cell surface receptors for in vivo imaging. Nat. Methods 3, 391–396 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Watarai, H., Nakagawa, R., Omori-Miyake, M., Dashtsoodol, N. & Taniguchi, M. Methods for detection, isolation and culture of mouse and human invariant NKT cells. Nat. Protoc. 3, 70–78 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I acknowledge all the members of the Tannous laboratory, who contributed to the development of the Gluc blood/urine monitoring of in vivo processes, especially Dr Thomas Wurdinger and Christian Badr. This work was supported partly by grants from NIH-NCI P50 CA86355-04, 1K99CA126839-01 and the Brain Tumor Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bakhos A Tannous.

Ethics declarations

Competing interests

An invention disclosure by B. Tannous, including a description of the subject matter of the submitted manuscript was filed with the MGH Office of Technology Transfer and as a patent application.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tannous, B. Gaussia luciferase reporter assay for monitoring biological processes in culture and in vivo. Nat Protoc 4, 582–591 (2009). https://doi.org/10.1038/nprot.2009.28

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.28

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing