Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

The p53 family in differentiation and tumorigenesis

Abstract

The role of p53 as a tumour suppressor is generally attributed to its ability to stop the proliferation of precancerous cells by inducing cell-cycle arrest or apoptosis. The relatives and evolutionary predecessors of p53 — p63 and p73 — share the tumour-suppressor activity of p53 to some extent, but also have essential functions in embryonic development and differentiation control. Recent evidence indicates that these ancestral functions in differentiation control contribute to the tumour-suppressor activity that the p53 family is famous for.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: p53-family-based cell-fate decisions.
Figure 2: p53 family functions in myogenic differentiation and in rhabdomyosarcoma.

Similar content being viewed by others

References

  1. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  CAS  Google Scholar 

  2. Flores, E. R. et al. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416, 560–564 (2002).

    Article  CAS  Google Scholar 

  3. Almog, N. & Rotter, V. Involvement of p53 in cell differentiation and development. Biochim. Biophys. Acta 1333, F1–F27 (1997).

    CAS  PubMed  Google Scholar 

  4. Lin, T. et al. p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nature Cell Biol. 7, 165–171 (2005).

    Article  CAS  Google Scholar 

  5. Koster, M. I., Kim, S., Mills, A. A., DeMayo, F. J. & Roop, D. R. p63 is the molecular switch for initiation of an epithelial stratification program. Genes Dev. 18, 126–131 (2004).

    Article  CAS  Google Scholar 

  6. Candi, E. et al. Differential roles of p63 isoforms in epidermal development: selective genetic complementation in p63 null mice. Cell Death Differ. 13, 1037–1047 (2006).

    Article  CAS  Google Scholar 

  7. De Laurenzi, V. et al. Induction of neuronal differentiation by p73 in a neuroblastoma cell line. J. Biol. Chem. 275, 15226–15231 (2000).

    Article  CAS  Google Scholar 

  8. Cordenonsi, M. et al. Links between tumor suppressors: p53 is required for TGF-β gene responses by cooperating with Smads. Cell 113, 301–314 (2003).

    Article  CAS  Google Scholar 

  9. Hüttinger-Kirchhof, N. et al. The p53 family inhibitor δNp73 interferes with multiple developmental programs. Cell Death Differ. 13, 174–177 (2006).

    Article  Google Scholar 

  10. Erster, S., Palacios, G., Rosenquist, T., Chang, C. & Moll, U. M. Deregulated expression of DeltaNp73α causes early embryonic lethality. Cell Death Differ. 13, 170–173 (2006).

    Article  CAS  Google Scholar 

  11. Fontemaggi, G. et al. δEF1 repressor controls selectively p53 family members during differentiation. Oncogene 24, 7273–7280 (2005).

    Article  CAS  Google Scholar 

  12. Cam, H. et al. p53 family members in myogenic differentiation and rhabdomyosarcoma development. Cancer Cell 10, 281–293 (2006).

    Article  CAS  Google Scholar 

  13. Calabretta, B. & Perrotti, D. The biology of CML blast crisis. Blood 103, 4010–4022 (2004).

    Article  CAS  Google Scholar 

  14. Ito, T. et al. Unique association of p53 mutations with undifferentiated but not with differentiated carcinomas of the thyroid gland. Cancer Res. 52, 1369–1371 (1992).

    CAS  PubMed  Google Scholar 

  15. Nanni, P. et al. Development of rhabdomyosarcoma in HER-2/neu transgenic p53 mutant mice. Cancer Res. 63, 2728–2732 (2003).

    CAS  PubMed  Google Scholar 

  16. Porrello, A. et al. p53 regulates myogenesis by triggering the differentiation activity of pRb. J. Cell Biol. 151, 1295–1304 (2000).

    Article  CAS  Google Scholar 

  17. Keller, C. et al. Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev. 18, 2614–2626 (2004).

    Article  CAS  Google Scholar 

  18. Fleischmann, A., Jochum, W., Eferl, R., Witowsky, J. & Wagner, E. F. Rhabdomyosarcoma development in mice lacking Trp53 and Fos: tumor suppression by the Fos protooncogene. Cancer Cell 4, 477–482 (2003).

    Article  CAS  Google Scholar 

  19. Flores, E. R. et al. Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 7, 363–373 (2005).

    Article  CAS  Google Scholar 

  20. Keyes, W. M. et al. p63 heterozygous mutant mice are not prone to spontaneous or chemically induced tumors. Proc. Natl Acad. Sci. USA 103, 8435–8440 (2006).

    Article  CAS  Google Scholar 

  21. Moll, U. M. & Slade, N. p63 and p73: roles in development and tumor formation. Mol. Cancer Res. 2, 371–386 (2004).

    CAS  PubMed  Google Scholar 

  22. Stiewe, T. & Pützer, B. M. Role of p73 in malignancy: tumor suppressor or oncogene? Cell Death Differ. 9, 237–245 (2002).

    Article  CAS  Google Scholar 

  23. Gaiddon, C., Lokshin, M., Ahn, J., Zhang, T. & Prives, C. A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol. Cell Biol. 21, 1874–1887 (2001).

    Article  CAS  Google Scholar 

  24. Lang, G. A. et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119, 861–872 (2004).

    Article  CAS  Google Scholar 

  25. Rocco, J. W., Leong, C. O., Kuperwasser, N., DeYoung, M. P. & Ellisen, L. W. p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell 9, 45–56 (2006).

    Article  CAS  Google Scholar 

  26. Casciano, I. et al. Expression of DeltaNp73 is a molecular marker for adverse outcome in neuroblastoma patients. Cell Death Differ. 9, 246–251 (2002).

    Article  CAS  Google Scholar 

  27. Nakagawara, A. & Ohira, M. Comprehensive genomics linking between neural development and cancer: neuroblastoma as a model. Cancer Lett. 204, 213–224 (2004).

    Article  CAS  Google Scholar 

  28. Scotting, P. J., Walker, D. A. & Perilongo, G. Childhood solid tumours: a developmental disorder. Nature Rev. Cancer 5, 481–488 (2005).

    Article  CAS  Google Scholar 

  29. Saifudeen, Z. et al. Spatiotemporal switch from ΔNp73 to TAp73 isoforms during nephrogenesis: impact on differentiation gene expression. J. Biol. Chem. 280, 23094–23102 (2005).

    Article  CAS  Google Scholar 

  30. Van Maerken, T. et al. Small-molecule MDM2 antagonists as a new therapy concept for neuroblastoma. Cancer Res. 66, 9646–9655 (2006).

    Article  CAS  Google Scholar 

  31. Bourdon, J. C. et al. p53 isoforms can regulate p53 transcriptional activity. Genes Dev. 19, 2122–2137 (2005).

    Article  CAS  Google Scholar 

  32. Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  Google Scholar 

  33. Jacks, T. et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4, 1–7 (1994).

    Article  CAS  Google Scholar 

  34. Sah, V. P. et al. A subset of p53-deficient embryos exhibit exencephaly. Nature Genet. 10, 175–180 (1995).

    Article  CAS  Google Scholar 

  35. Rotter, V. et al. Mice with reduced levels of p53 protein exhibit the testicular giant-cell degenerative syndrome. Proc. Natl Acad. Sci. USA 90, 9075–9079 (1993).

    Article  CAS  Google Scholar 

  36. Yang, A. et al. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404, 99–103 (2000).

    Article  CAS  Google Scholar 

  37. Yang, A. et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398, 714–718 (1999).

    Article  CAS  Google Scholar 

  38. Mills, A. A. et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398, 708–713 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank the many colleagues who have contributed to these ideas, the members of my lab, and M. Schön for critical reading of the manuscript. I apologize to all colleagues whose work, although relevant, could not be cited owing to space constraints. The work was supported by grants from the Deutsche Forschungsgemeinschaft and the Deutsche Krebshilfe.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute

neuroblastoma

rhabdomyosarcomas

FURTHER INFORMATION

Thorsten Stiewe's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stiewe, T. The p53 family in differentiation and tumorigenesis. Nat Rev Cancer 7, 165–167 (2007). https://doi.org/10.1038/nrc2072

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2072

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing