Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Oestrogen-receptor-mediated transcription and the influence of co-factors and chromatin state

Abstract

Oestrogen receptor-α (ERα)-regulated transcription in breast cancer cells involves protein co-factors that contribute to the regulation of chromatin structure. These include co-factors with the potential to regulate histone modifications such as acetylation or methylation, and therefore the transcriptional state of target genes. Although much of the information regarding the interaction of specific co-factors with ER has been generated by studying specific promoter regions, we now have an improved understanding of the nature of these interactions and are better placed to relate these with ER activity and potentially with the activity of breast cancer drugs, including tamoxifen.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Direct interactions of oestrogen receptor with its co-factors.
Figure 2: Cycling kinetics of ER, and co-factors at the TFF1 promoter as determined by chromatin immunoprecipitation (ChIP).
Figure 3: Network model of ERα-associated co-factors.

Similar content being viewed by others

References

  1. Krege, J.H. et al. Generation and reproductive phenotypes of mice lacking estrogen receptor β. Proc. Natl Acad. Sci. USA 95, 15677–15682 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weihua, Z. et al. Estrogen receptor (ER) β, a modulator of ERα in the uterus. Proc. Natl Acad. Sci. USA 97, 5936–5941 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Saji, S. et al. Estrogen receptors α and β in the rodent mammary gland. Proc. Natl Acad. Sci. USA 97, 337–342 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Andersen, J. & Poulsen, H. S. Immunohistochemical estrogen receptor determination in paraffin-embedded tissue. Prediction of response to hormonal treatment in advanced breast cancer. Cancer 64, 1901–1908 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Stierer, M. et al. Immunohistochemical and biochemical measurement of estrogen and progesterone receptors in primary breast cancer. Correlation of histopathology and prognostic factors. Ann. Surg. 218, 13–21 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Perou, C.M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98, 10869–10874 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. van 't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Sorlie, T. et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA 100, 8418–8423 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Howell, A. & Dowsett, M. Endocrinology and hormone therapy in breast cancer: aromatase inhibitors versus antioestrogens. Breast Cancer Res. 6, 269–274 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fisher, B. et al. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J. Natl Cancer Inst. 90, 1371–1388 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Fisher, B. et al. Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J. Natl Cancer Inst. 97, 1652–1662 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Jordan, V. C. Tamoxifen: a most unlikely pioneering medicine. Nature Rev. Drug Discov, 2, 205–213 (2003).

    Article  CAS  Google Scholar 

  14. Howell, A., DeFriend, D., Robertson, J., Blamey, R. & Walton, P. Response to a specific antioestrogen (ICI 182780) in tamoxifen-resistant breast cancer. Lancet 345, 29–30 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Clarke, R., Leonessa, F., Welch, J. N. & Skaar, T. C. Cellular and molecular pharmacology of antiestrogen action and resistance. Pharmacol. Rev. 53, 25–71 (2001).

    CAS  PubMed  Google Scholar 

  16. Fisher, B., Dignam, J., Bryant, J. & Wolmark, N. Five versus more than five years of tamoxifen for lymph node-negative breast cancer: updated findings from the National Surgical Adjuvant Breast and Bowel Project B-14 randomized trial. J. Natl Cancer Inst. 93, 684–690 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Johnston, S. R. Acquired tamoxifen resistance in human breast cancer—potential mechanisms and clinical implications. Anticancer Drugs 8, 911–930 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Hopp, T. A. & Fuqua, S. A. Estrogen receptor variants. J. Mammary Gland Biol. Neoplasia 3, 73–83 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Howell, A. et al. Pharmacokinetics, pharmacological and anti-tumour effects of the specific anti-oestrogen ICI 182780 in women with advanced breast cancer. Br. J. Cancer 74, 300–308 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Johnston, S. R. et al. Changes in estrogen receptor, progesterone receptor, and pS2 expression in tamoxifen-resistant human breast cancer. Cancer Res. 55, 3331–3338 (1995).

    CAS  PubMed  Google Scholar 

  21. Linja, M. J. & Visakorpi, T. Alterations of androgen receptor in prostate cancer. J. Steroid Biochem. Mol. Biol. 92, 255–264 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Holst, F. et al. Estrogen receptor α (ESR1) gene amplification is frequent in breast cancer. Nature Genet. 39, 655–660 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Hall, J. M. & McDonnell, D. P. Coregulators in nuclear estrogen receptor action: from concept to therapeutic targeting. Mol. Interv. 5, 343–357 (2005).

    Article  PubMed  Google Scholar 

  24. Green, S., Kumar, V., Theulaz, I., Wahli, W. & Chambon, P. The N-terminal DNA-binding 'zinc finger' of the oestrogen and glucocorticoid receptors determines target gene specificity. EMBO J. 7, 3037–3044 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mader, S., Kumar, V., de Verneuil, H. & Chambon, P. Three amino acids of the oestrogen receptor are essential to its ability to distinguish an oestrogen from a glucocorticoid-responsive element. Nature 338, 271–274 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Ruff, M., Gangloff, M., Wurtz, J. M. & Moras, D. Estrogen receptor transcription and transactivation: structure-function relationship in DNA- and ligand-binding domains of estrogen receptors. Breast Cancer Res. 2, 353–359 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Klinge, C. M. Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res. 29, 2905–2919 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maynard, A. T. & Covell, D. G. Reactivity of zinc finger cores: analysis of protein packing and electrostatic screening. J. Am. Chem. Soc. 123, 1047–1058 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Cheung, E., Schwabish, M. A. & Kraus, W. L. Chromatin exposes intrinsic differences in the transcriptional activities of estrogen receptors alpha and beta. EMBO J. 22, 600–611 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bourguet, W. et al. Purification, functional characterization, and crystallization of the ligand binding domain of the retinoid X receptor. Protein Expr. Purif. 6, 604–608 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Bourguet, W., Ruff, M., Chambon, P., Gronemeyer, H. & Moras, D. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-α. Nature 375, 377–382 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Brzozowski, A. M. et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389, 753–758 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Shiau, A. K. et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95, 927–937 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Tanenbaum, D. M., Wang, Y., Williams, S. P. & Sigler, P. B. Crystallographic comparison of the estrogen and progesterone receptor's ligand binding domains. Proc. Natl Acad. Sci. USA 95, 5998–6003 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Celik, L., Lund, J. D. & Schiott, B. Conformational dynamics of the estrogen receptor α: molecular dynamics simulations of the influence of binding site structure on protein dynamics. Biochemistry 46, 1743–1758 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Danielian, P. S., White, R., Lees, J. A. & Parker, M. G. Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. EMBO J. 11, 1025–1033 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wrenn, C. K. & Katzenellenbogen, B. S. Structure-function analysis of the hormone binding domain of the human estrogen receptor by region-specific mutagenesis and phenotypic screening in yeast. J. Biol. Chem. 268, 24089–24098 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Henttu, P. M., Kalkhoven, E. & Parker, M. G. AF-2 activity and recruitment of steroid receptor coactivator 1 to the estrogen receptor depend on a lysine residue conserved in nuclear receptors. Mol. Cell Biol. 17, 1832–1839 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Feng, W. et al. Hormone-dependent coactivator binding to a hydrophobic cleft on nuclear receptors. Science 280, 1747–1749 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Onate, S. A., Tsai, S. Y., Tsai, M. J. & O'Malley, B. W. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270, 1354–1357 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Hong, H., Kohli, K., Garabedian, M. J. & Stallcup, M. R. GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors. Mol. Cell Biol. 17, 2735–2744 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Anzick, S. L. et al. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277, 965–968 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Torchia, J. et al. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387, 677–684 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Huang, H. J., Norris, J. D. & McDonnell, D. P. Identification of a negative regulatory surface within estrogen receptor alpha provides evidence in support of a role for corepressors in regulating cellular responses to agonists and antagonists. Mol. Endocrinol. 16, 1778–1792 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Horlein, A. J. et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377, 397–404 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Chen, J. D. & Evans, R. M. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377, 454–457 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Shang, Y., Hu, X., DiRenzo, J., Lazar, M. A. & Brown, M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103, 843–852 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Metivier, R. et al. Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115, 751–763 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. List, H. J., Reiter, R., Singh, B., Wellstein, A. & Riegel, A. T. Expression of the nuclear coactivator AIB1 in normal and malignant breast tissue. Breast Cancer Res. Treat. 68, 21–28 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Osborne, C. K. et al. Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J. Natl Cancer Inst. 95, 353–361 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Cirillo, L. A. et al. Binding of the winged-helix transcription factor HNF3 to a linker histone site on the nucleosome. EMBO J. 17, 244–254 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cirillo, L. A. et al. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol. Cell 9, 279–289 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Carroll, J. S. et al. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122, 33–43 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Laganiere, J. et al. Location analysis of estrogen receptor alpha target promoters reveals that FOXA1 defines a domain of the estrogen response. Proc. Natl Acad. Sci. USA 102, 11651–11656 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Eeckhoute, J., Carroll, J. S., Geistlinger, T. R., Torres-Arzayus, M. I. & Brown, M. A cell-type-specific transcriptional network required for estrogen regulation of cyclin D1 and cell cycle progression in breast cancer. Genes Dev. 20, 2513–2526 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Carroll, J. S. et al. Genome-wide analysis of estrogen receptor binding sites. Nature Genet. 38, 1289–1297 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Bourdeau, V. et al. Genome-wide identification of high-affinity estrogen response elements in human and mouse. Mol. Endocrinol. 18, 1411–1427 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Vega, V. B. et al. Multi-platform genome-wide identification and modeling of functional human estrogen receptor binding sites. Genome Biol. 7, R82 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Lin, C. Y. et al. Whole-genome cartography of estrogen receptor α binding sites. PLoS Genet. 3, e87 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Kouros-Mehr, H., Slorach, E. M., Sternlicht, M. D. & Werb, Z. GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 127, 1041–1055 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Eeckhoute, J. et al. Positive cross-regulatory loop ties GATA-3 to Estrogen Receptor alpha expression in breast cancer. Cancer Res. 67, 6477–6483 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Wang, Q. et al. A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol. Cell 27, 380–392 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Kassabov, S. R., Zhang, B., Persinger, J. & Bartholomew, B. SWI/SNF unwraps, slides, and rewraps the nucleosome. Mol. Cell 11, 391–403 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Kadam, S. & Emerson, B. M. Transcriptional specificity of human SWI/SNF BRG1 and BRM chromatin remodeling complexes. Mol. Cell 11, 377–389 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Owen-Hughes, T., Utley, R. T., Cote, J., Peterson, C. L. & Workman, J. L. Persistent site-specific remodeling of a nucleosome array by transient action of the SWI/SNF complex. Science 273, 513–516 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Ichinose, H., Garnier, J. M., Chambon, P. & Losson, R. Ligand-dependent interaction between the estrogen receptor and the human homologues of SWI2/SNF2. Gene 188, 95–100 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. DiRenzo, J. et al. BRG-1 is recruited to estrogen-responsive promoters and cooperates with factors involved in histone acetylation. Mol. Cell Biol. 20, 7541–7549 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chiba, H., Muramatsu, M., Nomoto, A. & Kato, H. Two human homologues of Saccharomyces cerevisiae SWI2/SNF2 and Drosophila brahma are transcriptional coactivators cooperating with the estrogen receptor and the retinoic acid receptor. Nucleic Acids Res. 22, 1815–1820 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Belandia, B., Orford, R. L., Hurst, H. C. & Parker, M. G. Targeting of SWI/SNF chromatin remodelling complexes to estrogen-responsive genes. EMBO J. 21, 4094–4103 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Garcia-Pedrero, J. M., Kiskinis, E., Parker, M. G. & Belandia, B. The SWI/SNF chromatin remodeling subunit BAF57 is a critical regulator of estrogen receptor function in breast cancer cells. J. Biol. Chem. 281, 22656–22664 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Kiskinis, E., Garcia-Pedrero, J. M., Villaronga, M. A., Parker, M. G. & Belandia, B. Identification of BAF57 mutations in human breast cancer cell lines. Breast Cancer Res. Treat. 98, 191–198 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Narlikar, G. J., Fan, H. Y. & Kingston, R. E. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Wu, R. C. et al. Selective phosphorylations of the SRC-3/AIB1 coactivator integrate genomic reponses to multiple cellular signaling pathways. Mol. Cell 15, 937–949 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Pollard, K. J. & Peterson, C. L. Chromatin remodeling: a marriage between two families? Bioessays 20, 771–780 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Kamei, Y. et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85, 403–414 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Torchia, J., Glass, C. & Rosenfeld, M. G. Co-activators and co-repressors in the integration of transcriptional responses. Curr. Opin. Cell Biol. 10, 373–383 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Chen, H. et al. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90, 569–580 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Demarest, S. J. et al. Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature 415, 549–553 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Martinez-Balbas, M. A. et al. The acetyltransferase activity of CBP stimulates transcription. EMBO J. 17, 2886–2893 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Spencer, T. E. et al. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389, 194–198 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Schiltz, R. L. et al. Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates. J. Biol. Chem. 274, 1189–1192 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Webb, P. et al. Estrogen receptor activation function 1 works by binding p160 coactivator proteins. Mol. Endocrinol. 12, 1605–1618 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Kobayashi, Y. et al. p300 mediates functional synergism between AF-1 and AF-2 of estrogen receptor α and β by interacting directly with the N-terminal A/B domains. J. Biol. Chem. 275, 15645–15651 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Kim, M. Y., Hsiao, S. J. & Kraus, W. L. A role for coactivators and histone acetylation in estrogen receptor α-mediated transcription initiation. EMBO J. 20, 6084–6094 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sewack, G. F., Ellis, T. W. & Hansen, U. Binding of TATA binding protein to a naturally positioned nucleosome is facilitated by histone acetylation. Mol. Cell Biol. 21, 1404–1415 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kraus, W. L. & Kadonaga, J. T. p300 and estrogen receptor cooperatively activate transcription via differential enhancement of initiation and reinitiation. Genes Dev. 12, 331–342 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hudelist, G. et al. Expression of sex steroid receptors and their co-factors in normal and malignant breast tissue: AIB1 is a carcinoma-specific co-activator. Breast Cancer Res. Treat. 78, 193–204 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Shou, J. et al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J. Natl Cancer Inst. 96, 926–935 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Fu, M. et al. p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation. J. Biol. Chem. 275, 20853–20860 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Debes, J. D. et al. p300 in prostate cancer proliferation and progression. Cancer Res. 63, 7638–7640 (2003).

    CAS  PubMed  Google Scholar 

  92. Heemers, H. V. et al. Androgen deprivation increases p300 expression in prostate cancer cells. Cancer Res. 67, 3422–3430 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Wang, Q., Carroll, J. S. & Brown, M. Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol. Cell 19, 631–642 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Yang, X. J., Ogryzko, V. V., Nishikawa, J., Howard, B. H. & Nakatani, Y. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382, 319–324 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Xu, W., Edmondson, D. G. & Roth, S. Y. Mammalian GCN5 and P/CAF acetyltransferases have homologous amino-terminal domains important for recognition of nucleosomal substrates. Mol. Cell Biol. 18, 5659–5669 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Santos-Rosa, H., Valls, E., Kouzarides, T. & Martinez-Balbas, M. Mechanisms of P/CAF auto-acetylation. Nucleic Acids Res. 31, 4285–4292 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cheng, A. S. et al. Combinatorial analysis of transcription factor partners reveals recruitment of c-MYC to estrogen receptor-α responsive promoters. Mol. Cell 21, 393–404 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Cascio, S. et al. Insulin-like growth factor 1 differentially regulates estrogen receptor-dependent transcription at estrogen response element and AP-1 sites in breast cancer cells. J. Biol. Chem. 282, 3498–3506 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Qi, C. et al. Identification of protein arginine methyltransferase 2 as a coactivator for estrogen receptor α. J. Biol. Chem. 277, 28624–28630 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Bedford, M. T. & Richard, S. Arginine methylation an emerging regulator of protein function. Mol. Cell 18, 263–272 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Strahl, B. D. et al. Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1. Curr. Biol. 11, 996–1000 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Wang, H. et al. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 293, 853–857 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Wagner, S., Weber, S., Kleinschmidt, M. A., Nagata, K. & Bauer, U. M. SET-mediated promoter hypoacetylation is a prerequisite for coactivation of the estrogen-responsive pS2 gene by PRMT1. J. Biol. Chem. 281, 27242–27250 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Chen, D. et al. Regulation of transcription by a protein methyltransferase. Science 284, 2174–2177 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Chen, D., Huang, S. M. & Stallcup, M. R. Synergistic, p160 coactivator-dependent enhancement of estrogen receptor function by CARM1 and p300. J. Biol. Chem. 275, 40810–40816 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Teyssier, C., Chen, D. & Stallcup, M. R. Requirement for multiple domains of the protein arginine methyltransferase CARM1 in its transcriptional coactivator function. J. Biol. Chem. 277, 46066–46072 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Klinge, C. M., Jernigan, S. C., Mattingly, K. A., Risinger, K. E. & Zhang, J. Estrogen response element-dependent regulation of transcriptional activation of estrogen receptors α and β by coactivators and corepressors. J. Mol. Endocrinol. 33, 387–410 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Xu, W. et al. A methylation-mediator complex in hormone signaling. Genes Dev. 18, 144–156 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ma, H. et al. Hormone-dependent, CARM1-directed, arginine-specific methylation of histone H3 on a steroid-regulated promoter. Curr. Biol. 11, 1981–1985 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Schurter, B. T. et al. Methylation of histone H3 by coactivator-associated arginine methyltransferase 1. Biochemistry 40, 5747–5756 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Bauer, U. M., Daujat, S., Nielsen, S. J., Nightingale, K. & Kouzarides, T. Methylation at arginine 17 of histone H3 is linked to gene activation. EMBO Rep. 3, 39–44 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Daujat, S. et al. Crosstalk between CARM1 methylation and CBP acetylation on histone H3. Curr. Biol. 12, 2090–2097 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Metzger, E. et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437, 436–439 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Garcia-Bassets, I. et al. Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors. Cell 128, 505–518 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ali, S., Metzger, D., Bornert, J. M. & Chambon, P. Modulation of transcriptional activation by ligand-dependent phosphorylation of the human oestrogen receptor A/B region. EMBO J. 12, 1153–1160 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Le Goff, P., Montano, M. M., Schodin, D. J. & Katzenellenbogen, B. S. Phosphorylation of the human estrogen receptor. Identification of hormone-regulated sites and examination of their influence on transcriptional activity. J. Biol. Chem. 269, 4458–4466 (1994).

    Article  CAS  PubMed  Google Scholar 

  118. Arnold, S. F., Obourn, J. D., Jaffe, H. & Notides, A. C. Serine 167 is the major estradiol-induced phosphorylation site on the human estrogen receptor. Mol. Endocrinol. 8, 1208–1214 (1994).

    CAS  PubMed  Google Scholar 

  119. Kato, S. et al. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270, 1491–1494 (1995).

    Article  CAS  PubMed  Google Scholar 

  120. Joel, P. B. et al. pp90rsk1 regulates estrogen receptor-mediated transcription through phosphorylation of Ser-167. Mol. Cell Biol. 18, 1978–1984 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Shao, D. & Lazar, M. A. Modulating nuclear receptor function: may the phos be with you. J. Clin. Invest. 103, 1617–1618 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Martin, M. B. et al. A role for Akt in mediating the estrogenic functions of epidermal growth factor and insulin-like growth factor I. Endocrinology 141, 4503–4511 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Campbell, R. A. et al. Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor α: a new model for anti-estrogen resistance. J. Biol. Chem. 276, 9817–9824 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Chen, D. et al. Phosphorylation of human estrogen receptor alpha at serine 118 by two distinct signal transduction pathways revealed by phosphorylation-specific antisera. Oncogene 21, 4921–4931 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Glaros, S., Atanaskova, N., Zhao, C., Skafar, D. F. & Reddy, K. B. Activation function-1 domain of estrogen receptor regulates the agonistic and antagonistic actions of tamoxifen. Mol. Endocrinol. 20, 996–1008 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Font de Mora, J. & Brown, M. AIB1 is a conduit for kinase-mediated growth factor signaling to the estrogen receptor. Mol. Cell Biol. 20, 5041–5047 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bautista, S. et al. In breast cancer, amplification of the steroid receptor coactivator gene AIB1 is correlated with estrogen and progesterone receptor positivity. Clin. Cancer Res. 4, 2925–2929 (1998).

    CAS  PubMed  Google Scholar 

  128. Torres-Arzayus, M. I. et al. High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIB1 as an oncogene. Cancer Cell 6, 263–274 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Yi, P. et al. Peptidyl-prolyl isomerase 1 (Pin1) serves as a coactivator of steroid receptor by regulating the activity of phosphorylated steroid receptor coactivator 3 (SRC-3/AIB1). Mol. Cell Biol. 25, 9687–9699 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Benz, C. C. et al. Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res. Treat. 24, 85–95 (1992).

    Article  CAS  PubMed  Google Scholar 

  131. Witters, L., Engle, L. & Lipton, A. Restoration of estrogen responsiveness by blocking the HER-2/neu pathway. Oncol. Rep. 9, 1163–1166 (2002).

    CAS  PubMed  Google Scholar 

  132. Knowlden, J. M. et al. Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology 144, 1032–1044 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Larsen, S. S., Egeblad, M., Jaattela, M. & Lykkesfeldt, A. E. Acquired antiestrogen resistance in MCF-7 human breast cancer sublines is not accomplished by altered expression of receptors in the ErbB-family. Breast Cancer Res. Treat. 58, 41–56 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Park, K. J., Krishnan, V., O'Malley, B. W., Yamamoto, Y. & Gaynor, R. B. Formation of an IKKα-dependent transcription complex is required for estrogen receptor-mediated gene activation. Mol. Cell 18, 71–82 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Prall, O. W., Rogan, E. M., Musgrove, E. A., Watts, C. K. & Sutherland, R. L. c-Myc or cyclin D1 mimics estrogen effects on cyclin E-Cdk2 activation and cell cycle reentry. Mol. Cell Biol. 18, 4499–4508 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Keeton, E. K. & Brown, M. Cell cycle progression stimulated by tamoxifen-bound estrogen receptor-α and promoter-specific effects in breast cancer cells deficient in N-CoR and SMRT. Mol. Endocrinol. 19, 1543–1554 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Yamamoto, Y. et al. The tamoxifen-responsive estrogen receptor alpha mutant D351Y shows reduced tamoxifen-dependent interaction with corepressor complexes. J. Biol. Chem. 276, 42684–42691 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Hu, X. & Lazar, M. A. The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature 402, 93–96 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. Liu, X. F. & Bagchi, M. K. Recruitment of distinct chromatin-modifying complexes by tamoxifen-complexed estrogen receptor at natural target gene promoters in vivo. J. Biol. Chem. 279, 15050–15058 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Wolf, D. M. & Jordan, V. C. The estrogen receptor from a tamoxifen stimulated MCF-7 tumor variant contains a point mutation in the ligand binding domain. Breast Cancer Res. Treat. 31, 129–138 (1994).

    Article  CAS  PubMed  Google Scholar 

  141. Catherino, W. H., Wolf, D. M. & Jordan, V. C. A naturally occurring estrogen receptor mutation results in increased estrogenicity of a tamoxifen analog. Mol. Endocrinol. 9, 1053–1063 (1995).

    CAS  PubMed  Google Scholar 

  142. Levenson, A. S., Catherino, W. H. & Jordan, V. C. Estrogenic activity is increased for an antiestrogen by a natural mutation of the estrogen receptor. J. Steroid Biochem. Mol. Biol. 60, 261–268 (1997).

    Article  CAS  PubMed  Google Scholar 

  143. MacGregor Schafer, J., Liu, H., Bentrem, D. J., Zapf, J. W. & Jordan, V. C. Allosteric silencing of activating function 1 in the 4-hydroxytamoxifen estrogen receptor complex is induced by substituting glycine for aspartate at amino acid 351. Cancer Res. 60, 5097–5105 (2000).

    CAS  PubMed  Google Scholar 

  144. Pakdel, F. & Katzenellenbogen, B. S. Human estrogen receptor mutants with altered estrogen and antiestrogen ligand discrimination. J. Biol. Chem. 267, 3429–3437 (1992).

    Article  CAS  PubMed  Google Scholar 

  145. Mahfoudi, A., Roulet, E., Dauvois, S., Parker, M. G. & Wahli, W. Specific mutations in the estrogen receptor change the properties of antiestrogens to full agonists. Proc. Natl Acad. Sci. USA 92, 4206–4210 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Montano, M. M., Ekena, K., Krueger, K. D., Keller, A. L. & Katzenellenbogen, B. S. Human estrogen receptor ligand activity inversion mutants: receptors that interpret antiestrogens as estrogens and estrogens as antiestrogens and discriminate among different antiestrogens. Mol. Endocrinol. 10, 230–242 (1996).

    CAS  PubMed  Google Scholar 

  147. McInerney, E. M. & Katzenellenbogen, B. S. Different regions in activation function-1 of the human estrogen receptor required for antiestrogen- and estradiol-dependent transcription activation. J. Biol. Chem. 271, 24172–24178 (1996).

    Article  CAS  PubMed  Google Scholar 

  148. Kurebayashi, J. et al. Expression levels of estrogen receptor-alpha, estrogen receptor-beta, coactivators, and corepressors in breast cancer. Clin. Cancer Res. 6, 512–518 (2000).

    CAS  PubMed  Google Scholar 

  149. Lavinsky, R. M. et al. Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc. Natl Acad. Sci. USA 95, 2920–2925 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Carroll, J. S. et al. p27(Kip1) induces quiescence and growth factor insensitivity in tamoxifen-treated breast cancer cells. Cancer Res. 63, 4322–4326 (2003).

    CAS  PubMed  Google Scholar 

  151. Frasor, J., Danes, J. M., Funk, C. C. & Katzenellenbogen, B. S. Estrogen down-regulation of the corepressor N-CoR: mechanism and implications for estrogen derepression of N-CoR-regulated genes. Proc. Natl Acad. Sci. USA 102, 13153–13157 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Perissi, V., Aggarwal, A., Glass, C. K., Rose, D. W. & Rosenfeld, M. G. A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell 116, 511–526 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Naeem, H. et al. The activity and stability of the transcriptional coactivator p/CIP/SRC-3 are regulated by CARM1-dependent methylation. Mol. Cell Biol. 27, 120–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Feng, Q., Yi, P., Wong, J. & O'Malley, B. W. Signaling within a coactivator complex: methylation of SRC-3/AIB1 is a molecular switch for complex disassembly. Mol. Cell Biol. 26, 7846–7857 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lee, Y. H., Coonrod, S. A., Kraus, W. L., Jelinek, M. A. & Stallcup, M. R. Regulation of coactivator complex assembly and function by protein arginine methylation and demethylimination. Proc. Natl Acad. Sci. USA 102, 3611–3616 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hong, H. et al. Aberrant expression of CARM1, a transcriptional coactivator of androgen receptor, in the development of prostate carcinoma and androgen-independent status. Cancer 101, 83–89 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Frasor, J. et al. Selective estrogen receptor modulators: discrimination of agonistic versus antagonistic activities by gene expression profiling in breast cancer cells. Cancer Res. 64, 1522–1533 (2004).

    Article  CAS  PubMed  Google Scholar 

  158. Frasor, J. et al. Gene expression preferentially regulated by tamoxifen in breast cancer cells and correlations with clinical outcome. Cancer Res. 66, 7334–7340 (2006).

    Article  CAS  PubMed  Google Scholar 

  159. Hodges, L. C. et al. Tamoxifen functions as a molecular agonist inducing cell cycle-associated genes in breast cancer cells. Mol. Cancer Res. 1, 300–311 (2003).

    CAS  PubMed  Google Scholar 

  160. Stossi, F., Likhite, V. S., Katzenellenbogen, J. A. & Katzenellenbogen, B. S. Estrogen-occupied estrogen receptor represses cyclin G2 gene expression and recruits a repressor complex at the cyclin G2 promoter. J. Biol. Chem. 281, 16272–16278 (2006).

    Article  CAS  PubMed  Google Scholar 

  161. Kuiper, G. G., Enmark, E., Pelto-Huikko, M., Nilsson, S. & Gustafsson, J. A. Cloning of a novel receptor expressed in rat prostate and ovary. Proc. Natl Acad. Sci. USA 93, 5925–5930 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Palmieri, C. et al. Estrogen receptor beta in breast cancer. Endocr. Relat. Cancer 9, 1–13 (2002).

    Article  CAS  PubMed  Google Scholar 

  163. Palmieri, C. et al. The expression of oestrogen receptor (ER)-beta and its variants, but not ERα, in adult human mammary fibroblasts. J. Mol. Endocrinol. 33, 35–50 (2004).

    Article  CAS  PubMed  Google Scholar 

  164. Liu, M. M. et al. Opposing action of estrogen receptors α and β on cyclin D1 gene expression. J. Biol. Chem. 277, 24353–24360 (2002).

    Article  CAS  PubMed  Google Scholar 

  165. Lindberg, M. K. et al. Estrogen receptor (ER)-β reduces ERα-regulated gene transcription, supporting a “ying yang” relationship between ERα and ERβ in mice. Mol. Endocrinol. 17, 203–208 (2003).

    Article  CAS  PubMed  Google Scholar 

  166. Faulds, M. H., Olsen, H., Helguero, L. A., Gustafsson, J. A. & Haldosen, L. A. Estrogen receptor functional activity changes during differentiation of mammary epithelial cells. Mol. Endocrinol. 18, 412–421 (2004).

    Article  CAS  PubMed  Google Scholar 

  167. Strom, A. et al. Estrogen receptor β inhibits 17beta-estradiol-stimulated proliferation of the breast cancer cell line T47D. Proc. Natl Acad. Sci. USA 101, 1566–1571 (2004).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  168. Matthews, J. et al. Estrogen receptor (ER) β modulates ERα-mediated transcriptional activation by altering the recruitment of c-Fos and c-Jun to estrogen-responsive promoters. Mol. Endocrinol. 20, 534–543 (2006).

    Article  CAS  PubMed  Google Scholar 

  169. Kumar, V. et al. Functional domains of the human estrogen receptor. Cell 51, 941–951 (1987).

    Article  CAS  PubMed  Google Scholar 

  170. Stack, G. et al. Structure and function of the pS2 gene and estrogen receptor in human breast cancer cells. Cancer Treat. Res. 40, 185–206 (1988).

    Article  CAS  PubMed  Google Scholar 

  171. Sewack, G. F. & Hansen, U. Nucleosome positioning and transcription-associated chromatin alterations on the human estrogen-responsive pS2 promoter. J. Biol. Chem. 272, 31118–31129 (1997).

    Article  CAS  PubMed  Google Scholar 

  172. Metivier, R. et al. Transcriptional complexes engaged by apo-estrogen receptor-alpha isoforms have divergent outcomes. EMBO J. 23, 3653–3666 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Muller, W. & Borchard, F. pS2 protein in gastric carcinoma and normal gastric mucosa: association with clincopathological parameters and patient survival. J. Pathol. 171, 263–269 (1993).

    Article  CAS  PubMed  Google Scholar 

  174. Katoh, M. Trefoil factors and human gastric cancer [Dave: should review be deleted?] (review). Int. J. Mol. Med. 12, 3–9 (2003).

    CAS  PubMed  Google Scholar 

  175. Karam, S. M., Tomasetto, C. & Rio, M. C. Trefoil factor 1 is required for the commitment programme of mouse oxyntic epithelial progenitors. Gut 53, 1408–1415 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kwon, Y. S. et al. Sensitive ChIP-DSL technology reveals an extensive estrogen receptor α-binding program on human gene promoters. Proc. Natl Acad. Sci. USA 104, 4852–4857 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Montano, M. M. et al. An estrogen receptor-selective coregulator that potentiates the effectiveness of antiestrogens and represses the activity of estrogens. Proc. Natl Acad. Sci. USA 96, 6947–6952 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Deblois, G. & Giguere, V. Ligand-independent coactivation of ERα AF-1 by steroid receptor RNA activator (SRA) via MAPK activation. J. Steroid Biochem. Mol. Biol. 85, 123–131 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank D. Carroll and D. Odom for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

National cancer Institute

breast cancer

FURTHER INFORMATION

Jason Carroll's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, K., Carroll, J. Oestrogen-receptor-mediated transcription and the influence of co-factors and chromatin state. Nat Rev Cancer 7, 713–722 (2007). https://doi.org/10.1038/nrc2211

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2211

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing