Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

CpG island methylator phenotype in cancer

Abstract

DNA hypermethylation in CpG-rich promoters is now recognized as a common feature of human neoplasia. However, the pathophysiology of hyper-methylation (why, when, where) remains obscure. Cancers can be classified according to their degree of methylation, and those cancers with high degrees of methylation (the CpG island methylator phenotype, or CIMP) represent a clinically and aetiologically distinct group that is characterized by 'epigenetic instability'. Furthermore, CIMP-associated cancers seem to have a distinct epidemiology, a distinct histology, distinct precursor lesions and distinct molecular features.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA methylation and gene silencing.
Figure 2: A model of hypermethylation in cancer.

Similar content being viewed by others

References

  1. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genet. 33 (Suppl.), 245–254 (2003).

    CAS  PubMed  Google Scholar 

  2. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

    CAS  PubMed  Google Scholar 

  3. Li, E., Bestor, T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).

    CAS  PubMed  Google Scholar 

  4. Yoder, J. A., Walsh, C. P. & Bestor, T. H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13, 335–340 (1997).

    CAS  PubMed  Google Scholar 

  5. Egger, G., Liang, G., Aparicio, A. & Jones, P. A. Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457–463 (2004).

    CAS  PubMed  Google Scholar 

  6. Herman, J. G. & Baylin, S. B. Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med. 349, 2042–2054 (2003).

    CAS  PubMed  Google Scholar 

  7. Brinster, R. L. Participation of teratocarcinoma cells in mouse embryo development. Cancer Res. 36, 3412–3414 (1976).

    CAS  PubMed  Google Scholar 

  8. Li, L., Connelly, M. C., Wetmore, C., Curran, T. & Morgan, J. I. Mouse embryos cloned from brain tumors. Cancer Res. 63, 2733–2736 (2003).

    CAS  PubMed  Google Scholar 

  9. Hochedlinger, K. et al. Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev. 18, 1875–1885 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Santini, V., Kantarjian, H. M. & Issa, J. P. Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann. Intern. Med. 134, 573–586 (2001).

    CAS  PubMed  Google Scholar 

  11. Silverman, L. R. et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J. Clin. Oncol. 20, 2429–2440 (2002).

    CAS  PubMed  Google Scholar 

  12. Jones, P. A. & Baylin, S. B. The fundamental role of epigenetic events in cancer. Nature Rev. Genet. 3, 415–428 (2002).

    CAS  PubMed  Google Scholar 

  13. Sidransky, D. Emerging molecular markers of cancer. Nature Rev. Cancer 2, 210–219 (2002).

    CAS  Google Scholar 

  14. Issa, J. P. Methylation and prognosis: of molecular clocks and hypermethylator phenotypes. Clin. Cancer Res. 9, 2879–2881 (2003).

    CAS  PubMed  Google Scholar 

  15. Issa, J. P. et al. Increased cytosine DNA-methyltransferase activity during colon cancer progression. J. Natl Cancer Inst. 85, 1235–1240 (1993).

    CAS  PubMed  Google Scholar 

  16. De Marzo, A. M. et al. Abnormal regulation of DNA methyltransferase expression during colorectal carcinogenesis. Cancer Res. 59, 3855–3860 (1999).

    CAS  PubMed  Google Scholar 

  17. Robertson, K. D., Keyomarsi, K., Gonzales, F. A., Velicescu, M. & Jones, P. A. Differential mRNA expression of the human DNA methyltransferases (DNMTs) 1, 3a and 3b during the G(0)/G(1) to S phase transition in normal and tumor cells. Nucleic Acids Res. 28, 2108–2113 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Eads, C. A. et al. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression. Cancer Res. 59, 2302–2306 (1999).

    CAS  PubMed  Google Scholar 

  19. Shen, L. et al. DNA methylation and environmental exposures in human hepatocellular carcinoma. J. Natl Cancer Inst. 94, 755–761 (2002).

    CAS  PubMed  Google Scholar 

  20. Kim, D. H. et al. p16(INK4a) and histology-specific methylation of CpG islands by exposure to tobacco smoke in non-small cell lung cancer. Cancer Res. 61, 3419–3424 (2001).

    CAS  PubMed  Google Scholar 

  21. Issa, J. P., Baylin, S. B. & Belinsky, S. A. Methylation of the estrogen receptor CpG island in lung tumors is related to the specific type of carcinogen exposure. Cancer Res. 56, 3655–3658 (1996).

    CAS  PubMed  Google Scholar 

  22. Loeb, L. A. A mutator phenotype in cancer. Cancer Res. 61, 3230–3239 (2001).

    CAS  PubMed  Google Scholar 

  23. Baylin, S. B. et al. DNA methylation patterns of the calcitonin gene in human lung cancers and lymphomas. Cancer Res. 46, 2917–2922 (1986).

    CAS  PubMed  Google Scholar 

  24. Ahuja, N. et al. Association between CpG island methylation and microsatellite instability in colorectal cancer. Cancer Res. 57, 3370–3374 (1997).

    CAS  PubMed  Google Scholar 

  25. Kane, M. F. et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 57, 808–811 (1997).

    CAS  PubMed  Google Scholar 

  26. Herman, J. G. et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl Acad. Sci. USA 95, 6870–6875 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shibata, D. M. et al. Hypermethylation of HPP1 is associated with hMLH1 hypermethylation in gastric adenocarcinomas. Cancer Res. 62, 5637–5640 (2002).

    CAS  PubMed  Google Scholar 

  28. Shen, L., Kondo, Y., Hamilton, S. R., Rashid, A. & Issa, J. P. p14 methylation in human colon cancer is associated with microsatellite instability and wild-type p53. Gastroenterology 124, 626–633 (2003).

    CAS  PubMed  Google Scholar 

  29. Yamamoto, H. et al. Differential involvement of the hypermethylator phenotype in hereditary and sporadic colorectal cancers with high-frequency microsatellite instability. Genes Chromosomes Cancer 33, 322–325 (2002).

    CAS  PubMed  Google Scholar 

  30. Toyota, M. et al. Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res. 59, 2307–2312 (1999).

    CAS  PubMed  Google Scholar 

  31. Toyota, M. et al. CpG Island methylator phenotype in colorectal cancer. Proc. Natl Acad. Sci. USA 96, 8681–8686 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Issa, J. P. Epigenetic variation and human disease. J. Nutr. 132, 2388S–2392S (2002).

    CAS  PubMed  Google Scholar 

  33. Issa, J. P. et al. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nature Genet. 7, 536–540 (1994).

    CAS  PubMed  Google Scholar 

  34. Toyota, M., Ohe-Toyota, M., Ahuja, N. & Issa, J. P. Distinct genetic profiles in colorectal tumors with or without the CpG island methylator phenotype. Proc. Natl Acad. Sci. USA 97, 710–715 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kambara, T. et al. BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum. Gut 53, 1137–1144 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Whitehall, V. L. et al. Morphological and molecular heterogeneity within nonmicrosatellite instability-high colorectal cancer. Cancer Res. 62, 6011–6014 (2002).

    CAS  PubMed  Google Scholar 

  37. Yan, P. S. et al. Use of CpG island microarrays to identify colorectal tumors with a high degree of concurrent methylation. Methods 27, 162–169 (2002).

    CAS  PubMed  Google Scholar 

  38. van Rijnsoever, M., Grieu, F., Elsaleh, H., Joseph, D. & Iacopetta, B. Characterisation of colorectal cancers showing hypermethylation at multiple CpG islands. Gut 51, 797–802 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, Q. et al. Concordant methylation of the ER and N33 genes in glioblastoma multiforme. Oncogene 16, 3197–3202 (1998).

    CAS  PubMed  Google Scholar 

  40. Toyota, M. et al. Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype. Cancer Res. 59, 5438–5442 (1999).

    CAS  PubMed  Google Scholar 

  41. Kim, H. et al. Concerted promoter hypermethylation of hMLH1, p16INK4A, and E-cadherin in gastric carcinomas with microsatellite instability. J. Pathol. 200, 23–31 (2003).

    CAS  PubMed  Google Scholar 

  42. Ueki, T. et al. Hypermethylation of multiple genes in pancreatic adenocarcinoma. Cancer Res. 60, 1835–1839 (2000).

    CAS  PubMed  Google Scholar 

  43. Strathdee, G. et al. Primary ovarian carcinomas display multiple methylator phenotypes involving known tumor suppressor genes. Am. J. Pathol. 158, 1121–1127 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Garcia-Manero, G. et al. DNA methylation of multiple promoter-associated CpG islands in adult acute lymphocytic leukemia. Clin. Cancer Res. 8, 2217–2224 (2002).

    CAS  PubMed  Google Scholar 

  45. Toyota, M. et al. Methylation profiling in acute myeloid leukemia. Blood 97, 2823–2829 (2001).

    CAS  PubMed  Google Scholar 

  46. Eads, C. A. et al. Epigenetic patterns in the progression of esophageal adenocarcinoma. Cancer Res. 61, 3410–3418 (2001).

    CAS  PubMed  Google Scholar 

  47. Yamashita, K., Dai, T., Dai, Y., Yamamoto, F. & Perucho, M. Genetics supersedes epigenetics in colon cancer phenotype. Cancer Cell 4, 121–131 (2003).

    CAS  PubMed  Google Scholar 

  48. Bestor, T. H. Unanswered questions about the role of promoter methylation in carcinogenesis. Ann. NY Acad. Sci. 983, 22–27 (2003).

    CAS  PubMed  Google Scholar 

  49. Watanabe, T. et al. Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 344, 1196–1206 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ward, R. L. et al. Adverse prognostic effect of methylation in colorectal cancer is reversed by microsatellite instability. J. Clin. Oncol. 21, 3729–3736 (2003).

    CAS  PubMed  Google Scholar 

  51. Jass, J. R. Serrated route to colorectal cancer: back street or super highway? J. Pathol. 193, 283–285 (2001).

    CAS  PubMed  Google Scholar 

  52. Chan, A. O., Issa, J. P., Morris, J. S., Hamilton, S. R. & Rashid, A. Concordant CpG island methylation in hyperplastic polyposis. Am. J. Pathol. 160, 529–536 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Park, S. J. et al. Frequent CpG island methylation in serrated adenomas of the colorectum. Am. J. Pathol. 162, 815–822 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chan, T. L., Zhao, W., Leung, S. Y. & Yuen, S. T. BRAF and KRAS mutations in colorectal hyperplastic polyps and serrated adenomas. Cancer Res. 63, 4878–4881 (2003).

    CAS  PubMed  Google Scholar 

  55. Cunningham, J. M. et al. Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res. 58, 3455–3460 (1998).

    CAS  PubMed  Google Scholar 

  56. Ji, X., Woodard, A. S., Rimm, D. L. & Fearon, E. R. Transcriptional defects underlie loss of e-cadherin expression in breast cancer. Cell Growth Differ. 8, 773–778 (1997).

    CAS  PubMed  Google Scholar 

  57. Song, J. Z., Stirzaker, C., Harrison, J., Melki, J. R. & Clark, S. J. Hypermethylation trigger of the glutathione-S-transferase gene (GSTP1) in prostate cancer cells. Oncogene 21, 1048–1061 (2002).

    CAS  PubMed  Google Scholar 

  58. Toyota, M. et al. Aberrant methylation of the cyclooxygenase 2 CpG island in colorectal tumors. Cancer Res. 60, 4044–4048 (2000).

    CAS  PubMed  Google Scholar 

  59. Issa, J. P. The epigenetics of colorectal cancer. Ann. NY Acad. Sci. 910, 140–153 (2000).

    CAS  PubMed  Google Scholar 

  60. Turker, M. S. Gene silencing in mammalian cells and the spread of DNA methylation. Oncogene 21, 5388–5393 (2002).

    CAS  PubMed  Google Scholar 

  61. Velicescu, M. et al. Cell division is required for de novo methylation of CpG islands in bladder cancer cells. Cancer Res. 62, 2378–2384 (2002).

    CAS  PubMed  Google Scholar 

  62. Kang, G. H. et al. Epstein-barr virus-positive gastric carcinoma demonstrates frequent aberrant methylation of multiple genes and constitutes CpG island methylator phenotype-positive gastric carcinoma. Am. J. Pathol. 160, 787–794 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Waterland, R. A. & Jirtle, R. L. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell Biol. 23, 5293–5300 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Issa, J. P., Ahuja, N., Toyota, M., Bronner, M. P. & Brentnall, T. A. Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res. 61, 3573–3577 (2001).

    CAS  PubMed  Google Scholar 

  65. Eads, C. A. et al. Fields of aberrant CpG island hypermethylation in Barrett's esophagus and associated adenocarcinoma. Cancer Res. 60, 5021–5026 (2000).

    CAS  PubMed  Google Scholar 

  66. Zochbauer-Muller, S. et al. Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res. 61, 249–255 (2001).

    CAS  PubMed  Google Scholar 

  67. Fleisher, A. S. et al. Microsatellite instability in inflammatory bowel disease-associated neoplastic lesions is associated with hypermethylation and diminished expression of the DNA mismatch repair gene, hMLH1. Cancer Res. 60, 4864–4868 (2000).

    CAS  PubMed  Google Scholar 

  68. Frazier, M. L. et al. Association of the CpG island methylator phenotype with family history of cancer in patients with colorectal cancer. Cancer Res. 63, 4805–4808 (2003).

    CAS  PubMed  Google Scholar 

  69. Ricciardiello, L. et al. Frequent loss of hMLH1 by promoter hypermethylation leads to microsatellite instability in adenomatous polyps of patients with a single first-degree member affected by colon cancer. Cancer Res. 63, 787–792 (2003).

    CAS  PubMed  Google Scholar 

  70. Laird, P. W. The power and the promise of DNA methylation markers. Nature Rev. Cancer 3, 253–266 (2003).

    CAS  Google Scholar 

  71. Leung, Y. F. & Cavalieri, D. Fundamentals of cDNA microarray data analysis. Trends Genet. 19, 649–659 (2003).

    CAS  PubMed  Google Scholar 

  72. Kinzler, K. W. & Vogelstein, B. Lessons form hereditary colorectal cancer. Cell 87, 159–170 (1996).

    CAS  PubMed  Google Scholar 

  73. Jass, J. R. Limitations of the adenoma-carcinoma sequence in colorectum. Clin. Cancer Res. 10, 5969–5970 (2004).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

DNMT1

CDKN2A

MLH1

TMEFF2

KRAS

BRAF

National Cancer Institute

colon cancer

gastric cancer

liver cancer

pancreatic cancer

oesophageal cancer

ovarian cancer

lymphocytic leukaemia

myelogenous leukaemia

FURTHER INFORMATION

MD Anderson Cancer Center resource on CpG island methylation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Issa, JP. CpG island methylator phenotype in cancer. Nat Rev Cancer 4, 988–993 (2004). https://doi.org/10.1038/nrc1507

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1507

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing