Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuroblastoma: biological insights into a clinical enigma

Key Points

  • Neuroblastoma is the most common extracranial tumour of childhood. This tumour originates from precursor cells of the peripheral (sympathetic) nervous system and usually arises in a paraspinal location in the abdomen or chest.

  • The aetiology of neuroblastoma is unknown, but it seems unlikely that environmental exposures are important. A subset of patients inherits a genetic predisposition to neuroblastoma, and these patients usually have multifocal primary tumours that arise at an early age. A predisposition locus has been mapped to the short arm of chromosome 16.

  • Neuroblastomas can be classified into subtypes that are predictive of clinical behaviour based on the patterns of genetic change. This information can be useful in the selection of therapy.

  • Favourable tumours are characterized by near-triploid karyotypes with whole chromosome gains. These tumours rarely have structural rearrangements, and they usually express the TrkA neurotrophin receptor. Patients with these tumours are more likely to be less than 1 year of age, have localized tumours and a good prognosis.

  • Unfavourable tumours are characterized by structural changes, including deletions of 1p or 11q, unbalanced gain of 17q and/or amplification of the MYCN protooncogene. They might also express the TrkB neurotrophin receptor and its ligand, brain-derived neurotrophic factor (BDNF). These patients are usually older than 1 year of age, have more advanced stages of disease and a much worse prognosis, even with aggressive treatment.

  • Mass screening for neuroblastoma at 6–12 months of age led to an increased prevalence of neuroblastoma detected in the screened populations, but no decrease in mortality from this disease. The tumours detected have overwhelmingly been of the favourable genetic subtype.

  • Novel, biologically based therapies are being developed that would specifically target the genes, proteins and pathways that are responsible for malignant transformation and progression in neuroblastomas. These approaches are likely to be more effective and less toxic than conventional therapy.

  • In the future, it is likely that more extensive molecular profiling of the genetic changes and expression patterns of neuroblastoma will lead to an even more precise subclassification system that will be predictive of outcome, as well as therapies to which the tumour is most likely to be responsive.

Abstract

Neuroblastoma is a tumour derived from primitive cells of the sympathetic nervous system and is the most common solid tumour in childhood. Interestingly, most infants experience complete regression of their disease with minimal therapy, even with metastatic disease. However, older patients frequently have metastatic disease that grows relentlessly, despite even the most intensive multimodality therapy. Recent advances in understanding the biology and genetics of neuroblastomas have allowed classification into low-, intermediate- and high-risk groups. This allows the most appropriate intensity of therapy to be selected — from observation alone to aggressive, multimodality therapy. Future therapies will focus increasingly on the genes and biological pathways that contribute to malignant transformation or progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MYCN amplification in neuroblastomas.
Figure 2: Survival of infants with metastatic neuroblastoma based on MYCN status.
Figure 3: Loss of heterozygosity of chromosome 1p in neuroblastomas.
Figure 4: Signal-transduction pathway of the TrkA tyrosine kinase receptor.
Figure 5: Genetic model of neuroblastoma development.

Similar content being viewed by others

References

  1. Knudson, A. G. J. & Strong, L. C. Mutation and cancer: neuroblastoma and pheochromocytoma. Am. J. Hum. Genet. 24, 514–522 (1972).

    PubMed  PubMed Central  Google Scholar 

  2. Kushner, B. H., Gilbert, F. & Helson, L. Familial neuroblastoma: case reports, literature review, and etiologic considerations. Cancer 57, 1887–1893 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Maris, J. M. & Matthay, K. K. Molecular biology of neuroblastoma. J. Clin. Oncol. 17, 2264–2279 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Kushner, B. H. & Helson, L. Monozygotic siblings discordant for neuroblastoma: etiologic implications. J. Pediatr. 107, 405–409 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Kushner, B. H., Hajdu, S. I. & Helson, L. Synchronous neuroblastoma and von Recklinghausen's disease: a review of the literature. J. Clin. Oncol. 3, 117–120 (1985).

    Article  CAS  PubMed  Google Scholar 

  6. Maris, J. M. et al. Familial predisposition to neuroblastoma does not map to chromosome band 1p36. Cancer Res. 56, 3421–3425 (1996).

    CAS  PubMed  Google Scholar 

  7. Weiss, M. J. et al. Localization of a hereditary neuroblastoma predisposition gene to 16p12-p13. Med. Pediatr. Oncol. 35, 526–530 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Bown, N. P., Pearson, A. D. J. & Reid, M. M. High incidence of constitutional balanced translocations in neuroblastoma. Cancer Genet. Cytogenet. 69, 166–167 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Biegel, J. A. et al. Constitutional 1p36 deletion in a child with neuroblastoma. Am. J. Hum. Genet. 52, 176–182 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Laureys, G. et al. Constitutional translocation t(1;17)(p36.31-p36.13;q11.2-q12.1) in a neuroblastoma patient. Establishment of somatic cell hybrids and identification of PND/A12M2 on chromosome 1 and NF1/SCYA7 on chromosome 17 as breakpoint flanking single copy markers. Oncogene 10, 1087–1093 (1995).

    CAS  PubMed  Google Scholar 

  11. White, P. S. et al. Detailed molecular analysis of 1p36 in neuroblastoma. Med. Pediatr. Oncol. 36, 37–41 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Maris, J. M. et al. Evidence for a hereditary neuroblastoma predisposition locus at chromosome 16p12-13. Cancer Res. 62, 6651–6658 (2002). The first report of linkage analysis, identifying a candidate locus on 16p12-13.

    CAS  PubMed  Google Scholar 

  13. Kaneko, Y. et al. Different karyotypic patterns in early and advanced stage neuroblastomas. Cancer Res. 47, 311–318 (1987). The first report to associate karyotypic pattern with stage and prognosis, and the first to show the association of near-triploid tumours in infants with whole chromosome gains.

    CAS  PubMed  Google Scholar 

  14. Kaneko, Y. et al. Current urinary mass screening or catecholamine metabolites at 6 months of age may be detecting only a small portion of high-risk neuroblastomas: a chromosome and N-myc amplification study. J. Clin. Oncol. 8, 2005–2013 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Look, A. T., Hayes, F. A., Nitschke, R., McWilliams, N. B. & Green, A. A. Cellular DNA content as a predictor of response to chemotherapy in infants with unresectable neuroblastoma. N. Engl. J. Med. 311, 231–235 (1984). The first report to show the prognostic significance of tumour-cell DNA content in infants with neuroblastoma.

    Article  CAS  PubMed  Google Scholar 

  16. Look, A. T. et al. Clinical relevance of tumor cell ploidy and N-myc gene amplification in childhood neuroblastoma. A Pediatric Oncology Group Study. J. Clin. Oncol. 9, 581–591 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Kaneko, Y. & Knudson, A. G. Mechanism and relevance of ploidy in neuroblastoma. Genes Chromosom. Cancer 29, 89–95 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Schwab, M. et al. Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature 305, 245–248 (1983). Reports the cloning of the MYCN proto-oncogene as the gene amplified in neuroblastoma cell lines and a primary tumour.

    Article  CAS  PubMed  Google Scholar 

  19. Schwab, M. et al. Chromosome localization in normal human cells and neuroblastomas of a gene related to c-myc. Nature 308, 288–291 (1984).

    Article  CAS  PubMed  Google Scholar 

  20. Corvi, R., Amler, L. C., Savelyeva, L., Gehring, M. & Schwab, M. MYCN is retained in single copy at chromosome 2 band p23-24 during amplification in human neuroblastoma cells. Proc. Natl Acad. Sci. USA 91, 5523–5527 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Schneider, S. S. et al. Isolation and structural analysis of a 1.2-megabase N-myc amplicon from a human neuroblastoma. Mol. Cell. Biol. 12, 5563–5570 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brodeur, G. M. & Fong, C. T. Molecular biology and genetics of human neuroblastoma. Cancer Genet. Cytogenet. 41, 153–174 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Reiter, J. L. & Brodeur, G. M. High-resolution mapping of a 130-kb core region of the MYCN amplicon in neuroblastomas. Genomics 32, 97–103 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Reiter, J. L. & Brodeur, G. M. MYCN is the only highly expressed gene from the core amplified domain in human neuroblastomas. Genes Chromosom. Cancer 23, 134–140 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Brodeur, G. M., Seeger, R. C., Schwab, M., Varmus, H. E. & Bishop, J. M. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224, 1121–1124 (1984). Amplification of the MYCN oncogene is strongly associated with advanced stages of disease in neuroblastoma.

    Article  CAS  PubMed  Google Scholar 

  26. Seeger, R. C. et al. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N. Engl. J. Med. 313, 1111–1116 (1985). The first report to show the adverse prognostic significance of MYCN amplification in neuroblastoma patients.

    Article  CAS  PubMed  Google Scholar 

  27. Brodeur, G. M., Maris, J. M., Yamashiro, D. J., Hogarty, M. D. & White, P. S. Biology and genetics of human neuroblastomas. J. Pediatr. Hematol. Oncol. 19, 93–101 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Brodeur, G. M. & Ambros, P. F. in Neuroblastoma (eds Brodeur, G. M., Sawada, T., Tsuchida, Y. & Voûte, P. A.) 355–369 (Elsevier Science B. V., Amsterdam, 2000).

    Google Scholar 

  29. Brodeur, G. M. & Maris, J. M. in Principles and Practice of Pediatric Oncology (eds Pizzo, P. & Poplack, D.) 895–937 (2002).

    Google Scholar 

  30. Brodeur, G. M. in The Genetic Basis of Human Cancer (eds Vogelstein, B. & Kinzler, K. W.) 751–772 (McGraw–Hill, Inc., New York, 2002).

    Google Scholar 

  31. Brodeur, G. M. et al. Consistent N-myc copy number in simultaneous or consecutive neuroblastoma samples from sixty individual patients. Cancer Res. 47, 4248–4253 (1987).

    CAS  PubMed  Google Scholar 

  32. Seeger, R. C. et al. Expression of N-myc by neuroblastomas with one or multiple copies of the oncogene. Prog. Clin. Biol. Res. 271, 41–49 (1988).

    CAS  PubMed  Google Scholar 

  33. Norris, M. D. et al. Evidence that the MYCN oncogene regulates MRP gene expression in neuroblastoma. Eur. J. Cancer 33, 1911–1916 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Shohet, J. M. et al. Minichromosome maintenance protein MCM7 is a direct target of the MYCN transcription factor in neuroblastoma. Cancer Res. 62, 1123–1128 (2002).

    CAS  PubMed  Google Scholar 

  35. Nakagawara, A., Arima, M., Azar, C. G., Scavarda, N. J. & Brodeur, G. M. Inverse relationship between TRK expression and N-MYC amplification in human neuroblastomas. Cancer Res. 52, 1364–1368 (1992).

    CAS  PubMed  Google Scholar 

  36. Wada, R. K. et al. Human neuroblastoma cell lines that express N-myc without gene amplification. Cancer 72, 3346–3354 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Cohn, S. L. et al. High levels of N-myc protein in a neuroblastoma cell line lacking N-myc amplification. Prog. Clin. Biol. Res. 366, 21–27 (1991).

    CAS  PubMed  Google Scholar 

  38. Sivak, L. E. et al. Autoregulation of the human N-myc oncogene is disrupted in amplified but not single-copy neuroblastoma cell lines. Oncogene 15, 1937–1946 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Chan, H. S. et al. MYCN protein expression as a predictor of neuroblastoma prognosis. Clin. Cancer Res. 3, 1699–1706 (1997).

    CAS  PubMed  Google Scholar 

  40. Bordow, S. B., Norris, M. D., Haber, P. S., Marshall, G. M. & Haber, M. Prognostic significance of MYCN oncogene expression in childhood neuroblastoma. J. Clin. Oncol. 16, 3286–3294 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Cohn, S. L. et al. MYCN expression is not prognostic of adverse outcome in advanced-stage neuroblastoma with nonamplified MYCN. J. Clin. Oncol. 18, 3604–3613 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Fong, C. T. et al. Loss of heterozygosity for the short arm of chromosome 1 in human neuroblastomas: correlation with N-myc amplification. Proc. Natl Acad. Sci. USA 86, 3753–3757 (1989).

    Article  CAS  PubMed  Google Scholar 

  43. Gehring, M., Berthold, F., Edler, L., Schwab, M. & Amler, L. C. The 1p deletion is not a reliable marker for the prognosis of patients with neuroblastoma. Cancer Res. 55, 5366–5369 (1995).

    CAS  PubMed  Google Scholar 

  44. Caron, H. et al. Allelic loss of chromosome 1p as a predictor of unfavorable outcome in patients with neuroblastoma. N. Engl. J. Med. 334, 225–230 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Maris, J. M. et al. Loss of heterozygosity at 1p36 independently predicts for disease progression but not decreased overall survival probability in neuroblastoma patients: a Children's Cancer Group study. J. Clin. Oncol. 18, 1888–1899 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Jinbo, T., Iwamura, Y., Kaneko, M. & Sawaguchi, S. Coamplification of the L-myc and N-myc oncogenes in a neuroblastoma cell line. Jpn. J. Cancer Res. 80, 299–301 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Corvi, R. et al. Non-syntenic amplification of MDM2 and MYCN in human neuroblastoma. Oncogene 10, 1081–1086 (1995).

    CAS  PubMed  Google Scholar 

  48. Van Roy, N. et al. Identification of two distinct chromosome 12-derived amplification units in neuroblastoma cell line NGP. Cancer Genet. Cytogenet. 82, 151–154 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Brinkschmidt, C. et al. Comparative genomic hybridization (CGH) analysis of neuroblastomas — an important methodological approach in paediatric tumour pathology. J. Pathol. 181, 394–400 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Lastowska, M. et al. Comparative genomic hybridization study of primary neuroblastoma tumors. United Kingdom Children's Cancer Study Group. Genes Chromosom. Cancer 18, 162–169 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Vandesompele, J. et al. Genetic heterogeneity of neuroblastoma studied by comparative genomic hybridization. Genes Chromosom. Cancer 23, 141–152 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Caron, H. Allelic loss of chromosome 1 and additional chromosome 17 material are both unfavourable prognostic markers in neuroblastoma. Med. Pediatr. Oncol. 24, 215–221 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Bown, N. et al. Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. N. Engl. J. Med. 340, 1954–1961 (1999). Definitive report of the prevalence and clinical significance of unbalanced 17q gain in neuroblastomas.

    Article  CAS  PubMed  Google Scholar 

  54. Van Roy, N. et al. Analysis of 1;17 translocation breakpoints in neuroblastoma: implications for mapping of neuroblastoma genes. Eur. J. Cancer 33, 1974–1978 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Lastowska, M. et al. Breakpoint position on 17q identifies the most aggressive neuroblastoma tumors. Genes Chromosom. Cancer 34, 428–436 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Islam, A. et al. High expression of Survivin, mapped to 17q25, is significantly associated with poor prognostic factors and promotes cell survival in human neuroblastoma. Oncogene 19, 617–623 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Ireland, C. M. Activated N-ras oncogenes in human neuroblastoma. Cancer Res. 49, 5530–5533 (1989).

    CAS  PubMed  Google Scholar 

  58. Moley, J. F. et al. Low frequency of ras gene mutations in neuroblastomas, pheochromocytomas and medullary thyroid cancers. Cancer Res. 51, 1596–1599 (1991).

    CAS  PubMed  Google Scholar 

  59. Tanaka, T. et al. Expression of Ha-ras oncogene products in human neuroblastomas and the significant correlation with a patient's prognosis. Cancer Res. 48, 1030–1034 (1988).

    CAS  PubMed  Google Scholar 

  60. Brodeur, G. M. et al. Cytogenetic features of human neuroblastomas and cell lines. Cancer Res. 41, 4678–4686 (1981). Definitive report of distal 1p deletions as a genetic change characteristic of neuroblastomas. The clinical significance of deletion of 1p was shown subsequently in large studies.

    CAS  PubMed  Google Scholar 

  61. White, P. S. et al. A region of consistent deletion in neuroblastoma maps within 1p36.2-3. Proc. Natl Acad. Sci. USA 92, 5520–5524 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Martinsson, T., Shoberg, P. -M., Hedborg, F. & Kogner, P. Deletion of chromosome 1p loci and microsatellite instability in neuroblastomas analyzed with short-tandem repeat polymorphisms. Cancer Res. 55, 5681–5686 (1995).

    CAS  PubMed  Google Scholar 

  63. Ejeskar, K. et al. Fine mapping of a tumour suppressor candidate gene region in 1p36.2-3, commonly deleted in neuroblastomas and germ cell tumours. Med. Pediatr. Oncol. 36, 61–66 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Caron, H. et al. Chromosome bands 1p35-36 contain two distinct neuroblastoma tumor suppressor loci, one of which is imprinted. Genes Chromosom. Cancer 30, 168–174 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Bauer, A. et al. Smallest region of overlapping deletion in 1p36 in human neuroblastoma: a 1 Mbp cosmid and PAC contig. Genes Chromosom. Cancer 31, 228–239 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Hogarty, M. D. et al. Identification of a 1-megabase consensus region of deletion at 1p36.3 in primary neuroblastomas. Med. Pediatr. Oncol. 35, 512–515 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Maris, J. M. et al. Comprehensive analysis of chromosome 1p deletions in neuroblastoma. Med. Pediatr. Oncol. 36, 32–36 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Ohira, M. et al. Identification and characterization of a 500-kb homozygously deleted region at 1p36.2-p36.3 in a neuroblastoma cell line. Oncogene 19, 4302–4307 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Chen, Y. Z. et al. Homozygous deletion in a neuroblastoma cell line defined by a high-density STS map spanning human chromosome band 1p36. Genes Chromosom. Cancer 31, 326–332 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Srivatsan, E. S., Ying, K. L. & Seeger, R. C. Deletion of chromosome 11 and of 14q sequences in neuroblastoma. Genes Chromosom. Cancer 7, 32–37 (1993).

    Article  CAS  PubMed  Google Scholar 

  71. Plantaz, D. et al. Comparative genomic hybridization (CGH) analysis of stage 4 neuroblastoma reveals high frequency of 11q deletion in tumors lacking MYCN amplification. Int. J. Cancer 91, 680–686 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Guo, C. et al. Allelic deletion at 11q23 is common in MYCN single copy neuroblastomas. Oncogene 18, 4948–4957 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Suzuki, T. et al. Frequent loss of heterozygosity on chromosome 14q in neuroblastoma. Cancer Res. 49, 1095–1098 (1989).

    CAS  PubMed  Google Scholar 

  74. Hoshi, M. et al. Detailed deletion mapping of chromosome band 14q32 in human neuroblastoma defines a 1.1-Mb region of common allelic loss. Br. J. Cancer 82, 1801–1807 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Thompson, P. M. et al. Loss of heterozygosity for chromosome 14q in neuroblastoma. Med. Pediatr. Oncol. 36, 28–31 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Vogan, K. et al. Absence of p53 gene mutations in primary neuroblastomas. Cancer Res. 53, 5269–5273 (1993).

    CAS  PubMed  Google Scholar 

  77. Hosoi, G. et al. Low frequency of the p53 gene mutations in neuroblastoma. Cancer 73, 3087–3093 (1994).

    Article  CAS  PubMed  Google Scholar 

  78. Keshelava, N. et al. Loss of p53 function confers high-level multidrug resistance in neuroblastoma cell lines. Cancer Res. 61, 6185–6193 (2001).

    CAS  PubMed  Google Scholar 

  79. Tweddle, D. A., Malcolm, A. J., Bown, N., Pearson, A. D. & Lunec, J. Evidence for the development of p53 mutations after cytotoxic therapy in a neuroblastoma cell line. Cancer Res. 61, 8–13 (2001).

    CAS  PubMed  Google Scholar 

  80. Moll, U. M., LaQuaglia, M., Benard, J. & Riou, G. Wild-type p53 protein undergoes cytoplasmic sequestration in undifferentiated neuroblastomas but not in differentiated tumors. Proc. Natl Acad. Sci. USA 92, 4407–4411 (1995).

    Article  CAS  PubMed  Google Scholar 

  81. Moll, U. M. et al. Cytoplasmic sequestration of wild-type p53 protein impairs the G1 checkpoint after DNA damage. Mol. Cell. Biol. 16, 1126–1137 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Goldman, S. C., Chen, C. Y., Lansing, T. J., Gilmer, T. M. & Kastan, M. B. The p53 signal transduction pathway is intact in human neuroblastoma despite cytoplasmic localization. Am. J. Pathol. 148, 1381–1385 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Beltinger, C. P., White, P. S., Sulman, E. P., Maris, J. M. & Brodeur, G. M. No CDKN2 mutations in neuroblastomas. Cancer Res. 55, 2053–2055 (1995).

    CAS  PubMed  Google Scholar 

  84. Iolascon, A. et al. Structural and functional analysis of cyclin-dependent kinase inhibitor genes (CDKN2A, CDKN2B, and CDKN2C) in neuroblastoma. Pediatr. Res. 43, 139–144 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Kawamata, N., Seriu, T., Koeffler, H. P. & Bartram, C. R. Molecular analysis of the cyclin-dependent kinase inhibitor family: p16(CDKN2/MTS1/INK4A), p18(INK4C) and p27(Kip1) genes in neuroblastomas. Cancer 77, 570–575 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. Thompson, P. M. et al. Homozygous deletion of CDKN2A (p16INK4a/p14ARF) but not within 1p36 or at other tumor suppressor loci in neuroblastoma. Cancer Res. 61, 679–686 (2001).

    CAS  PubMed  Google Scholar 

  87. Johnson, M. R., Look, A. T., DeClue, J. E., Valentine, M. B. & Lowy, D. R. Inactivation of the NF1 gene in human melanoma and neuroblastoma cell lines without impaired regulation of GTP Ras. Proc. Natl Acad. Sci. USA 90, 5539–5543 (1993).

    Article  CAS  PubMed  Google Scholar 

  88. The, I. et al. Neurofibromatosis type 1 gene mutations in neuroblastoma. Nature Genet. 3, 62–66 (1993).

    Article  CAS  PubMed  Google Scholar 

  89. Yano, H. & Chao, M. V. Neurotrophin receptor structure and interactions. Pharm. Acta Helv. 74, 253–260 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Patapoutian, A. & Reichardt, L. F. Trk receptors: mediators of neurotrophin action. Curr. Opin. Neurobiol. 11, 272–280 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Nakagawara, A. et al. Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N. Engl. J. Med. 328, 847–854 (1993). The first report to show the favourable prognostic value of TrkA expression in neuroblastomas. Other reports were reported independently with similar results.

    Article  CAS  PubMed  Google Scholar 

  92. Suzuki, T., Bogenmann, E., Shimada, H., Stram, D. & Seeger, R. C. Lack of high-affinity nerve growth factor receptors in aggressive neuroblastomas. J. Natl Cancer Inst. 85, 377–384 (1993).

    Article  CAS  PubMed  Google Scholar 

  93. Kogner, P. et al. Coexpression of messenger RNA for TRK protooncogene and low affinity nerve growth factor receptor in neuroblastoma with favorable prognosis. Cancer Res. 53, 2044–2050 (1993).

    CAS  PubMed  Google Scholar 

  94. Ambros, I. M. et al. Role of ploidy, chromosome 1p, and Schwann cells in the maturation of neuroblastoma. N. Engl. J. Med. 334, 1505–1511 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Ambros, I. M. et al. Neuroblastoma cells provoke Schwann cell proliferation in vitro. Med. Pediatr. Oncol. 36, 163–168 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Nakagawara, A. & Brodeur, G. M. Role of neurotrophins and their receptors in human neuroblastomas: a primary culture study. Eur. J. Cancer 33, 2050–2053 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Nakagawara, A., Azar, C. G., Scavarda, N. J. & Brodeur, G. M. Expression and function of TRK-B and BDNF in human neuroblastomas. Mol. Cell. Biol. 14, 759–767 (1994). The first report to associate TrkB and BDNF expression with high-risk neuroblastomas that have MYCN amplification.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Acheson, A. et al. A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature 374, 450–453 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Matsumoto, K., Wada, R. K., Yamashiro, J. M., Kaplan, D. R. & Thiele, C. J. Expression of brain-derived neurotrophic factor and p145TrkB affects survival, differentiation, and invasiveness of human neuroblastoma cells. Cancer Res. 55, 1798–1806 (1995).

    CAS  PubMed  Google Scholar 

  100. Eggert, A. et al. Expression of neurotrophin receptor TrkA inhibits angiogenesis in neuroblastoma. Med. Pediatr. Oncol. 35, 569–572 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Ho, R. et al. Resistance to chemotherapy mediated by TrkB in neuroblastomas. Cancer Res. 62, 6462–6466 (2002).

    CAS  PubMed  Google Scholar 

  102. Yamashiro, D. J., Nakagawara, A., Ikegaki, N., Liu, X. -G. & Brodeur, G. M. Expression of TrkC in favorable human neuroblastomas. Oncogene 12, 37–41 (1996).

    CAS  PubMed  Google Scholar 

  103. Ryden, M. et al. Expression of mRNA for the neurotrophin receptor TrkC in neuroblastomas with favourable tumour stage and good prognosis. Br. J. Cancer 74, 773–779 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Casaccia-Bonnefil, P., Gu, C. & Chao, M. V. Neurotrophins in cell survival/death decisions. Adv. Exp. Med. Biol. 468, 275–282 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Hempstead, B. L. The many faces of p75NTR. Curr. Opin. Neurobiol. 12, 260–267 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Goldstein, L. J. et al. Expression of the multidrug resistance, MDR1, gene in neuroblastomas. J. Clin. Oncol. 8, 128–136 (1990).

    Article  CAS  PubMed  Google Scholar 

  107. Chan, H. S. et al. P-glycoprotein expression as a predictor of the outcome of therapy for neuroblastoma. N. Engl. J. Med. 325, 1608–1614 (1991).

    Article  CAS  PubMed  Google Scholar 

  108. Norris, M. D. et al. Expression of the gene for multidrug-resistance-associated protein and outcome in patients with neuroblastoma. N. Engl. J. Med. 334, 231–238 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. Hiyama, E. et al. Correlating telomerase activity levels with human neuroblastoma outcomes. Nature Med. 1, 249–255 (1995).

    Article  CAS  PubMed  Google Scholar 

  110. Brodeur, G. M. Do the ends justify the means? Nature Med. 1, 203–205 (1995).

    Article  CAS  PubMed  Google Scholar 

  111. Brodeur, G. M. & Castle, V. P. in Apoptosis and Cancer Chemotherapy (eds Hickman, J. A. & Dive, C.) 305–318 (Humana, New Jersey, 1999).

    Book  Google Scholar 

  112. Bunone, G., Mariotti, A., Compagni, A., Morandi, E. & Della Valle, G. Induction of apoptosis by p75 neurotrophin receptor in human neuroblastoma cells. Oncogene 14, 1463–1470 (1997).

    Article  CAS  PubMed  Google Scholar 

  113. Fulda, S., Sieverts, H., Friesen, C., Herr, I. & Debatin, K. M. The CD95 (APO-1/Fas) system mediates drug-induced apoptosis in neuroblastoma cells. Cancer Res. 57, 3823–3829 (1997).

    CAS  PubMed  Google Scholar 

  114. Castle, V. P. et al. Expression of the apoptosis-suppressing protein bcl-2, in neuroblastoma is associated with unfavorable histology and N-myc amplification. Am. J. Pathol. 143, 1543–1550 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Oue, T. et al. In situ detection of DNA fragmentation and expression of bcl-2 in human neuroblastoma: relation to apoptosis and spontaneous regression. J. Pediatr. Surg. 31, 251–257 (1996).

    Article  CAS  PubMed  Google Scholar 

  116. Dole, M. et al. Bcl-2 inhibits chemotherapy-induced apoptosis in neuroblastoma. Cancer Res. 54, 3253–3259 (1994).

    CAS  PubMed  Google Scholar 

  117. Dole, M. G. et al. Bcl-xL is expressed in neuroblastoma cells and modulates chemotherapy-induced apoptosis. Cancer Res. 55, 2576–2582 (1995).

    CAS  PubMed  Google Scholar 

  118. Nakagawara, A. et al. High levels of expression and nuclear localization of interleukin-1β converting enzyme (ICE) and CPP32 in favorable human neuroblastomas. Cancer Res. 57, 4578–4584 (1997).

    CAS  PubMed  Google Scholar 

  119. Westermann, F. & Schwab, M. Genetic parameters of neuroblastomas. Cancer Lett. 184, 127–147 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Brodeur, G. M. et al. Revisions of the international criteria for neuroblastoma diagnosis, staging and response to treatment. J. Clin. Oncol. 11, 1466–1477 (1993). A description of the International Neuroblastoma Staging System currently used throughout the world.

    Article  CAS  PubMed  Google Scholar 

  121. Hann, H. W. L. et al. Prognostic importance of serum ferritin in patients with stages III and IV neuroblastoma. The Children's Cancer Study Group Experience. Cancer Res. 45, 2843–2848 (1985).

    CAS  PubMed  Google Scholar 

  122. Zeltzer, P. M., Marangos, P. J., Evans, A. E. & Schneider, S. L. Serum neuron-specific enolase in children with neuroblastoma. Relationship to stage and disease course. Cancer 57, 1230–1234 (1986).

    Article  CAS  PubMed  Google Scholar 

  123. Ladisch, S. & Wu, Z. L. Detection of a tumour-associated ganglioside in plasma of patients with neuroblastoma. Lancet 1, 136–138 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Quinn, J. J., Altman, A. J. & Frantz, C. N. Serum lactic dehydrogenase, an indicator of tumor activity in neuroblastoma. J. Pediatr. 97, 89–91 (1980).

    Article  CAS  PubMed  Google Scholar 

  125. Shuster, J. J. et al. Serum lactate dehydrogenase in childhood neuroblastoma. A Pediatric Oncology Group recursive partitioning study. Am. J. Clin. Oncol. 15, 295–303 (1992).

    Article  CAS  PubMed  Google Scholar 

  126. Shimada, H. et al. Histopathologic prognostic factors in neuroblastic tumors: definition of subtypes of ganglioneuroblastoma and an age-linked classification of neuroblastomas. J. Natl Cancer Inst. 73, 405–413 (1984). The original report of the popular histopathological classification for predicting outcome of neuroblastoma patients. This was subsequently revised into the International Neuroblastoma Pathology Classification.

    Article  CAS  PubMed  Google Scholar 

  127. Shimada, H. et al. Terminology and morphologic criteria of neuroblastic tumors: recommendations by the International Neuroblastoma Pathology Committee. Cancer 86, 349–363 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Shimada, H. et al. The International Neuroblastoma Pathology Classification (the Shimada system). Cancer 86, 364–372 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Combaret, V. et al. Clinical relevance of CD44 cell-surface expression and N-myc gene amplification in a multicentric analysis of 121 pediatric neuroblastomas. J. Clin. Oncol. 14, 25–34 (1996).

    Article  CAS  PubMed  Google Scholar 

  130. Castleberry, R. P. et al. The International Neuroblastoma Risk Groups (INRG): a preliminary report. Eur. J. Cancer 33, 2113–2116 (1997). First report of an international consensus on neuroblastoma risk groups using a combination of clinical and biological variables.

    Article  CAS  PubMed  Google Scholar 

  131. Beckwith, J. & Perrin, E. In situ neuroblastomas: a contribution to the natural history of neural crest tumors. Am. J. Pathol. 43, 1089–1104 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Turkel, S. B. & Itabashi, H. H. The natural history of neuroblastic cells in the fetal adrenal gland. Am. J. Pathol. 76, 225–243 (1975).

    Google Scholar 

  133. Ikeda, Y., Lister, J., Bouton, J. M. & Buyukpamukcu, M. Congenital neuroblastoma, neuroblastoma in situ, and the normal fetal development of the adrenal. J. Pediatr. Surg. 16, 636–644 (1981).

    Article  CAS  PubMed  Google Scholar 

  134. Evans, A. E., Gerson, J. & Schnaufer, L. Spontaneous regression of neuroblastoma. Natl Cancer Inst. Monogr. 44, 49–54 (1976).

    CAS  PubMed  Google Scholar 

  135. Sawada, T. et al. Neuroblastoma. Mass screening for early detection and its prognosis. Cancer 53, 2731–2735 (1984). A seminal paper that indicates the potential value of mass screening for early detection of disease to improve the prognosis of neuroblastoma. Subsequent reports from mass screening programmes in Quebec and Germany indicate that there is no impact on mortality.

    Article  CAS  PubMed  Google Scholar 

  136. Takeda, T. et al. Japanese experience of screening. Med. Pediatr. Oncol. 17, 368–372 (1989).

    Article  CAS  PubMed  Google Scholar 

  137. Schilling, F. H. et al. Screening for neuroblastoma. Lancet 344, 1157–1158 (1994).

    Article  CAS  PubMed  Google Scholar 

  138. Woods, W. G. et al. A population-based study of the usefulness of screening for neuroblastoma. Lancet 348, 1682–1687 (1996).

    Article  CAS  PubMed  Google Scholar 

  139. Kaneko, Y. et al. Chromosomes and screening for neuroblastoma. Lancet 1, 174–175 (1988).

    Article  CAS  PubMed  Google Scholar 

  140. Hayashi, Y., Inaba, T., Hanada, R. & Yamamoto, K. Chromosome findings and prognosis in 15 patients with neuroblastoma found by VMA mass screening. J. Pediatr. 112, 567–571 (1988).

    Article  CAS  PubMed  Google Scholar 

  141. Hayashi, Y., Hanada, R. & Yamamoto, K. Biology of neuroblastomas in Japan found by screening. Am. J. Pediatr. Hematol. Oncol. 14, 342–347 (1992).

    Article  CAS  PubMed  Google Scholar 

  142. Brodeur, G. M. et al. Biological aspects of neuroblastomas identified by mass screening in Quebec. Med. Pediatr. Oncol. 36, 157–159 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Woods, W. G. et al. Screening of infants and mortality due to neuroblastoma. N. Engl. J. Med. 346, 1041–1046 (2002).

    Article  PubMed  Google Scholar 

  144. Schilling, F. H. et al. Neuroblastoma screening at one year of age. N. Engl. J. Med. 346, 1047–1053 (2002).

    Article  PubMed  Google Scholar 

  145. Kaneko, Y., Kobayashi, H., Maseki, N., Nakagawara, A. & Sakurai, M. Disomy 1 with terminal 1p deletion is frequent in mass-screening-negative/late-presenting neuroblastomas in young children, but not in mass-screening-positive neuroblastomas in infants. Int. J. Cancer 80, 54–59 (1999).

    Article  CAS  PubMed  Google Scholar 

  146. Tajiri, T. et al. Clinical and biologic characteristics for recurring neuroblastoma at mass screening cases in Japan. Cancer 92, 349–353 (2001).

    Article  CAS  PubMed  Google Scholar 

  147. van Limpt, V. et al. SAGE analysis of neuroblastoma reveals a high expression of the human homologue of the Drosophila Delta gene. Med. Pediatr. Oncol. 35, 554–558 (2000).

    Article  CAS  PubMed  Google Scholar 

  148. Spieker, N. et al. The MEIS1 oncogene is highly expressed in neuroblastoma and amplified in cell line IMR32. Genomics 71, 214–221 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Khan, J. et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Med. 7, 673–679 (2001).

    Article  CAS  PubMed  Google Scholar 

  150. Truckenmiller, M. E. et al. Gene expression profile in early stage of retinoic acid-induced differentiation of human SH-SY5Y neuroblastoma cells. Restor. Neurol. Neurosci. 18, 67–80 (2001).

    CAS  PubMed  Google Scholar 

  151. Weiss, W. A., Aldape, K., Mohapatra, G., Feuerstein, B. G. & Bishop, J. M. Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J. 16, 2985–2995 (1997). First report of a transgenic mouse that overexpresses the MYCN proto-oncogene under the control of a tyrosine kinase promoter and develops neuroblastoma with high frequency.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Weiss, W. A., Godfrey, T., Francisco, C. & Bishop, J. M. Genome-wide screen for allelic imbalance in a mouse model for neuroblastoma. Cancer Res. 60, 2483–2487 (2000).

    CAS  PubMed  Google Scholar 

  153. Norris, M. D., Burkhart, C. A., Marshall, G. M., Weiss, W. A. & Haber, M. Expression of N-myc and MRP genes and their relationship to N-myc gene dosage and tumor formation in a murine neuroblastoma model. Med. Pediatr. Oncol. 35, 585–589 (2000).

    Article  CAS  PubMed  Google Scholar 

  154. Sidell, N., Altman, A., Haussler, M. R. & Seeger, R. C. Effects of retinoic acid (RA) on the growth and phenotypic expression of several human neuroblastoma cell lines. Exp. Cell Res. 148, 21–30 (1983).

    Article  CAS  PubMed  Google Scholar 

  155. Thiele, C. J., Reynolds, C. P. & Israel, M. A. Decreased expression of N-myc precedes retinoic acid-induced morphological differentiation of human neuroblastoma. Nature 313, 404–406 (1985).

    Article  CAS  PubMed  Google Scholar 

  156. Reynolds, C. P. et al. Comparison of 13-cis-retinoic acid to trans-retinoic acid using human neuroblastoma cell lines. Prog. Clin. Biol. Res. 385, 237–244 (1994).

    CAS  PubMed  Google Scholar 

  157. Matthay, K. K. et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children's Cancer Group. N. Engl. J. Med. 341, 1165–1173 (1999). First clinical trial indicating that a survival advantage exists for the treatment of neuroblastoma patients with retinoic acid following bone-marrow transplantation.

    Article  CAS  PubMed  Google Scholar 

  158. Lovat, P. E. et al. Effector mechanisms of fenretinide-induced apoptosis in neuroblastoma. Exp. Cell Res. 260, 50–60 (2000).

    Article  CAS  PubMed  Google Scholar 

  159. Ponzoni, M. et al. Differential effects of N-(4-hydroxyphenyl)retinamide and retinoic acid on neuroblastoma cells: apoptosis versus differentiation. Cancer Res. 55, 853–861 (1995).

    CAS  PubMed  Google Scholar 

  160. Reynolds, C. P. Differentiating agents in pediatric malignancies: retinoids in neuroblastoma. Curr. Oncol. Rep. 2, 511–518 (2000).

    Article  CAS  PubMed  Google Scholar 

  161. Galderisi, U., Cascino, A. & Giordano, A. Antisense oligonucleotides as therapeutic agents. J. Cell Physiol. 181, 251–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  162. Evans, A. E. et al. Antitumor activity of CEP-751 (KT-6587) on human neuroblastoma and medulloblastoma xenografts. Clin. Cancer Res. 5, 3594–3602 (1999). First report of a tyrosine kinase inhibitor that is selective for Trk receptors with potential use in treating neuroblastomas.

    CAS  PubMed  Google Scholar 

  163. Meitar, D., Crawford, S. E., Rademaker, A. W. & Cohn, S. L. Tumor angiogenesis correlates with metastatic disease, N-myc amplification, and poor outcome in human neuroblastoma. J. Clin. Oncol. 14, 405–414 (1996). Definitive report correlating tumour angiogenesis with high-risk features and outcome in neuroblastomas. This report serves as the rationale for anti-angiogenesis therapy in high-risk neuroblastomas.

    Article  CAS  PubMed  Google Scholar 

  164. Wassberg, E., Pahlman, S., Westlin, J. E. & Christofferson, R. The angiogenesis inhibitor TNP-470 reduces the growth rate of human neuroblastoma in nude rats. Pediatr. Res. 41, 327–333 (1997).

    Article  CAS  PubMed  Google Scholar 

  165. Katzenstein, H. M. et al. Effectiveness of the angiogenesis inhibitor TNP-470 in reducing the growth of human neuroblastoma in nude mice inversely correlates with tumor burden. Clin. Cancer Res. 5, 4273–4278 (1999).

    CAS  PubMed  Google Scholar 

  166. Shusterman, S., Grupp, S. A. & Maris, J. M. Inhibition of tumor growth in a human neuroblastoma xenograft model with TNP-470. Med. Pediatr. Oncol. 35, 673–676 (2000).

    Article  CAS  PubMed  Google Scholar 

  167. Erdreich-Epstein, A. et al. Integrins α(v)β3 and α(v)β5 are expressed by endothelium of high-risk neuroblastoma and their inhibition is associated with increased endogenous ceramide. Cancer Res. 60, 712–721 (2000).

    CAS  PubMed  Google Scholar 

  168. Jouanneau, E. et al. Lack of antitumor activity of recombinant endostatin in a human neuroblastoma xenograft model. J. Neurooncol. 51, 11–18 (2001).

    Article  CAS  PubMed  Google Scholar 

  169. Kim, E. S. et al. Distinct response of experimental neuroblastoma to combination antiangiogenic strategies. J. Pediatr. Surg. 37, 518–522 (2002).

    Article  PubMed  Google Scholar 

  170. Davidoff, A. M., Leary, M. A., Ng, C. Y. & Vanin, E. F. Gene therapy-mediated expression by tumor cells of the angiogenesis inhibitor flk-1 results in inhibition of neuroblastoma growth in vivo. J. Pediatr. Surg. 36, 30–36 (2001).

    Article  CAS  PubMed  Google Scholar 

  171. Hanahan, D., Bergers, G. & Bergsland, E. Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J. Clin. Invest. 105, 1045–1047 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Frost, J. D. et al. A phase I/IB trial of murine monoclonal anti-GD2 antibody 14. G2a plus interleukin-2 in children with refractory neuroblastoma: a report of the Children's Cancer Group. Cancer 80, 317–333 (1997).

    Article  CAS  PubMed  Google Scholar 

  173. Yu, A. L. et al. Phase I trial of a human-mouse chimeric anti-disialoganglioside monoclonal antibody ch14.18 in patients with refractory neuroblastoma and osteosarcoma. J. Clin. Oncol. 16, 2169–2180 (1998).

    Article  CAS  PubMed  Google Scholar 

  174. Cheung, N. K., Kushner, B. H., Yeh, S. D. & Larson, S. M. 3F8 monoclonal antibody treatment of patients with stage 4 neuroblastoma: a phase II study. Int. J. Oncol. 12, 1299–1306 (1998).

    CAS  PubMed  Google Scholar 

  175. De Kraker, J. et al. First line targeted radiotherapy, a new concept in the treatment of advanced stage neuroblastoma. Eur. J. Cancer 31A, 600–602 (1995).

    Article  CAS  PubMed  Google Scholar 

  176. Matthay, K. K. et al. Phase I dose escalation of 131I-metaiodobenzylguanidine with autologous bone marrow support in refractory neuroblastoma. J. Clin. Oncol. 16, 229–236 (1998).

    Article  CAS  PubMed  Google Scholar 

  177. Yanik, G. A. et al. Pilot study of iodine-131-metaiodobenzylguanidine in combination with myeloablative chemotherapy and autologous stem-cell support for the treatment of neuroblastoma. J. Clin. Oncol. 20, 2142–2149 (2002).

    Article  CAS  PubMed  Google Scholar 

  178. Fitzek, M. M. et al. Neuroendocrine tumors of the sinonasal tract. Results of a prospective study incorporating chemotherapy, surgery, and combined proton-photon radiotherapy. Cancer 94, 2623–2634 (2002).

    Article  PubMed  Google Scholar 

  179. Luttikhuis, M. E. et al. Neuroblastomas with chromosome 11q loss and single copy MYCN comprise a biologically distinct group of tumours with adverse prognosis. Br. J. Cancer 85, 531–537 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Bhattacharyya, N., Thornton, A. F., Joseph, M. P., Goodman, M. L. & Amrein, P. C. Successful treatment of esthesioneuroblastoma and neuroendocrine carcinoma with combined chemotherapy and proton radiation. Results in 9 cases. Arch. Otolaryngol. Head Neck Surg. 123, 34–40 (1997).

    Article  CAS  PubMed  Google Scholar 

  181. Gurney, J. G. et al. Infant cancer in the US: histology-specific incidence and trends, 1973 to 1992. J. Pediatr. Hematol. Oncol. 19, 428–432 (1997).

    Article  CAS  PubMed  Google Scholar 

  182. Schmidt, M. L. et al. Biologic factors determine prognosis in infants with stage IV neuroblastoma: a prospective Children's Cancer Group study. J. Clin. Oncol. 18, 1260–1268 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Institutes of Health grants, and the Audrey E. Evans Endowed Chair. Some of this material has been published previously (see references 1–4).

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

BCL2

BDNF

CD95

CDKN2A

CDKN2B

CDKN2C

HRAS

LDH

MAX

MCM7

MDM2

MDR1

MRP1

MYCL

MYCN

NF1

NGF

NRAS

NSE

NT3

NT4

ODC

p75

telomerase

TP53

TrkA

TrkB

TrkC

OMIM

neuroblastoma

von Recklinghausen disease

Glossary

PLOIDY

A general term that is used to describe the overall chromosome number of a cell. A normal diploid cell has a karyotype with 46 chromosomes and a DNA content of 1.0. A triploid cell with 69 chromosomes has a DNA content of 1.5.

ALLELIC LOSS

(or loss of heterozygosity (LOH)). If the DNA is polymorphic in the normal constitutional DNA (two alleles identified) of a patient and only one allele is present in the tumour, then there is presumptive loss of DNA at that locus. Regions with high frequency of LOH are believed to harbour tumour-suppressor genes.

NEUROTROPHIN

A protein that binds to a receptor on a nerve cell, which, in turn, activates signalling pathways that support cell survival.

AUTOCRINE

A mechanism of self-activation through a ligand–receptor pathway. Autocrine activation results from a ligand that is produced by a cell binding to and activating a receptor on the same cell.

AUTOSOMAL DOMINANT

A pattern of inheritance through the non-sex chromosomes, in which a gene (allele) on one chromosome in a pair results in a phenotype and is dominant over the phenotype conferred by the other allele.

KNUDSON'S TWO-HIT HYPOTHESIS

Alfred Knudson proposed that familial cancers result from two rate-limiting mutations. One mutation is inherited in the constitutional DNA, and a single somatically acquired mutation in any cell of the target tissue could result in a tumour. In sporadic cases, both mutations are somatically acquired.

NEUROFIBROMATOSIS TYPE I

(Or von Recklinghausen disease). An autosomal-dominant disorder that is characterized by pigmented patches of skin and by the formation of neurofibromas (tumours involving nerve tissue) in the skin, subcutaneous tissue, cranial nerves and spinal root nerves.

HIRSCHSPRUNG DISEASE

A congenital condition that results from a failure to completely enervate the distal colon. This leads to obstruction of the large intestine from inadequate motility and collapse of this distal segment.

KARYOTYPE

A presentation of the chromosomes of a cell organized in pairs and by size. Normal human cells have a karyotype of 46 chromosomes (23 pairs).

SYMPATHETIC NERVOUS SYSTEM

The peripheral nervous system that is characterized by the neurotransmitter noradrenaline.

ADRENAL MEDULLA

The centre of the adrenal gland, where ganglion cells produce chemicals such as noradrenaline and adrenaline. This is a common site from which neuroblastomas originate.

PARASPINAL

Adjacent to the spine. This is a common location of sympathetic nerve cells, from which neuroblastomas arise.

NEUROBLASTS

Immature nerve cells.

SCHWANN CELLS

Cells that are derived from a group of embryonic cells called the neural crest, which are associated with and supportive of nerve cells. Schwann cells are the stromal cells in mature ganglioneuromas.

COMPARATIVE GENOMIC HYBRIDIZATION

(CGH). A technique that is used to detect chromosome gain or loss by hybridizing DNA from a target cell and a normal cell that are differentially labelled with unique fluors to a normal karyotype.

GANGLION CELLS

Mature, post-mitotic, fully differentiated nerve cells.

PARACRINE

Paracrine activation results from a ligand produced by one cell binding to and activating a receptor on an adjacent cell.

CATECHOLAMINES

Catecholamines are small molecules such as DOPA, dopamine and norepinephrine that function as neurotransmitters in the central and peripheral nervous systems. These compounds are broken down into urinary metabolites that can be measured in the urine.

PROTON-BEAM THERAPY

Radiation therapy for local tumour control using a proton beam, as opposed to an electron or photon beam (used in more conventional radiation therapy).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brodeur, G. Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3, 203–216 (2003). https://doi.org/10.1038/nrc1014

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1014

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing