Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Fortuitous convergences: the beginnings of JUN

Abstract

The oncogenic cellular phenotype reflects transcriptional and post-transcriptional changes in gene expression. The popular technique of expression profiling with microarrays highlights that changes in messenger RNA levels are important determinants of oncogenicity. The idea that upregulation and downregulation of specific crucial target genes can cause cancer derives from the discovery of oncogenic transcription factors. So, how was JUN — the first oncogenic transcription factor — discovered?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The JUN pioneers.
Figure 2: Deregulated Jun.

References

  1. Lucchini, G., Hinnebusch, A. G., Chen, C. & Fink, G. R. Positive regulatory interactions of the HIS4 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 4, 1326–1333 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Thireos, G., Penn, M. D. & Greer, H. 5′ untranslated sequences are required for the translational control of a yeast regulatory gene. Proc. Natl Acad. Sci. USA 81, 5096–5100 (1984).

    CAS  PubMed  Google Scholar 

  3. Hope, I. A. & Struhl, K. GCN4 protein, synthesized in vitro, binds HIS3 regulatory sequences: implications for general control of amino acid biosynthetic genes in yeast. Cell 43, 177–188 (1985).

    CAS  PubMed  Google Scholar 

  4. Hope, I. A. & Struhl, K. Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell 46, 885–894 (1986).

    CAS  PubMed  Google Scholar 

  5. Hinnebusch, A. G. A hierarchy of trans-acting factors modulates translation of an activator of amino acid biosynthetic genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 5, 2349–2360 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hinnebusch, A. G. The general control of amino acid biosynthetic genes in the yeast Saccharomyces cerevisiae. CRC Crit. Rev. Biochem. 21, 277–317 (1986).

    CAS  PubMed  Google Scholar 

  7. Hope, I. A. & Struhl, K. GCN4, a eukaryotic transcriptional activator protein, binds as a dimer to target DNA. EMBO J. 6, 2781–2784 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee, W., Haslinger, A., Karin, M. & Tjian, R. Activation of transcription by two factors that bind promoter and enhancer sequences of the human metallothionein gene and SV40. Nature 325, 368–372 (1987).

    CAS  PubMed  Google Scholar 

  9. Lee, W., Mitchell, P. & Tjian, R. Purified transcription factor AP-1 interacts with TPA-inducible enhancer elements. Cell 49, 741–752 (1987).

    CAS  PubMed  Google Scholar 

  10. Angel, P. et al. Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell 49, 729–739 (1987).

    CAS  PubMed  Google Scholar 

  11. Pulciani, S., Santos, E., Lauver, A. V., Long, L. K. & Barbacid, M. Transforming genes in human tumors. J. Cell. Biochem. 20, 51–61 (1982).

    CAS  PubMed  Google Scholar 

  12. Der, C. J., Krontiris, T. G. & Cooper, G. M. Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proc. Natl Acad. Sci. USA 79, 3637–3640 (1982).

    CAS  PubMed  Google Scholar 

  13. Parada, L. F., Tabin, C. J., Shih, C. & Weinberg, R. A. Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature 297, 474–478 (1982).

    CAS  PubMed  Google Scholar 

  14. Maki, Y., Bos, T. J., Davis, C., Starbuck, M. & Vogt, P. K. Avian sarcoma virus 17 carries the Jun oncogene. Proc. Natl Acad. Sci. USA 84, 2848–2852 (1987).

    CAS  PubMed  Google Scholar 

  15. Vogt, P. K., Bos, T. J. & Doolittle, R. F. Homology between the DNA-binding domain of the GCN4 regulatory protein of yeast and the carboxyl-terminal region of a protein coded for by the oncogene jun. Proc. Natl Acad. Sci. USA 84, 3316–3319 (1987).

    CAS  PubMed  Google Scholar 

  16. Struhl, K. The DNA-binding domains of the jun oncoprotein and the yeast GCN4 transcriptional activator protein are functionally homologous. Cell 50, 841–846 (1987).

    CAS  PubMed  Google Scholar 

  17. Bohmann, D. et al. Human proto-oncogene c-jun encodes a DNA binding protein with structural and functional properties of transcription factor AP-1. Science 238, 1386–1392 (1987).

    CAS  PubMed  Google Scholar 

  18. Angel, P. et al. Oncogene jun encodes a sequence-specific trans-activator similar to AP-1. Nature 332, 166–171 (1988).

    CAS  PubMed  Google Scholar 

  19. Curran, T. & Teich, N. M. Candidate product of the FBJ murine osteosarcoma virus oncogene: characterization of a 55,000-dalton phosphoprotein. J. Virol. 42, 114–122 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Curran, T., Peters, G., Van Beveren, C., Teich, N. M. & Verma, I. M. FBJ murine osteosarcoma virus: identification and molecular cloning of biologically active proviral DNA. J. Virol. 44, 674–682 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Curran, T. & Teich, N. M. Identification of a 39,000-dalton protein in cells transformed by the FBJ murine osteosarcoma virus. Virology 116, 221–235 (1982).

    CAS  PubMed  Google Scholar 

  22. Rauscher, F. J., Sambucetti, L. C., Curran, T., Distel, R. J. & Spiegelman, B. M. Common DNA binding site for Fos protein complexes and transcription factor AP-1. Cell 52, 471–480 (1988).

    CAS  PubMed  Google Scholar 

  23. Franza, B. R. Jr, Rauscher, F. J., Josephs, S. F. & Curran, T. The Fos complex and Fos-related antigens recognize sequence elements that contain AP-1 binding sites. Science 239, 1150–1153 (1988).

    CAS  PubMed  Google Scholar 

  24. Rauscher, F. J. et al. Fos-associated protein p39 is the product of the jun proto-oncogene. Science 240, 1010–1016 (1988).

    CAS  PubMed  Google Scholar 

  25. Sassone-Corsi, P., Lamph, W. W., Kamps, M. & Verma, I. M. fos-associated cellular p39 is related to nuclear transcription factor AP-1. Cell 54, 553–560 (1988).

    CAS  PubMed  Google Scholar 

  26. Landschulz, W. H., Johnson, P. F. & McKnight, S. L. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240, 1759–1764 (1988).

    CAS  PubMed  Google Scholar 

  27. O'Shea, E. K., Rutkowski, R. & Kim, P. S. Mechanism of specificity in the Fos–Jun oncoprotein heterodimer. Cell 68, 699–708 (1992).

    CAS  PubMed  Google Scholar 

  28. O'Shea, E. K., Rutkowski, R., Stafford, W. F. & Kim, P. S. Preferential heterodimer formation by isolated leucine zippers from fos and jun. Science 245, 646–648 (1989).

    CAS  PubMed  Google Scholar 

  29. Gentz, R., Rauscher, F. J., Abate, C. & Curran, T. Parallel association of Fos and Jun leucine zippers juxtaposes DNA binding domains. Science 243, 1695–1699 (1989).

    CAS  PubMed  Google Scholar 

  30. Hai, T. & Curran, T. Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc. Natl Acad. Sci. USA 88, 3720–3724 (1991).

    CAS  PubMed  Google Scholar 

  31. Ivashkiv, L. B. et al. mXBP/CRE-BP2 and c-Jun form a complex which binds to the cyclic AMP, but not to the 12-O-tetradecanoylphorbol-13-acetate, response element. Mol. Cell. Biol. 10, 1609–1621 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Benbrook, D. M. & Jones, N. C. Heterodimer formation between CREB and JUN proteins. Oncogene 5, 295–302 (1990).

    CAS  PubMed  Google Scholar 

  33. Sassone-Corsi, P., Ransone, L. J., Lamph, W. W. & Verma, I. M. Direct interaction between fos and jun nuclear oncoproteins: role of the 'leucine zipper' domain. Nature 336, 692–695 (1988).

    CAS  PubMed  Google Scholar 

  34. Rauscher, F. J., Voulalas, P. J., Franza, B. R. Jr & Curran, T. Fos and Jun bind cooperatively to the AP-1 site: reconstitution in vitro. Genes Dev. 2, 1687–1699 (1988).

    CAS  PubMed  Google Scholar 

  35. Halazonetis, T. D., Georgopoulos, K., Greenberg, M. E. & Leder, P. c-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding affinities. Cell 55, 917–924 (1988).

    CAS  PubMed  Google Scholar 

  36. Turner, R. & Tjian, R. Leucine repeats and an adjacent DNA binding domain mediate the formation of functional cFos–cJun heterodimers. Science 243, 1689–1694 (1989).

    CAS  PubMed  Google Scholar 

  37. Ransone, L. J., Visvader, J., Lamph, W. W., Sassone-Corsi, P. & Verma, I. M. fos and jun interaction: the role of the leucine zipper. Int. J. Cancer Suppl. 4, 10–21 (1989).

    CAS  PubMed  Google Scholar 

  38. Kouzarides, T. & Ziff, E. Leucine zippers of fos, jun and GCN4 dictate dimerization specificity and thereby control DNA binding. Nature 340, 568–571 (1989).

    CAS  PubMed  Google Scholar 

  39. Angel, P., Smeal, T., Meek, J. & Karin, M. Jun and v-jun contain multiple regions that participate in transcriptional activation in an interdependent manner. New Biol. 1, 35–43 (1989).

    CAS  PubMed  Google Scholar 

  40. Nakabeppu, Y. & Nathans, D. The basic region of Fos mediates specific DNA binding. EMBO J. 8, 3833–3841 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Smeal, T., Angel, P., Meek, J. & Karin, M. Different requirements for formation of Jun:Jun and Jun:Fos complexes. Genes Dev. 3, 2091–2100 (1989).

    CAS  PubMed  Google Scholar 

  42. Ryder, K., Lau, L. F. & Nathans, D. A gene activated by growth factors is related to the oncogene v-jun. Proc. Natl Acad. Sci. USA 85, 1487–1491 (1988).

    CAS  PubMed  Google Scholar 

  43. Nakabeppu, Y., Ryder, K. & Nathans, D. DNA binding activities of three murine Jun proteins: stimulation by Fos. Cell 55, 907–915 (1988).

    CAS  PubMed  Google Scholar 

  44. Hirai, S. I., Ryseck, R. P., Mechta, F., Bravo, R. & Yaniv, M. Characterization of junD: a new member of the jun proto-oncogene family. EMBO J. 8, 1433–1439 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Cohen, D. R. & Curran, T. fra-1: a serum-inducible, cellular immediate-early gene that encodes a fos-related antigen. Mol. Cell. Biol. 8, 2063–2069 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Foletta, V. C. et al. Cloning and characterisation of the mouse fra2 gene. Oncogene 9, 3305–3311 (1994).

    CAS  PubMed  Google Scholar 

  47. Zerial, M. et al. The product of a novel growth factor activated gene, fos B, interacts with JUN proteins enhancing their DNA binding activity. EMBO J. 8, 805–813 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Glover, J. N. & Harrison, S. C. Crystal structure of the heterodimeric bZIP transcription factor c-Fos–c-Jun bound to DNA. Nature 373, 257–261 (1995).

    CAS  PubMed  Google Scholar 

  49. Hilberg, F., Aguzzi, A., Howells, N. & Wagner, E. F. c-Jun is essential for normal mouse development and hepatogenesis. Nature 365, 179–181 (1993).

    CAS  PubMed  Google Scholar 

  50. Hilberg, F. & Wagner, E. F. Embryonic stem (ES) cells lacking functional c-jun: consequences for growth and differentiation, AP-1 activity and tumorigenicity. Oncogene 7, 2371–2380 (1992).

    CAS  PubMed  Google Scholar 

  51. Wang, Z. Q. et al. Bone and haematopoietic defects in mice lacking c-fos. Nature 360, 741–745 (1992).

    CAS  PubMed  Google Scholar 

  52. Pulverer, B. J. et al. Co-purification of mitogen-activated protein kinases with phorbol ester-induced c-Jun kinase activity in U937 leukaemic cells. Oncogene 8, 407–415 (1993).

    CAS  PubMed  Google Scholar 

  53. Hibi, M., Lin, A., Smeal, T., Minden, A. & Karin, M. Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev. 7, 2135–2148 (1993).

    CAS  PubMed  Google Scholar 

  54. Derijard, B. et al. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76, 1025–1037 (1994).

    CAS  PubMed  Google Scholar 

  55. Bos, T. J. et al. Efficient transformation of chicken embryo fibroblasts by c-Jun requires structural modification in coding and noncoding sequences. Genes Dev. 4, 1677–1687 (1990).

    CAS  PubMed  Google Scholar 

  56. Adler, V., Polotskaya, A., Wagner, F. & Kraft, A. S. Affinity-purified c-Jun amino-terminal protein kinase requires serine/threonine phosphorylation for activity. J. Biol. Chem. 267, 17001–17005 (1992).

    CAS  PubMed  Google Scholar 

  57. Adler, V., Unlap, T. & Kraft, A. S. A peptide encoding the c-Jun delta domain inhibits the activity of a c-jun amino-terminal protein kinase. J. Biol. Chem. 269, 11186–11191 (1994).

    CAS  PubMed  Google Scholar 

  58. Dai, T. et al. Stress-activated protein kinases bind directly to the delta domain of c-Jun in resting cells: implications for repression of c-Jun function. Oncogene 10, 849–855 (1995).

    CAS  PubMed  Google Scholar 

  59. Black, E. J., Catling, A. D., Woodgett, J. R., Kilbey, A. & Gillespie, D. A. Transcriptional activation by the v-Jun oncoprotein is independent of positive regulatory phosphorylation. Oncogene 9, 2363–2368 (1994).

    CAS  PubMed  Google Scholar 

  60. Hussain, S., Kilbey, A. & Gillespie, D. A. v-Jun represses c-jun proto-oncogene expression in vivo through a 12-O-tetradecanoylphorbol-13-acetate-responsive element in the proximal gene promoter. Cell Growth Differ. 9, 677–686 (1998).

    CAS  PubMed  Google Scholar 

  61. Kilbey, A., Black, E. J., Unlu, M. & Gillespie, D. A. The v-Jun oncoprotein replaces p39 c-Jun as the predominant AP-1 constituent in ASV17-transformed fibroblasts: implications for SAPK/JNK-mediated signal transduction. Oncogene 12, 2409–2418 (1996).

    CAS  PubMed  Google Scholar 

  62. May, G. H., Allen, K. E., Clark, W., Funk, M. & Gillespie, D. A. Analysis of the interaction between c-Jun and c-Jun N-terminal kinase in vivo. J. Biol. Chem. 273, 33429–33435 (1998).

    CAS  PubMed  Google Scholar 

  63. van Dam, H. & Castellazzi, M. Distinct roles of Jun:Fos and Jun:ATF dimers in oncogenesis. Oncogene 20, 2453–2464 (2001).

    CAS  PubMed  Google Scholar 

  64. Vogt, P. K. Jun, the oncoprotein. Oncogene 20, 2365–2377 (2001).

    CAS  PubMed  Google Scholar 

  65. Stam, K. et al. Evidence of a new chimeric BCR/c-ABL mRNA in patients with chronic myelocytic leukemia and the Philadelphia chromosome. N. Engl. J. Med. 313, 1429–1433 (1985).

    CAS  PubMed  Google Scholar 

  66. Kakizuka, A. et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR α with a novel putative transcription factor, PML. Cell 66, 663–674 (1991).

    CAS  PubMed  Google Scholar 

  67. Galili, N. et al. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nature Genet. 5, 230–235 (1993).

    CAS  PubMed  Google Scholar 

  68. Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C. C. p53 mutations in human cancers. Science 253, 49–53 (1991).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work of the author is supported by grants from the National Cancer Institute. This is manuscript number MEM 14965 of The Scripps Research Institute.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

GenBank

avian sarcoma virus 17

SV40

LocusLink

ABL

ATF family

BCR

C/EBP

DNase I

FKHR

Fos

FOS

FOS-B

Fra1

Fra2

Jun

JUN

Jun-B

Jun-D

metallothionein 2A

p53

PAX3

PML

RARα

<i>Saccharomyces</i> Genome Database

Gcn4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogt, P. Fortuitous convergences: the beginnings of JUN. Nat Rev Cancer 2, 465–469 (2002). https://doi.org/10.1038/nrc818

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc818

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing