Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The isomerase PIN1 controls numerous cancer-driving pathways and is a unique drug target

Key Points

  • In contrast to all other known prolyl isomerases, PIN1 has the unique property of binding to and catalysing the conversion of specific proline-directed serine/threonine phosphorylation motifs between the two distinct cis and trans conformations of proline. Such PIN1-catalysed prolyl isomerization functions as a molecular timer that modulates many targets at various steps of a given cellular process to synchronously control the amplitude and duration of a given cellular response or process.

  • PIN1 is tightly regulated under physiological conditions, but is commonly overexpressed and/or overactivated in most human cancers, with its levels being correlated with clinical outcome in many cancers. By contrast, PIN1 polymorphisms that lower PIN1 expression are associated with reduced risk for multiple cancers.

  • Pin1-null mice, which develop normally, are highly resistant to tumorigenesis even after overexpression of oncogenes or ablation of tumour suppressors. Conversely, PIN1 overexpression disrupts cell cycle coordination and leads to chromosome instability and tumorigenesis.

  • Abnormal PIN1 activation disrupts the balance in cancer to activate at least 40 oncogenes and inactivate at least 20 tumour suppressors, many of which have a known role in cancer stem cells (CSCs).

  • PIN1 inhibitors have the promising and desirable property of restoring the balance in cancer by simultaneously blocking many cancer-driving pathways in cancer cells and CSCs for treating aggressive and drug-resistant cancers. PIN1 is a major target of the drug all-trans retinoic acid (ATRA) in acute promyelocytic leukaemia.

  • The recent development of cis and trans conformation-specific antibodies provides direct evidence for conformation-specific function and regulation by PIN1, and should facilitate the discovery of novel disease mechanisms and potential new therapies for PIN1-related diseases. Further development of conformation-specific antibodies against oncogenes and tumour suppressors that are PIN1 substrates would provide powerful tools for studying cancer signalling and may lead to new cancer diagnostics and/or therapeutics.

Abstract

Targeted drugs have changed cancer treatment but are often ineffective in the long term against solid tumours, largely because of the activation of heterogeneous oncogenic pathways. A central common signalling mechanism in many of these pathways is proline-directed phosphorylation, which is regulated by many kinases and phosphatases. The structure and function of these phosphorylated proteins are further controlled by a single proline isomerase: PIN1. PIN1 is overactivated in cancers and it promotes cancer and cancer stem cells by disrupting the balance of oncogenes and tumour suppressors. This Review discusses the roles of PIN1 in cancer and the potential of PIN1 inhibitors to restore this balance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Abnormal PIN1 activation disrupts the balance between oncogenic and tumour suppressing molecules towards oncogenesis, which might be restored by PIN1 inhibitors.
Figure 2: PIN1 promotes cancer cells and CSCs by activating numerous oncogenes and growth enhancers, and inactivating numerous tumour suppressors and growth inhibitors.
Figure 3: PIN1 promotes the HER2–RAF1–RAS–ERK growth signalling pathway by acting on many substrates at various levels via positive and negative feedback mechanisms.
Figure 4: PIN1 as a major drug target for ATRA in APL therapy.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  2. Dean, M., Fojo, T. & Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer 5, 275–284 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Blume-Jensen, P. & Hunter, T. Oncogenic kinase signalling. Nature 411, 355–365 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Pawson, T. & Scott, J. D. Protein phosphorylation in signaling— 50 years and counting. Trends Biochem. Sci. 30, 286–290 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Ubersax, J. A. & Ferrell, J. E. Jr. Mechanisms of specificity in protein phosphorylation. Nat. Rev. Mol. Cell Biol. 8, 530–541 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Pearson, G. et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22, 153–183 (2001).

    CAS  PubMed  Google Scholar 

  7. Morgan, D. O. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol. 13, 261–291 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Lu, K. P. & Zhou, X. Z. The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and human disease. Nat. Rev. Mol. Cell Biol. 8, 904–916 (2007). A review of the discovery of PIN1 and its various regulatory functions in phosphorylation signalling and human diseases, notably cancer and Alzheimer disease.

    Article  CAS  PubMed  Google Scholar 

  9. Lu, K. P., Finn, G., Lee, T. H. & Nicholson, L. K. Prolyl cis–trans isomerization as a molecular timer. Nat. Chem. Biol. 3, 619–629 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Nakamura, K. et al. Proline isomer-specific antibodies reveal the early pathogenic tau conformation in Alzheimer's disease. Cell 149, 232–244 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kondo, A. et al. Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy. Nature 523, 431–436 (2015). References 10 and 11 describe the innovative peptide chemistries used to generate the first example of cis and trans proline isomer-specific antibodies. These references also report the discovery that cis but not trans P-tau is an early disease driver in Alzheimer disease, brain injury and chronic traumatic encephalopathy that can be blocked by a cis -specific antibody.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liou, Y. C., Zhou, X. Z. & Lu, K. P. The prolyl isomerase Pin1 as a molecular switch to determine the fate of phosphoproteins. Trends Biochem. Sci. 36, 501–514 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lu, Z. & Hunter, T. Pin1 and cancer. Cell Res. 24, 1033–1049 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wei, S. et al. Active Pin1 as a target of all-trans retinoic acid in acute promyelocytic leukemia and breast cancer. Nat. Med. 21, 457–466 (2015). Describes the mechanism-based PIN1 HTS that identified ATRA as a PIN1 inhibitor; ATRA can simultaneously switch on and off multiple oncogenes and tumour suppressors, respectively, to treat APL and breast cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marsolier, J. et al. Theileria parasites secrete a prolyl isomerase to maintain host leukocyte transformation. Nature 520, 378–382 (2015). Demonstrates that Theileria parasites secrete a PIN1 homologue into host cells to promote cell transformation and that PIN1 is a target of the anti-parasite drug buparvaquone.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lu, K. P., Liou, Y. C. & Zhou, X. Z. Pinning down the proline-directed phosphorylation signaling. Trends Cell Biol. 12, 164–172 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Lu, K. P. Pinning down cell signaling, cancer and Alzheimer's disease. Trends Biochem. Sci. 29, 200–209 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Driver, J. A. et al. Inverse association between cancer and Alzheimer's disease: results from the Framingham study. BMJ 344, e1442 (2012). Uses the well-controlled Framingham Heart Study cohort to demonstrate the inverse relationship between cancer and Alzheimer disease, a concept based on the opposite effects of PIN1 on the development of cancer and Alzheimer disease.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Driver, J. A., Zhou, X. Z. & Lu, K. P. Pin1 dysregulation helps to explain the inverse association between cancer and Alzheimer's disease. Biochim. Biophys. Acta 1850, 2069–2076 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee, T. H. et al. Death associated protein kinase 1 phosphorylates Pin1 and inhibits its prolyl isomerase activity and cellular function. Mol. Cell 22, 147–159 (2011). Demonstrates that phosphorylation of PIN1 on the active site Ser71 by the tumour suppressor DAPK1 inhibits PIN1 PPIase activity and oncogenic function.

    Article  CAS  Google Scholar 

  21. Li, Q. et al. The rs2233678 polymorphism in PIN1 promoter region reduced cancer risk: a meta-analysis. PLoS ONE 8, e68148 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wulf, G., Garg, P., Liou, Y. C., Iglehart, D. & Lu, K. P. Modeling breast cancer in vivo and ex vivo reveals an essential role of Pin1 in tumorigenesis. EMBO J. 23, 3397–3407 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Girardini, J. E. et al. A Pin1/mutant p53 axis promotes aggressiveness in breast cancer. Cancer Cell 20, 79–91 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Takahashi, K. et al. Ablation of a peptidyl prolyl isomerase Pin1 from p53-null mice accelerated thymic hyperplasia by increasing the level of the intracellular form of Notch1. Oncogene 26, 3835–3845 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Suizu, F., Ryo, A., Wulf, G., Lim, J. & Lu, K. P. Pin1 regulates centrosome duplication and its overexpression induces centrosome amplification, chromosome instability and oncogenesis. Mol. Cell. Biol. 26, 1463–1479 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Luo, M. L. et al. Prolyl isomerase Pin1 acts downstream of miR200c to promote cancer stem-like cell traits in breast cancer. Cancer Res. 74, 3603–3616 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rustighi, A. et al. Prolyl-isomerase Pin1 controls normal and cancer stem cells of the breast. EMBO Mol. Med. 6, 99–119 (2014). References 26 and 27 demonstrate that PIN1 is most highly expressed in breast CSCs in human breast tumours compared with non-CSC tumour cells and plays a fundamental role in driving self-renewal and tumorigenesis of breast CSCs, even in primary breast tumours in humans and mice, by regulating RAB2A or NOTCH1.

    Article  CAS  PubMed  Google Scholar 

  28. Luo, M. L. et al. The Rab2A GTPase is a breast cancer stem-promoting gene that enhances tumorigenesis via activating Erk signaling. Cell Rep. 11, 111–124 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee, T. H., Pastorino, L. & Lu, K. P. Peptidyl-prolyl cis–trans isomerase Pin1 in aging, cancer and Alzheimer's disease. Expert Rev. Mol. Med. 13, e21 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Hariharan, N. & Sussman, M. A. Pin1: a molecular orchestrator in the heart. Trends Cardiovasc. Med. 24, 256–262 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Theuerkorn, M., Fischer, G. & Schiene-Fischer, C. Prolyl cis/trans isomerase signalling pathways in cancer. Curr. Opin. Pharmacol. 11, 281–287 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Lu, K. P., Hanes, S. D. & Hunter, T. A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 380, 544–547 (1996). Describes the discovery of PIN1 as one of three proteins that interact with NIMA to suppress its lethal mitotic phenotype and shows that PIN1 is the first and only known PPIase essential for cell division in budding yeast.

    Article  CAS  PubMed  Google Scholar 

  33. Yaffe, M. B. et al. Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science 278, 1957–1960 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Ranganathan, R., Lu, K. P., Hunter, T. & Noel, J. P. Structural and functional analysis of the mitotic peptidyl-prolyl isomerase Pin1 suggests that substrate recognition is phosphorylation dependent. Cell 89, 875–886 (1997). References 33 and 34 describe the first characterization of phosphorylation-specific PPIase specificity and substrates of PIN1.

    Article  CAS  PubMed  Google Scholar 

  35. Lu, P. J., Zhou, X. Z., Shen, M. & Lu, K. P. A function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science 283, 1325–1328 (1999). Describes the PIN1 WW domain as the first phosphoserine- or phosphothreonine-binding module after the discovery that whole 14-3-3 proteins bind phosphoserine or phosphothreonine.

    Article  CAS  PubMed  Google Scholar 

  36. Lu, P. J., Wulf, G., Zhou, X. Z., Davies, P. & Lu, K. P. The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 399, 784–788 (1999). Identifies the first PIN1 neuronal substrate tau and provides the first evidence that PIN1 directly restores the biological function of Alzheimer phosphorylated tau without dephosphorylation.

    Article  CAS  PubMed  Google Scholar 

  37. Zhou, X. Z. et al. Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol. Cell 6, 873–883 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Zhou, X. Z., Lu, P. J., Wulf, G. & Lu, K. P. Phosphorylation-dependent prolyl isomerization: a novel signaling regulatory mechanism. Cell. Mol. Life Sci. 56, 788–806 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Ramelot, T. A. & Nicholson, L. K. Phosphorylation-induced structural changes in the amyloid precursor protein cytoplasmic tail detected by NMR. J. Mol. Biol. 307, 871–884 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Pastorino, L. et al. The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-β production. Nature 440, 528–534 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Weiwad, M., Kullertz, G., Schutkowski, M. & Fischer, G. Evidence that the substrate backbone conformation is critical to phosphorylation by p42 MAP kinase. FEBS Lett. 478, 39–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Brown, N. R., Noble, M. E., Endicott, J. A. & Johnson, L. N. The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat. Cell Biol. 1, 438–443 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Gray, C. H., Good, V. M., Tonks, N. K. & Barford, D. The structure of the cell cycle protein Cdc14 reveals a proline-directed protein phosphatase. EMBO J. 22, 3524–3535 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mayfield, J. E. et al. Chemical tools to decipher regulation of phosphatases by proline isomerization on eukaryotic RNA polymerase II. ACS Chem. Biol. 10, 2405–2414 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yeh, E. S. & Means, A. R. PIN1, the cell cycle and cancer. Nat. Rev. Cancer 7, 381–388 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Liou, Y.-C. et al. Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 424, 556–561 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Hamdane, M. et al. Pin1 allows for differential Tau dephosphorylation in neuronal cells. Mol. Cell. Neurosci. 32, 155–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Wulf, G. M. et al. Pin1 is overexpressed in breast cancer and potentiates the transcriptional activity of phosphorylated c-Jun towards the cyclin D1 gene. EMBO J. 20, 3459–3472 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ryo, A., Nakamura, N., Wulf, G., Liou, Y. C. & Lu, K. P. Pin1 regulates turnover and subcellular localization of β-catenin by inhibiting its interaction with APC. Nat. Cell Biol. 3, 793–801 (2001). References 48 and 49 provide the first demonstration of PIN1 overexpression in human cancers and its crucial role in activating RAS–JNK–JUN and WNT– β -catenin oncogenic pathways, and also the first to identify non-mitotic PIN1 targets.

    Article  CAS  PubMed  Google Scholar 

  50. Bao, L., Sauter, G., Sowadski, J., Lu, K. P. & Wang, D. Prevalent overexpression of prolyl isomerase Pin1 in human cancers. Am. J. Pathol. 164, 1727–1737 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liou, Y. C. et al. Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypes. Proc. Natl Acad. Sci. USA 99, 1335–1340 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ayala, G. et al. Pin1 is a novel prognostic marker in prostate cancer. Cancer Res. 63, 6244–6251 (2003).

    CAS  PubMed  Google Scholar 

  53. Ryo, A. et al. Pin1 is an E2F target gene essential for the Neu/Ras-induced transformation of mammary epithelial cells. Mol. Cell. Biol. 22, 5281–5295 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pulikkan, J. A. et al. Elevated PIN1 expression by C/EBPα-p30 blocks C/EBPα-induced granulocytic differentiation through c-Jun in AML. Leukemia 24, 914–923 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rustighi, A. et al. The prolyl-isomerase Pin1 is a Notch1 target that enhances Notch1 activation in cancer. Nat. Cell Biol. 11, 133–142 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. MacLachlan, T. K. et al. BRCA1 effects on the cell cycle and the DNA damage response are linked to altered gene expression. J. Biol. Chem. 275, 2777–2785 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Lu, J. et al. A novel functional variant (–842G>C) in the PIN1 promoter contributes to decreased risk of squamous cell carcinoma of the head and neck by diminishing the promoter activity. Carcinogenesis 30, 1717–1721 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Segat, L. et al. Pin1 promoter polymorphisms are associated with Alzheimer's disease. Neurobiol. Aging 28, 69–74 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Ma, S. L. et al. A PIN1 polymorphism that prevents its suppression by AP4 associates with delayed onset of Alzheimer's disease. Neurobiol. Aging 33, 804–813 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, X., Zhang, B., Gao, J., Wang, X. & Liu, Z. Regulation of the microRNA 200b (miRNA-200b) by transcriptional regulators PEA3 and ELK-1 protein affects expression of Pin1 protein to control anoikis. J. Biol. Chem. 288, 32742–32752 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee, K. H. et al. MicroRNA-296-5p (miR-296-5p) functions as a tumor suppressor in prostate cancer by directly targeting Pin1. Biochim. Biophys. Acta 1843, 2055–2066 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Lu, P. J., Zhou, X. Z., Liou, Y. C., Noel, J. P. & Lu, K. P. Critical role of WW domain phosphorylation in regulating its phosphoserine-binding activity and the Pin1 function. J. Biol. Chem. 277, 2381–2384 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Cho, Y. S. et al. TPA-induced cell transformation provokes a complex formation between Pin1 and 90 kDa ribosomal protein S6 kinase 2. Mol. Cell. Biochem. 367, 85–92 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Lee, Y. C. et al. Pin1 acts as a negative regulator of the G2/M transition by interacting with the Aurora-A–Bora complex. J. Cell Sci. 126, 4862–4872 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Kim, G. et al. COT phosphorylates prolyl-isomerase Pin1 to promote tumorigenesis in breast cancer. Mol. Carcinog. 54, 440–448 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Bialik, S. & Kimchi, A. The death-associated protein kinases: structure, function, and beyond. Annu. Rev. Biochem. 75, 189–210 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Chen, C. H. et al. SENP1 desumoylates and regulates Pin1 protein activity and cellular function. Cancer Res. 73, 3951–3962 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Chen, C. H. et al. Pin1 cysteine-113 oxidation inhibits its catalytic activity and cellular function in Alzheimer's disease. Neurobiol. Dis. 76, 13–23 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Eckerdt, F. et al. Polo-like kinase 1-mediated phosphorylation stabilizes Pin1 by inhibiting its ubiquitination in human cells. J. Biol. Chem. 280, 36575–36583 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Eckerdt, F., Yuan, J. & Strebhardt, K. Polo-like kinases and oncogenesis. Oncogene 24, 267–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Rangasamy, V. et al. Mixed-lineage kinase 3 phosphorylates prolyl-isomerase Pin1 to regulate its nuclear translocation and cellular function. Proc. Natl Acad. Sci. USA 109, 8149–8154 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Tan, X. et al. Pin1 expression contributes to lung cancer: prognosis and carcinogenesis. Cancer Biol. Ther. 9, 111–119 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Pang, R. et al. Pin1 interacts with a specific serine-proline motif of hepatitis B virus X-protein to enhance hepatocarcinogenesis. Gastroenterology 132, 1088–1103 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Pang, R. et al. PIN1 expression contributes to hepatic carcinogenesis. J. Pathol. 210, 19–25 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. D'Artista, L. et al. Pin1 is required for sustained B cell proliferation upon oncogenic activation of Myc. Oncotarget http://dx.doi.org/10.18632/oncotarget.7846 (2016).

  76. Franciosa, G. et al. Prolyl-isomerase Pin1 controls Notch3 protein expression and regulates T-ALL progression. Oncogene http://dx.doi.org/10.1038/onc.2016.5 (2016).

  77. Shimono, Y. et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138, 592–603 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nishi, M. et al. Induction of cells with cancer stem cell properties from nontumorigenic human mammary epithelial cells by defined reprogramming factors. Oncogene 33, 643–652 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. De The, H. & Chen, Z. Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nat. Rev. Cancer 10, 775–783 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. De The, H., Le Bras, M. & Lallemand-Breitenbach, V. The cell biology of disease: acute promyelocytic leukemia, arsenic, and PML bodies. J. Cell Biol. 198, 11–21 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kastner, P. et al. Positive and negative regulation of granulopoiesis by endogenous RARα. Blood 97, 1314–1320 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Ito, K. et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature 453, 1072–1078 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Moretto-Zita, M. et al. Phosphorylation stabilizes Nanog by promoting its interaction with Pin1. Proc. Natl Acad. Sci. USA 107, 13312–13317 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Nishi, M. et al. A distinct role for Pin1 in the induction and maintenance of pluripotency. J. Biol. Chem. 286, 11593–11603 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Farrell, A. S. et al. Pin1 regulates the dynamics of c-Myc DNA binding to facilitate target gene regulation and oncogenesis. Mol. Cell. Biol. 33, 2930–2949 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Stadtfeld, M. & Hochedlinger, K. Induced pluripotency: history, mechanisms, and applications. Genes Dev. 24, 2239–2263 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ryo, A. et al. Regulation of NF-κB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol. Cell 12, 1413–1426 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Wulf, G., Finn, G., Suizu, F. & Lu, K. P. Phosphorylation-specific prolyl isomerization: is there an underlying theme? Nat. Cell Biol. 7, 435–441 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Lam, P. B. et al. Prolyl isomerase Pin1 is highly expressed in Her2-positive breast cancer and regulates ErbB2 protein stability. Mol. Cancer 7, 91 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rajbhandari, P. et al. Regulation of estrogen receptor α N-terminus conformation and function by peptidyl prolyl isomerase Pin1. Mol. Cell. Biol. 32, 445–457 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. La Montagna, R. et al. Androgen receptor serine 81 mediates Pin1 interaction and activity. Cell Cycle 11, 3415–3420 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dougherty, M. K. et al. Regulation of Raf-1 by direct feedback phosphorylation. Mol. Cell 17, 215–224 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Liao, Y. et al. Peptidyl-prolyl cis/trans isomerase Pin1 is critical for the regulation of PKB/Akt stability and activation phosphorylation. Oncogene 28, 2436–2445 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yang, W. et al. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat. Cell Biol. 14, 1295–1304 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nakano, A. et al. Pin1 downregulates TGF-β signaling by inducing degradation of Smad proteins. J. Biol. Chem. 284, 6109–6115 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Lufei, C., Koh, T. H., Uchida, T. & Cao, X. Pin1 is required for the Ser727 phosphorylation-dependent Stat3 activity. Oncogene 26, 7656–7664 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Khanal, P., Kim, G., Yun, H. J., Cho, H. G. & Choi, H. S. The prolyl isomerase Pin1 interacts with and downregulates the activity of AMPK leading to induction of tumorigenicity of hepatocarcinoma cells. Mol. Carcinog. 52, 813–823 (2013).

    CAS  PubMed  Google Scholar 

  98. Zheng, Y. et al. FAK phosphorylation by ERK primes ras-induced tyrosine dephosphorylation of FAK mediated by PIN1 and PTP-PEST. Mol. Cell 35, 11–25 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zheng, Y. et al. Ras-induced and extracellular signal-regulated kinase 1 and 2 phosphorylation-dependent isomerization of protein tyrosine phosphatase (PTP)-PEST by PIN1 promotes FAK dephosphorylation by PTP-PEST. Mol. Cell. Biol. 31, 4258–4269 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lee, N. Y. et al. The prolyl isomerase Pin1 interacts with a ribosomal protein S6 kinase to enhance insulin-induced AP-1 activity and cellular transformation. Carcinogenesis 30, 671–681 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Jo, A. et al. Prolyl isomerase PIN1 negatively regulates SGK1 stability to mediate tamoxifen resistance in breast cancer cells. Anticancer Res. 35, 785–794 (2015).

    CAS  PubMed  Google Scholar 

  102. Min, S. H. et al. Negative regulation of the stability and tumor suppressor function of Fbw7 by the Pin1 prolyl isomerase. Mol. Cell 46, 771–783 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Weigel, N. L. & Moore, N. L. Steroid receptor phosphorylation: a key modulator of multiple receptor functions. Mol. Endocrinol. 21, 2311–2319 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Rajbhandari, P., Ozers, M. S., Solodin, N. M., Warren, C. L. & Alarid, E. T. Peptidylprolyl isomerase Pin1 directly enhances the DNA binding functions of estrogen receptor alpha. J. Biol. Chem. 290, 13749–13762 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yi, P. et al. Peptidyl-prolyl isomerase 1 (Pin1) serves as a coactivator of steroid receptor by regulating the activity of phosphorylated steroid receptor coactivator 3 (SRC-3/AIB1). Mol. Cell. Biol. 25, 9687–9699 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Stanya, K. J., Liu, Y., Means, A. R. & Kao, H. Y. Cdk2 and Pin1 negatively regulate the transcriptional corepressor SMRT. J. Cell Biol. 183, 49–61 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Van Tiel, C. M., Kurakula, K., Koenis, D. S., van der Wal, E. & de Vries, C. J. Dual function of Pin1 in NR4A nuclear receptor activation: enhanced activity of NR4As and increased Nur77 protein stability. Biochim. Biophys. Acta 1823, 1894–1904 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Chen, H. Z. et al. Prolyl isomerase Pin1 stabilizes and activates orphan nuclear receptor TR3 to promote mitogenesis. Oncogene 31, 2876–2887 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Brondani, V., Schefer, Q., Hamy, F. & Klimkait, T. The peptidyl-prolyl isomerase Pin1 regulates phospho-Ser77 retinoic acid receptor alpha stability. Biochem. Biophys. Res. Commun. 328, 6–13 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Reineke, E. L. et al. Degradation of the tumor suppressor PML by Pin1 contributes to the cancer phenotype of breast cancer MDA-MB-231 cells. Mol. Cell. Biol. 28, 997–1006 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Brenkman, A. B. et al. The peptidyl-isomerase Pin1 regulates p27kip1 expression through inhibition of Forkhead box O tumor suppressors. Cancer Res. 68, 7597–7605 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Nicole Tsang, Y. H. et al. Prolyl isomerase Pin1 downregulates tumor suppressor RUNX3 in breast cancer. Oncogene 32, 1488–1496 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Khanal, P. et al. Prolyl isomerase Pin1 negatively regulates the stability of SUV39H1 to promote tumorigenesis in breast cancer. FASEB J. 27, 4606–4618 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Hwang, Y. C. et al. Destabilization of KLF10, a tumor suppressor, relies on Thr93 phosphorylation and isomerase association. Biochim. Biophys. Acta 1833, 3035–3045 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Steger, M. et al. Prolyl isomerase PIN1 regulates DNA double-strand break repair by counteracting DNA end resection. Mol. Cell 50, 333–343 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Yuan, W. C. et al. A Cullin3-KLHL20 ubiquitin ligase-dependent pathway targets PML to potentiate HIF-1 signaling and prostate cancer progression. Cancer Cell 20, 214–228 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Bertoli, C., Skotheim, J. M. & de Bruin, R. A. Control of cell cycle transcription during G1 and S phases. Nat. Rev. Mol. Cell Biol. 14, 518–528 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Shen, M., Stukenberg, P. T., Kirschner, M. W. & Lu, K. P. The essential mitotic peptidyl-prolyl isomerase Pin1 binds and regulates mitosis-specific phosphoproteins. Genes Dev. 12, 706–720 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rizzolio, F. et al. Retinoblastoma tumor-suppressor protein phosphorylation and inactivation depend on direct interaction with Pin1. Cell Death Differ. 19, 1152–1161 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tong, Y. et al. Pin1 inhibits PP2A-mediated Rb dephosphorylation in regulation of cell cycle and S-phase DNA damage. Cell Death Dis. 6, e1640 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. van Drogen, F. et al. Ubiquitylation of cyclin E requires the sequential function of SCF complexes containing distinct hCdc4 isoforms. Mol. Cell 23, 37–48 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Fujimori, F., Takahashi, K., Uchida, C. & Uchida, T. Mice lacking Pin1 develop normally, but are defective in entering cell cycle from G0 arrest. Biochem. Biophys. Res. Commun. 265, 658–663 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Ubersax, J. A. et al. Targets of the cyclin-dependent kinase Cdk1. Nature 425, 859–864 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Joseph, J. D., Daigle, S. N. & Means, A. R. PINA is essential for growth and positively influences NIMA function in Aspergillus nidulans. J. Biol. Chem. 279, 32373–32384 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Bernis, C. et al. Pin1 stabilizes Emi1 during G2 phase by preventing its association with SCFβtrcp. EMBO Rep. 8, 91–98 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Stukenberg, P. T. & Kirschner, M. W. Pin1 acts catalytically to promote a conformational change in Cdc25. Mol. Cell 7, 1071–1083 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Okamoto, K. & Sagata, N. Mechanism for inactivation of the mitotic inhibitory kinase Wee1 at M phase. Proc. Natl Acad. Sci. USA 104, 3753–3758 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hellmuth, S. et al. Human chromosome segregation involves multi-layered regulation of separase by the peptidyl-prolyl-isomerase Pin1. Mol. Cell 58, 495–506 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Van der Horst, A. & Khanna, K. K. The peptidyl-prolyl isomerase Pin1 regulates cytokinesis through Cep55. Cancer Res. 69, 6651–6659 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Estey, M. P. et al. Mitotic regulation of SEPT9 protein by cyclin-dependent kinase 1 (Cdk1) and Pin1 protein is important for the completion of cytokinesis. J. Biol. Chem. 288, 30075–30086 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kops, O., Zhou, X. Z. & Lu, K. P. Pin1 enhances the dephosphorylation of the C-terminal domain of the RNA polymerase II by Fcp1. FEBS Lett. 513, 305–311 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Xu, Y. X. & Manley, J. L. Pin1 modulates RNA polymerase II activity during the transcription cycle. Genes Dev. 21, 2950–2962 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Xu, Y. X. & Manley, J. L. The prolyl isomerase Pin1 functions in mitotic chromosome condensation. Mol. Cell 26, 287–300 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Wulf, G. M., Liou, Y. C., Ryo, A., Lee, S. W. & Lu, K. P. Role of Pin1 in the regulation of p53 stability and p21 transactivation, and cell cycle checkpoints in response to DNA damage. J. Biol. Chem. 277, 47976–47979 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Zacchi, P. et al. The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 419, 853–857 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Zheng, H. et al. The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature 419, 849–853 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Mantovani, F. et al. The prolyl isomerase Pin1 orchestrates p53 acetylation and dissociation from the apoptosis inhibitor iASPP. Nat. Struct. Mol. Biol. 14, 912–920 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Mantovani, F., Zannini, A., Rustighi, A. & Del Sal, G. Interaction of p53 with prolyl isomerases: healthy and unhealthy relationships. Biochim. Biophys. Acta 1850, 2048–2060 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Li, C. et al. Pin1 modulates p63 protein stability in regulation of cell survival, proliferation and tumor formation. Cell Death Dis. 4, e943 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hilton, B. A. et al. ATR plays a direct antiapoptotic role at mitochondria, which is regulated by prolyl isomerase Pin1. Mol. Cell 60, 35–46 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Buendia, M. A. & Neuveut, C. Hepatocellular carcinoma. Cold Spring Harbor Perspect. Med. 5, a021444 (2015).

    Article  CAS  Google Scholar 

  142. Jeong, S. J., Ryo, A. & Yamamoto, N. The prolyl isomerase Pin1 stabilizes the human T-cell leukemia virus type 1 (HTLV-1) Tax oncoprotein and promotes malignant transformation. Biochem. Biophys. Res. Commun. 381, 294–299 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Peloponese, J. M. et al. Peptidylproline cis-trans isomerase Pin1 interacts with HTLV-1 Tax and modulates its activation of NF-κB. J. Virol. 83, 3238–3248 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Guito, J., Gavina, A., Palmeri, D. & Lukac, D. M. The cellular peptidyl-prolyl cis/trans isomerase Pin1 regulates reactivation of Kaposi's sarcoma-associated herpesvirus from latency. J. Virol. 88, 547–558 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Tun-Kyi, A. et al. Essential role for the prolyl isomerase Pin1 in Toll-like receptor signaling and type I interferon-mediated immunity. Nat. Immunol. 12, 733–741 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Yeh, E. et al. A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat. Cell Biol. 6, 308–318 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Teng, B. L., Hacker, K. E., Chen, S., Means, A. R. & Rathmell, W. K. Tumor suppressive activity of prolyl isomerase Pin1 in renal cell carcinoma. Mol. Oncol. 5, 465–474 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lin, Y. C. et al. SCP phosphatases suppress renal cell carcinoma by stabilizing PML and inhibiting mTOR/HIF signaling. Cancer Res. 74, 6935–6946 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Luo, J., Solimini, N. L. & Elledge, S. J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823–837 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Engelman, J. A. & Settleman, J. Acquired resistance to tyrosine kinase inhibitors during cancer therapy. Curr. Opin. Genet. Dev. 18, 73–79 (2008).

    Article  CAS  PubMed  Google Scholar 

  151. Navin, N. E. Cancer genomics: one cell at a time. Genome Biol. 15, 452 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Lu, K. P. Prolyl isomerase Pin1 as a molecular target for cancer diagnostics and therapeutics. Cancer Cell 4, 175–180 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Sakuma, Y. et al. Prolyl isomerase Pin1 promotes survival in EGFR-mutant lung adenocarcinoma cells with an epithelial–mesenchymal transition phenotype. Lab. Invest. 96, 391–398 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Nakamura, K. et al. Prolyl isomerase Pin1 regulates neurogenesis via β-catenin. Mol. Cell. Biol. 32, 2966–2978 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Atchison, F. W., Capel, B. & Means, A. R. Pin1 regulates the timing of mammalian primordial germ cell proliferation. Development 130, 3579–3586 (2003).

    Article  CAS  PubMed  Google Scholar 

  156. Atchison, F. W., Means, A. R. & Capel, B. Spermatogonial depletion in adult Pin1-deficient mice: Pin1 regulates the timing of mammalian primordial germ cell proliferation. Biol. Reprod. 20, 1989–1997 (2003).

    Article  CAS  Google Scholar 

  157. Lee, T. H. et al. Essential role of Pin1 in the regulation of TRF1 stability and telomere maintenance. Nat. Cell Biol. 11, 97–105 (2009).

    Article  CAS  PubMed  Google Scholar 

  158. Schreiber, S. L. Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science 251, 283–287 (1991).

    Article  CAS  PubMed  Google Scholar 

  159. Moore, J. D. & Potter, A. Pin1 inhibitors: pitfalls, progress and cellular pharmacology. Bioorg. Med. Chem. Lett. 23, 4283–4291 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Hennig, L. et al. Selective inactivation of parvulin-like peptidyl-prolyl cis/trans isomerases by juglone. Biochemistry 37, 5953–5960 (1998).

    Article  CAS  PubMed  Google Scholar 

  161. Uchida, T. et al. Pin1 and Par14 peptidyl prolyl isomerase inhibitors block cell proliferation. Chem. Biol. 10, 15–24 (2003).

    Article  CAS  PubMed  Google Scholar 

  162. Wildemann, D. et al. Nanomolar inhibitors of the peptidyl prolyl cis/trans isomerase Pin1 from combinatorial peptide libraries. J. Med. Chem. 49, 2147–2150 (2006).

    Article  CAS  PubMed  Google Scholar 

  163. Urusova, D. V. et al. Epigallocatechin-gallate suppresses tumorigenesis by directly targeting Pin1. Cancer Prev. Res. (Phila) 4, 1366–1377 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  164. Guo, C. et al. Structure-based design of novel human Pin1 inhibitors (I). Bioorg. Med. Chem. Lett. 19, 5613–5616 (2009).

    Article  CAS  PubMed  Google Scholar 

  165. Potter, A. J. et al. Structure-guided design of alpha-amino acid-derived Pin1 inhibitors. Bioorg. Med. Chem. Lett. 20, 586–590 (2010).

    Article  CAS  PubMed  Google Scholar 

  166. Wang, X. J., Xu, B., Mullins, A. B., Neiler, F. K. & Etzkorn, F. A. Conformationally locked isostere of phosphoSer-cis-Pro inhibits Pin1 23-fold better than phosphoSer-trans-Pro isostere. J. Am. Chem. Soc. 126, 15533–15542 (2004).

    Article  CAS  PubMed  Google Scholar 

  167. Xu, G. G. & Etzkorn, F. A. Pin1 as an anticancer drug target. Drug News Perspect. 22, 399–407 (2009).

    Article  CAS  PubMed  Google Scholar 

  168. Chao, S. H., Greenleaf, A. L. & Price, D. H. Juglone, an inhibitor of the peptidyl-prolyl isomerase Pin1, also directly blocks transcription. Nucleic Acids Res. 29, 767–773 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zhang, Y. et al. Structural basis for high-affinity peptide inhibition of human Pin1. ACS Chem. Biol. 2, 320–328 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Liu, T., Liu, Y., Kao, H. Y. & Pei, D. Membrane permeable cyclic peptidyl inhibitors against human peptidyl prolyl isomerase Pin1. J. Med. Chem. 53, 2494–2501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Dong, L. et al. Structure-based design of novel human Pin1 inhibitors (II). Bioorg. Med. Chem. Lett. 20, 2210–2214 (2010).

    Article  CAS  PubMed  Google Scholar 

  172. Potter, A. et al. Discovery of cell-active phenyl-imidazole Pin1 inhibitors by structure-guided fragment evolution. Bioorg. Med. Chem. Lett. 20, 6483–6488 (2010).

    Article  CAS  PubMed  Google Scholar 

  173. Huang, M. E. et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 72, 567–572 (1988).

    CAS  PubMed  Google Scholar 

  174. Schneider, S. M., Offterdinger, M., Huber, H. & Grunt, T. W. Activation of retinoic acid receptor alpha is sufficient for full induction of retinoid responses in SK-BR-3 and T47D human breast cancer cells. Cancer Res. 60, 5479–5487 (2000).

    CAS  PubMed  Google Scholar 

  175. Nasr, R. et al. Eradication of acute promyelocytic leukemia-initiating cells through PML–RARA degradation. Nat. Med. 14, 1333–1342 (2008).

    Article  CAS  PubMed  Google Scholar 

  176. Dierov, J., Sawaya, B. E., Prosniak, M. & Gartenhaus, R. B. Retinoic acid modulates a bimodal effect on cell cycle progression in human adult T-cell leukemia cells. Clin. Cancer Res. 5, 2540–2547 (1999).

    CAS  PubMed  Google Scholar 

  177. Eck, K. M. et al. A sequential treatment regimen with melatonin and all-trans retinoic acid induces apoptosis in MCF-7 tumour cells. Br. J. Cancer 77, 2129–2137 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Sheng, N. et al. Retinoic acid regulates bone morphogenic protein signal duration by promoting the degradation of phosphorylated Smad1. Proc. Natl Acad. Sci. USA 107, 18886–18891 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Ablain, J. et al. Uncoupling RARA transcriptional activation and degradation clarifies the bases for APL response to therapies. J. Exp. Med. 210, 647–653 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Arrieta, O. et al. Randomized phase II trial of all-trans-retinoic acid with chemotherapy based on paclitaxel and cisplatin as first-line treatment in patients with advanced non-small-cell lung cancer. J. Clin. Oncol. 28, 3463–3471 (2010).

    Article  CAS  PubMed  Google Scholar 

  181. Budd, G. T. et al. Phase I/II trial of all-trans retinoic acid and tamoxifen in patients with advanced breast cancer. Clin. Cancer Res. 4, 635–642 (1998).

    CAS  PubMed  Google Scholar 

  182. Ramlau, R. et al. Randomized phase III trial comparing bexarotene (L1069-49)/cisplatin/vinorelbine with cisplatin/vinorelbine in chemotherapy-naive patients with advanced or metastatic non-small-cell lung cancer: SPIRIT I. J. Clin. Oncol. 26, 1886–1892 (2008).

    Article  CAS  PubMed  Google Scholar 

  183. Decensi, A. et al. Randomized double-blind 2 × 2 trial of low-dose tamoxifen and fenretinide for breast cancer prevention in high-risk premenopausal women. J. Clin. Oncol. 27, 3749–3756 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Connolly, R. M., Nguyen, N. K. & Sukumar, S. Molecular pathways: current role and future directions of the retinoic acid pathway in cancer prevention and treatment. Clin. Cancer Res. 19, 1651–1659 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wang, Z. Y. & Chen, Z. Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 111, 2505–2515 (2008).

    Article  CAS  PubMed  Google Scholar 

  186. Muindi, J. et al. Continuous treatment with all-trans retinoic acid causes a progressive reduction in plasma drug concentrations: implications for relapse and retinoid “resistance” in patients with acute promyelocytic leukemia. Blood 79, 299–303 (1992).

    CAS  PubMed  Google Scholar 

  187. Jain, P. et al. Single-agent liposomal all-trans-retinoic acid as initial therapy for acute promyelocytic leukemia: 13-year follow-up data. Clin. Lymphoma Myeloma Leuk. 14, e47–49 (2014).

    Article  PubMed  Google Scholar 

  188. Lim, J. et al. Pin1 has opposite effects on wild-type and P301L tau stability and tauopathy. J. Clin. Invest. 118, 1877–1889 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Yang, H. et al. mTOR kinase structure, mechanism and regulation. Nature 497, 217–223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Muller, M. R. & Rao, A. Linking calcineurin activity to leukemogenesis. Nat. Med. 13, 669–671 (2007).

    Article  CAS  PubMed  Google Scholar 

  191. Romano, S., D'Angelillo, A. & Romano, M. F. Pleiotropic roles in cancer biology for multifaceted proteins FKBPs. Biochim. Biophys. Acta 1850, 2061–2068 (2015).

    Article  CAS  PubMed  Google Scholar 

  192. Zheng, J., Koblinski, J. E., Dutson, L. V., Feeney, Y. B. & Clevenger, C. V. Prolyl isomerase cyclophilin A regulation of Janus-activated kinase 2 and the progression of human breast cancer. Cancer Res. 68, 7769–7778 (2008).

    Article  CAS  PubMed  Google Scholar 

  193. Obchoei, S. et al. Cyclophilin A enhances cell proliferation and tumor growth of liver fluke-associated cholangiocarcinoma. Mol. Cancer 10, 102 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Williams, P. D. et al. Cyclophilin B expression is associated with in vitro radioresistance and clinical outcome after radiotherapy. Neoplasia 13, 1122–1131 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Han, X. et al. Cyclosporin A and sanglifehrin A enhance chemotherapeutic effect of cisplatin in C6 glioma cells. Oncol. Rep. 23, 1053–1062 (2010).

    Article  CAS  PubMed  Google Scholar 

  196. Periyasamy, S. et al. FKBP51 and Cyp40 are positive regulators of androgen-dependent prostate cancer cell growth and the targets of FK506 and cyclosporin A. Oncogene 29, 1691–1701 (2010).

    Article  CAS  PubMed  Google Scholar 

  197. Stewart, T., Tsai, S. C., Grayson, H., Henderson, R. & Opelz, G. Incidence of de-novo breast cancer in women chronically immunosuppressed after organ transplantation. Lancet 346, 796–798 (1995).

    Article  CAS  PubMed  Google Scholar 

  198. Khanal, P., Namgoong, G. M., Kang, B. S., Woo, E. R. & Choi, H. S. The prolyl isomerase Pin1 enhances HER-2 expression and cellular transformation via its interaction with mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1. Mol. Cancer Ther. 9, 606–616 (2010).

    Article  CAS  PubMed  Google Scholar 

  199. Park, J. E. et al. A critical step for JNK activation: isomerization by the prolyl isomerase Pin1. Cell Death Differ. 19, 153–161 (2012).

    Article  CAS  PubMed  Google Scholar 

  200. Monje, P., Hernandez-Losa, J., Lyons, R. J., Castellone, M. D. & Gutkind, J. S. Regulation of the transcriptional activity of c-Fos by ERK. A novel role for the prolyl isomerase PIN1. J. Biol. Chem. 280, 35081–35084 (2005).

    Article  CAS  PubMed  Google Scholar 

  201. Kim, K. et al. Interleukin-22 promotes epithelial cell transformation and breast tumorigenesis via MAP3K8 activation. Carcinogenesis 35, 1352–1361 (2014).

    Article  CAS  PubMed  Google Scholar 

  202. Choi, H. J. et al. Dipeptidyl peptidase 4 promotes epithelial cell transformation and breast tumourigenesis via induction of PIN1 gene expression. Br. J. Pharmacol. 172, 5096–5109 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to T. Hunter, L. Cantley and P. P. Pandolfi for their expert advice and collaboration, J. Driver for constructive comments on the manuscript, S. Wei for the contribution to Box 1, and to members of the authors' research groups for stimulating discussions. Work conducted in the authors' laboratories is supported by National Institutes of Health (NIH) grants R01CA167677, R03DA031663, R01HL111430, R01AG029385 and R01AG046319, by the Alzheimer's Association grant DVT-14-322623, and the NSFC grant U1205024 to K.P.L. Work is also supported by a Beth Israel Deaconess Medical Center pilot grant and generous gift donations from the Owens Family Foundation to X.Z.Z. and K.P.L.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Zhen Zhou or Kun Ping Lu.

Ethics declarations

Competing interests

X.Z.Z. and K.P.L. are inventors of PIN1 technology, which was licensed by Beth Israel Deaconess Medical Center (BIDMC) to Pinteon Therapeutics. Both authors own equity in, and consult for, Pinteon. Their interests were reviewed and are managed by BIDMC in accordance with its conflict of interest policy.

Supplementary information

Supplementary information S1 (table)

Pin1 substrates, targeting sites and functional consequences (PDF 586 kb)

PowerPoint slides

Glossary

WW domain

A protein-interacting module that contains 38 amino acid residues folded into a three-stranded β-sheet structure; the name is derived from two conserved tryptophan residues spaced 20–22 residues apart within the consensus sequence.

ΔNp63α

An alternatively spliced variant of the TP63 gene, a member of the TP53 gene family, encoding a 'short' isoform, which lacks an amino-terminal transactivation domain, exerts oncogenic properties in contrast to the 'long' isoform, p63α, which contains an N-terminal transactivation domain and exerts tumour suppressing properties.

Oncogene switching

After prolonged exposure to a molecularly targeted anticancer drug, cancer cells activate other oncogenic pathways as a mechanism to develop drug resistance.

Parvulin- and PIN1-type PPIases

Although parvulin- and PIN1-type peptidyl-prolyl isomerases (PPIases) belong to a structurally related family, they are further divided into two distinct subfamilies based on their substrate specificity: parvulin-type PPIases cannot isomerize Ser/Thr-Pro motifs after Pro-directed phosphorylation, whereas PIN1-type PPIases isomerize the motifs only after Pro-directed phosphorylation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Lu, K. The isomerase PIN1 controls numerous cancer-driving pathways and is a unique drug target. Nat Rev Cancer 16, 463–478 (2016). https://doi.org/10.1038/nrc.2016.49

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2016.49

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer