Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Large-scale manufacture of peptide therapeutics by chemical synthesis

Abstract

The large-scale commercial production of a 36-amino-acid peptide by chemical synthesis has been demonstrated in the development of enfuvirtide (T-20 or Fuzeon), a first-in-class membrane fusion inhibitor for the treatment of HIV. The rationale behind route selection and the scale-up of the process used to manufacture enfuvirtide are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Linear solid-phase peptide synthesis using Fmoc-protected amino acids.
Figure 2: Solid-phase synthesis of a protected peptide fragment using Fmoc-protected amino acids and a super acid-sensitive resin.
Figure 3: Route 2 synthesis of T-2O.
Figure 4: Sequence failures during solid-phase peptide synthesis leading to single-site deletions, double hits or diastereomers.

Similar content being viewed by others

References

  1. Kelley, W. S. Therapeutic peptides: the devil is in the detail. Biotechnol. 14, 28–31 (1996).

    CAS  Google Scholar 

  2. Fields, G. F. and Nobel, R. L. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int. J. Peptide Protein Res. 35, 161–214 (1990).

    Article  CAS  Google Scholar 

  3. Chan, W. C. & White, P. D. Fmoc Solid Phase Peptide Synthesis — A Practical Approach (Oxford University Press, Oxford, 2000).

    Google Scholar 

  4. Bodanszky, M. Principles of Peptide Synthesis (Springer, Heidelberg, 1993).

    Book  Google Scholar 

  5. Merrifield, R. B. Solid phase peptide synthesis. 1. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 2149–2154 (1963).

    Article  CAS  Google Scholar 

  6. Carpino, L. A. & Han, G. Y. 9-Fluorenylmethoxycarbonyl function, a new base-sensitive amino-protecting group. J. Am. Chem. Soc. 92, 5748–5749 (1970).

    Article  CAS  Google Scholar 

  7. Carpino, L. A. & Han, G. Y. 9-Fluorenylmethoxycarbonyl amino-protecting group. J. Org. Chem. 37, 3404–3409 (1972).

    Article  CAS  Google Scholar 

  8. Carpino, L. A. New amino-protecting groups in organic synthesis. Acc. Chem. Res. 6, 191–198 (1973).

    Article  CAS  Google Scholar 

  9. Chang, C. D. & Meienhofer, J. Solid-phase peptide synthesis using mild base cleavage of N-α-fluorenylmethyloxycarbonylamino acids, exemplified by a synthesis of dihydrosomatostatin. Int. J. Pept. Protein Res. 11, 246–249 (1978).

    Article  CAS  Google Scholar 

  10. Atherton, E. et al. A mild procedure for peptide synthesis: use of fluorenylmethoxycarbonylamino-acids. J. Chem. Soc., Chem. Comm. 13, 537–539 (1978).

    Article  Google Scholar 

  11. Atherton, E., Fox, H., Harkiss, D. & Sheppard, R. C. Application of polyamide resins to polypeptide synthesis: an improved synthesis of β-endorphin using fluorenylmethoxycarbonylamino-acids. J. Chem. Soc., Chem. Comm. 13, 539–540 (1978).

    Article  Google Scholar 

  12. Rink, H. Solid-phase synthesis of protected peptide fragments using a trialkoxy-diphenyl-methyl ester resin. Tetrahedron Lett. 28, 3787 (1987).

    Article  CAS  Google Scholar 

  13. Immer, H. U. in Proceedings of the 11th American Peptide Symposium (eds Rivier, J. E. & Marshall, G. R.) 1054 (ESCOM, Leidon, 1990).

  14. Florsheimer, A. & Riniker, B. in Peptide 1990 (Proceedings of the 21st European Peptide Symposium) (eds Giralt, E. & Andreu, D) 131–133 (ESCOM, Leiden, 1991).

  15. Barlos, K. et al. Darstellung geshutzter peptid-fragmente unter einsatz substituierter triphenylmethyl-harze. Tetrahedron Lett. 30, 3943–3946 (1989).

    Article  CAS  Google Scholar 

  16. Barlos, K. et al. Veresterung von partiell geschutzten peptid-fragmenten mit harzen. Einsatz von 2-chlortritylchlorid zur synthese von Leu15-gastrin I. Tetrahedron Lett. 30, 3947–3950 (1989).

    Article  CAS  Google Scholar 

  17. Mergler, M., Nyfeler, R., Tanner, R., Gosteli, J. & Grogg, P. Peptide synthesis by a combination of solid-phase and solution methods II, synthesis of fully protected peptide fragments on 2-methoxy-4-alkoxy-benzyl alcohol resin. Tetrahedron Lett. 32, 4009–4012 (1988).

    Article  Google Scholar 

  18. Barlos, K., Gatos, D. & Schafer, W. Synthesis of prothymosin α (ProTα) — a protein consisting of 109 amino acid residues. Angew. Chem. Int. Ed. Engl. 30, 590–593 (1991).

    Article  Google Scholar 

  19. Riniker, B., Florsheimer, A., Fretz, H., Sieber, P. & Kamber, B. A general strategy for the synthesis of large peptides: The combined solid-phase and solution approach. Tetrahedron 49, 9307–9320 (1993).

    Article  CAS  Google Scholar 

  20. Kang, M. C., Bray, B., Lichty, M., Mader, C. & Merutka, G. Methods and composition for peptide synthesis (T–20). US Patent 6,015,881 (2000).

  21. Harre, M., Nickisch, K. & Tilstam, U. An efficient method for activation and recycling of trityl resins. React. Funct. Polymers 41, 111–114 (1998).

    Article  Google Scholar 

  22. Benoiton, N., Lee, Y. & Chen, F. in Proceedings of the 12th American Peptide Symposium Peptides; Chemistry & Biology, 496–498 (ESCOM, Leidon, 1992).

  23. Cameron, L., Holder, J., Meldal, M. & Sheppard, R. Peptide synthesis. Part 13. Feedback control in solid phase synthesis. Use of fluorenylmethoxycarbonyl amino acid 3,4-dihydroxy-4-oxo-1,2,3-benzotriazin-3-yl esters in fully automated system. J. Chem. Soc. Perkin Trans. 1, 2895–2901 (1988).

    Article  Google Scholar 

  24. Milton, R., Milton, S. & Adams, P. Prediction of difficult sequences in solid-phase peptide synthesis. J. Am. Chem. Soc. 112, 6039–6046 (1990).

    Article  CAS  Google Scholar 

  25. Knorr, R., Trzeciak, A., Bannwarth, W. & Gillessen, D. New coupling reagents in peptide chemistry. Tetrahedron Lett. 30, 1927–1930 (1989).

    Article  CAS  Google Scholar 

  26. Konig, W. & Geiger, R. New method for the synthesis of peptides: Activation of the carbonyl group with dicyclohexylcarbodiimide by using 1-hydroxybenzotriazoles as additives. Ber. Dtsch. Chem. Ges. 103, 788 (1970).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Encyclopedia of Life Sciences

Robert Bruce Merrifield

Enfuvirtide mechanism of action

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bray, B. Large-scale manufacture of peptide therapeutics by chemical synthesis. Nat Rev Drug Discov 2, 587–593 (2003). https://doi.org/10.1038/nrd1133

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1133

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing