Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mitochondrial toxicity of nrti antiviral drugs: an integrated cellular perspective

Key Points

  • Nucleoside reverse transcriptase inhibitors (NRTIs) are linchpins to AIDS therapy, but mitochondrial side effects have increasingly come to light.

  • Mitochondrial DNA (mtDNA) depletion and energy depletion are key observations and relate clinical and in vivo experimental findings to inhibition of mtDNA replication by NRTI triphosphates in vitro, but related pharmacological events could be operative as well.

  • Subsequent observations indicated that mitochondrial energy deprivation is concomitant with, or is the result of, mitochondrial oxidative stress in AIDS (from HIV, for example) or from NRTI therapy itself.

  • Moreover, mtDNA mutations can become important as NRTI therapy continues.

Abstract

Highly active antiretroviral therapy (HAART) regimes based on nucleoside reverse transcriptase inhibitors (NRTIs) have revolutionized the treatment of AIDS in recent years. Although HAART can successfully suppress viral replication in the long term, it is not without significant toxicity, which can seriously compromise treatment effectiveness. A major toxicity that has been recognized for more than a decade is NRTI-related mitochondrial toxicity, which manifests as serious side effects such as hepatic failure and lactic acidosis. However, a lack of understanding of the mechanisms underlying mitochondrial toxicity has hampered efforts to develop novel drugs with better side-effect profiles. This review characterizes the pharmacological mechanisms and pathways that are involved in mitochondrial dysfunction caused by NRTIs, and suggests opportunities for future pharmacological research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nucleoside reverse transcriptase inhibitors.
Figure 2: Mitochondrial effects of NRTIs.
Figure 3: Modes of inhibition of DNA pol-γ by NRTIs.
Figure 4: DNA pol-γ amino acids involved in nucleotide selection.
Figure 5: Location of non-synonymous single nucleotide polymorphisms in the gene encoding DNA pol-γ and amino-acid changes in the protein.

Similar content being viewed by others

References

  1. Arnaudo, E. et al. Depletion of muscle mitochondrial DNA in AIDS patients with zidovudine-induced myopathy. Lancet 337, 508–510 (1991).

    CAS  PubMed  Google Scholar 

  2. Dalakas, M. C. et al. Mitochondrial myopathy caused by long-term zidovudine therapy. N. Engl. J. Med. 322, 1098–1105 (1990). The first report of mitochondrial toxicity from NRTIs with ultrastructural similarities to mitochondrial myopathy.

    CAS  PubMed  Google Scholar 

  3. Lewis, W. et al. Mitochondrial ultrastructural and molecular changes induced by zidovudine in rat hearts. Lab. Invest. 65, 228–236 (1991).

    CAS  PubMed  Google Scholar 

  4. Lewis, W., Gonzalez, B., Chomyn, A. & Papoian, T. Zidovudine induces molecular, biochemical, and ultrastructural changes in rat skeletal muscle mitochondria. J. Clin. Invest. 89, 1354–1360 (1992). Reports a link between mtDNA depletion, mtRNA depletion, mitochondrial ultrastructural defects and AZT treatment and myopathy.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lewis, W. et al. Fialuridine and its metabolites inhibit DNA polymerase γ at sites of multiple adjacent analog incorporation, decrease mtDNA abundance, and cause mitochondrial structural defects in cultured hepatoblasts. Proc. Natl Acad. Sci. USA 93, 3592–3597 (1996). Establishes competitive inhibition as operative with the pharmacologically active FIAU metabolites.

    CAS  PubMed  Google Scholar 

  6. Lewis, W. et al. Depletion of mitochondrial DNA, destruction of mitochondria, and accumulation of lipid droplets result from fialuridine treatment in woodchucks (Marmota monax). Lab. Invest. 76, 77–87 (1997).

    CAS  PubMed  Google Scholar 

  7. Lewis, W. et al. Cardiac dysfunction occurs in the HIV-1 transgenic mouse treated with zidovudine. Lab. Invest. 80, 187–197 (2000).

    CAS  PubMed  Google Scholar 

  8. Lewis, W. et al. Combined antiretroviral therapy causes cardiomyopathy and elevates plasma lactate in transgenic AIDS mice. Lab. Invest. 81, 1527–1536 (2001).

    CAS  PubMed  Google Scholar 

  9. Lewis, W., Simpson, J. F. & Meyer, R. R. Cardiac mitochondrial DNA polymerase-γ is inhibited competitively and noncompetitively by phosphorylated zidovudine. Circ. Res. 74, 344–348 (1994). Establishes mixed kinetics of AZT-TP with bovine DNA pol-γ.

    CAS  PubMed  Google Scholar 

  10. Lewis, W., Meyer, R. R., Simpson, J. F., Colacino, J. M. & Perrino, F. W. Mammalian DNA polymerases α, β, γ, δ, and ε incorporate fialuridine (FIAU) monophosphate into DNA and are inhibited competitively by FIAU triphosphate. Biochemistry 33, 14620–14624 (1994).

    CAS  PubMed  Google Scholar 

  11. Lewis, W. & Dalakas, M. C. Mitochondrial toxicity of antiviral drugs. Nature Med. 1, 417–422 (1995). A review that states the first articulation of the DNA pol-γ hypothesis.

    CAS  PubMed  Google Scholar 

  12. Lewis, W., Copeland, W. C. & Day, B. Mitochondrial DNA depletion, oxidative stress and mutation: mechanisms of nucleoside reverse transcriptase inhibitor toxicity. Lab. Invest. 81, 777–790 (2001).

    CAS  PubMed  Google Scholar 

  13. Barile, M., Valenti, D., Passarella, S. & Quagliariello, E. 3′-Azido-3′-deoxythmidine uptake into isolated rat liver mitochondria and impairment of ADP/ATP translocator. Biochem. Pharmacol. 53, 913–920 (1997).

    CAS  PubMed  Google Scholar 

  14. Valenti, D., Barile, M. & Passarella, S. AZT inhibition of the ADP/ATP antiport in isolated rat heart mitochondria. Int. J. Mol. Med. 6, 93–96 (2000).

    CAS  PubMed  Google Scholar 

  15. Lim, S. E. & Copeland, W. C. Differential incorporation and removal of antiviral deoxynucleotides by human DNA polymerase γ. J. Biol. Chem. 276, 23616–23623 (2001). A kinetic explanation for mtDNA depletion from NRTIs.

    CAS  PubMed  Google Scholar 

  16. Hall, E. T., Yan, J. P., Melancon, P. & Kuchta, R. D. 3′-Azido-3′-deoxythymidine potently inhibits protein glycosylation. A novel mechanism for AZT cytotoxicity. J. Biol. Chem. 269, 14355–1438 (1994).

    CAS  PubMed  Google Scholar 

  17. Hobbs, G. A., Keilbaugh, S. A., Rief, P. M. & Simpson, M. V. Cellular targets of 3′-azido-3′-deoxythymidine: an early (non-delayed) effect on oxidative phosphorylation. Biochem. Pharmacol. 50, 381–390 (1995).

    CAS  PubMed  Google Scholar 

  18. Katz, A. M. Is the failing heart energy depleted? Cardiol. Clin. 16, 633–644, viii (1998).

    CAS  PubMed  Google Scholar 

  19. Sawyer, D. B. & Colucci, W. S. Mitochondrial oxidative stress in heart failure: “oxygen wastage” revisited. Circ. Res. 86, 119–120 (2000).

    CAS  PubMed  Google Scholar 

  20. Wallace, D. C. Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 256, 628–632 (1992).

    CAS  PubMed  Google Scholar 

  21. Wallace, D. C. Diseases of the mitochondrial DNA. Annu. Rev. Biochem. 61, 1175–1212 (1992).

    CAS  PubMed  Google Scholar 

  22. Wardell, T. M. et al. Changes in the human mitochondrial genome after treatment of malignant disease. Mutat. Res. 525, 19–27 (2003).

    CAS  PubMed  Google Scholar 

  23. Mulato, A. S. & Cherrington, J. M. Anti-HIV activity of adefovir (PMEA) and PMPA in combination with antiretroviral compounds: in vitro analyses. Antiviral Res. 36, 91–97 (1997).

    CAS  PubMed  Google Scholar 

  24. Birkus, G. et al. Tenofovir diphosphate is a poor substrate and a weak inhibitor of rat DNA polymerases α, δ, and ε. Antimicrob. Agents Chemother. 46, 1610–1613 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Birkus, G., Hitchcock, M. J. & Cihlar, T. Assessment of mitochondrial toxicity in human cells treated with tenofovir: comparison with other nucleoside reverse transcriptase inhibitors. Antimicrob. Agents Chemother. 46, 716–723 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Biesecker, G. et al. Evaluation of mitochondrial DNA content and enzyme levels in tenofovir DF-treated rats, rhesus monkeys and woodchucks. Antiviral Res. 58, 217–225 (2003).

    CAS  PubMed  Google Scholar 

  27. Cihlar, T., Birkus, G., Greenwalt, D. E. & Hitchcock, M. J. Tenofovir exhibits low cytotoxicity in various human cell types: comparison with other nucleoside reverse transcriptase inhibitors. Antiviral Res. 54, 37–45 (2002).

    CAS  PubMed  Google Scholar 

  28. Schaaf, B., Aries, S. P., Kramme, E., Steinhoff, J. & Dalhoff, K. Acute renal failure associated with tenofovir treatment in a patient with acquired immunodeficiency syndrome. Clin. Infect. Dis. 37, e41–e43 (2003).

    CAS  PubMed  Google Scholar 

  29. Murphy, M. D., O'Hearn, M. & Chou, S. Fatal lactic acidosis and acute renal failure after addition of tenofovir to an antiretroviral regimen containing didanosine. Clin. Infect. Dis. 36, 1082–1085 (2003).

    PubMed  Google Scholar 

  30. Creput, C. et al. Renal lesions in HIV-1-positive patient treated with tenofovir. AIDS 17, 935–937 (2003).

    PubMed  Google Scholar 

  31. Karras, A. et al. Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: three cases of renal failure, Fanconi syndrome, and nephrogenic diabetes insipidus. Clin. Infect. Dis. 36, 1070–1073 (2003).

    PubMed  Google Scholar 

  32. Perazella, M. A. Drug-induced renal failure: update on new medications and unique mechanisms of nephrotoxicity. Am. J. Med. Sci. 325, 349–362 (2003).

    PubMed  Google Scholar 

  33. Castillo, A. B., Tarantal, A. F., Watnik, M. R. & Martin, R. B. Tenofovir treatment at 30 mg/kg/day can inhibit cortical bone mineralization in growing rhesus monkeys (Macaca mulatta). J. Orthop. Res. 20, 1185–1189 (2002).

    CAS  PubMed  Google Scholar 

  34. Barile, M., Valenti, D., Quagliariello, E. & Passarella, S. Mitochondria as cell targets of AZT (zidovudine). Gen. Pharmacol. 31, 531–538 (1998).

    CAS  PubMed  Google Scholar 

  35. Brinkman, K. Evidence for mitochondrial toxicity: lactic acidosis as proof of concept. J. HIV Ther. 6, 13–16 (2001).

    CAS  PubMed  Google Scholar 

  36. Brinkman, K., Smeitink, J. A., Romijn, J. A. & Reiss, P. Mitochondrial toxicity induced by nucleoside-analogue reverse-transcriptase inhibitors is a key factor in the pathogenesis of antiretroviral-therapy-related lipodystrophy. Lancet 354, 1112–1115 (1999).

    CAS  PubMed  Google Scholar 

  37. Brinkman, K., ter Hofstede, H. J., Burger, D. M., Smeitink, J. A. & Koopmans, P. P. Adverse effects of reverse transcriptase inhibitors: mitochondrial toxicity as common pathway. AIDS 12, 1735–1744 (1998).

    CAS  PubMed  Google Scholar 

  38. Brinkman, K., Vrouenraets, S., Kauffmann, R., Weigel, H. & Frissen, J. Treatment of nucleoside reverse transcriptase inhibitor-induced lactic acidosis. AIDS 14, 2801–2802 (2000).

    CAS  PubMed  Google Scholar 

  39. Casademont, J., Miro, O. & Cardellach, F. Mitochondrial DNA and nucleoside toxicity. N. Engl. J. Med. 347, 216–218 (2002).

    PubMed  Google Scholar 

  40. Honkoop, P., Scholte, H. R., de Man, R. A. & Schalm, S. W. Mitochondrial injury. Lessons from the fialuridine trial. Drug Saf. 17, 1–7 (1997).

    CAS  PubMed  Google Scholar 

  41. Johnson, A. A. et al. Toxicity of antiviral nucleoside analogs and the human mitochondrial DNA polymerase. J. Biol. Chem. 276, 40847–40857 (2001). A biochemical analysis of mitochondrial toxicity.

    CAS  PubMed  Google Scholar 

  42. Kakuda, T. N. Pharmacology of nucleoside and nucleotide reverse transcriptase inhibitor-induced mitochondrial toxicity. Clin. Ther. 22, 685–708 (2000).

    CAS  PubMed  Google Scholar 

  43. Kakuda, T. N., Brundage, R. C., Anderson, P. L. & Fletcher, C. V. Nucleoside reverse transcriptase inhibitor-induced mitochondrial toxicity as an etiology for lipodystrophy. AIDS 13, 2311–2312 (1999).

    CAS  PubMed  Google Scholar 

  44. Lewis, W. Mitochondrial DNA replication, nucleoside reverse-transcriptase inhibitors, and AIDS cardiomyopathy. Prog. Cardiovasc. Dis. 45, 305–318 (2003).

    CAS  PubMed  Google Scholar 

  45. Lewis, W. Defective mitochondrial DNA replication and NRTIs: pathophysiological implications in AIDS cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 284, H1–H9 (2003).

    CAS  PubMed  Google Scholar 

  46. Lewis, W. Cardiomyopathy in AIDS: a pathophysiological perspective. Prog. Cardiovasc. Dis. 43, 151–170 (2000).

    CAS  PubMed  Google Scholar 

  47. Moyle, G. Clinical manifestations and management of antiretroviral nucleoside analog-related mitochondrial toxicity. Clin. Ther. 22, 911–936 (2000).

    CAS  PubMed  Google Scholar 

  48. Walker, U. A. Clinical manifestations of mitochondrial toxicity. J. HIV Ther. 6, 17–21 (2001).

    CAS  PubMed  Google Scholar 

  49. Wright, G. E. & Brown, N. C. Deoxyribonucleotide analogs as inhibitors and substrates of DNA polymerases. Pharmacol. Ther. 47, 447–497 (1990). An extensive review of the mechanisms of action and toxicity of nucleoside analogues.

    CAS  PubMed  Google Scholar 

  50. Wallace, K. B. & Starkov, A. A. Mitochondrial targets of drug toxicity. Annu. Rev. Pharmacol. Toxicol. 40, 353–388 (2000).

    CAS  PubMed  Google Scholar 

  51. Arner, E. S. & Eriksson, S. Mammalian deoxyribonucleoside kinases. Pharmacol. Ther. 67, 155–186 (1995).

    CAS  PubMed  Google Scholar 

  52. Eriksson, S., Cederlund, E., Bergman, T., Jornvall, H. & Bohman, C. Characterization of human deoxycytidine kinase. Correlation with cDNA sequences. FEBS Lett. 280, 363–366 (1991).

    CAS  PubMed  Google Scholar 

  53. Eriksson, S., Kierdaszuk, B., Munch-Petersen, B., Oberg, B. & Johansson, N. G. Comparison of the substrate specificities of human thymidine kinase 1 and 2 and deoxycytidine kinase toward antiviral and cytostatic nucleoside analogs. Biochem. Biophys. Res. Commun. 176, 586–592 (1991).

    CAS  PubMed  Google Scholar 

  54. Eriksson, S., Munch-Petersen, B., Kierdaszuk, B. & Arner, E. Expression and substrate specificities of human thymidine kinase 1, thymidine kinase 2 and deoxycytidine kinase. Adv. Exp. Med. Biol. 309B, 239–243 (1991).

    Google Scholar 

  55. Munch-Petersen, B., Cloos, L., Tyrsted, G. & Eriksson, S. Diverging substrate specificity of pure human thymidine kinases 1 and 2 against antiviral dideoxynucleosides. J. Biol. Chem. 266, 9032–9038 (1991). Specificity of NRTIs as substrates for phosphorylation is established.

    CAS  PubMed  Google Scholar 

  56. Mitsuya, H. et al. 3′-Azido-3′-deoxythymidine (BW A509U): an antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proc. Natl Acad. Sci. USA 82, 7096–7100 (1985).

    CAS  PubMed  Google Scholar 

  57. Mitsuya, H., Yarchoan, R. & Broder, S. Molecular targets for AIDS therapy. Science 249, 1533–1544 (1990).

    CAS  Google Scholar 

  58. Dobrovolsky, V. N., Bucci, T., Heflich, R. H., Desjardins, J. & Richardson, F. C. Mice deficient for cytosolic thymidine kinase gene develop fatal kidney disease. Mol. Genet. Metab. 78, 1–10 (2003).

    CAS  PubMed  Google Scholar 

  59. Copeland, W. C., Chen, M. S. & Wang, T. S. Human DNA polymerases α and β are able to incorporate anti-HIV deoxynucleotides into DNA. J. Biol. Chem. 267, 21459–21464 (1992). An early report of nuclear DNA polymerase-driven incorporation of NRTIs.

    CAS  PubMed  Google Scholar 

  60. Palmieri, F. Mitochondrial carrier proteins. FEBS Lett. 346, 48–54 (1994).

    CAS  PubMed  Google Scholar 

  61. Dolce, V., Fiermonte, G., Runswick, M. J., Palmieri, F. & Walker, J. E. The human mitochondrial deoxynucleotide carrier and its role in the toxicity of nucleoside antivirals. Proc. Natl Acad. Sci. USA 98, 2284–2288 (2001).

    CAS  PubMed  Google Scholar 

  62. Moraes, C. T. et al. mtDNA depletion with variable tissue expression: a novel genetic abnormality in mitochondrial diseases. Am. J. Hum. Genet. 48, 492–501 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Marin-Garcia, J. & Goldenthal, M. J. Mitochondrial biogenesis defects and neuromuscular disorders. Pediatr. Neurol. 22, 122–129 (2000).

    CAS  PubMed  Google Scholar 

  64. Hirano, M. & Vu, T. H. Defects of intergenomic communication: where do we stand? Brain Pathol. 10, 451–461 (2000).

    CAS  PubMed  Google Scholar 

  65. Vu, T. H. et al. Clinical manifestations of mitochondrial DNA depletion. Neurology 50, 1783–1790 (1998).

    CAS  PubMed  Google Scholar 

  66. McKenzie, R. et al. Hepatic failure and lactic acidosis due to fialuridine (FIAU), an investigational nucleoside analogue for chronic hepatitis B. N. Engl. J. Med. 333, 1099–1105 (1995). Results of a tragic clinical trial in which antiviral FIAU was linked to severe organ damage.

    CAS  PubMed  Google Scholar 

  67. Tennant, B. C. et al. Antiviral activity and toxicity of fialuridine in the woodchuck model of hepatitis B virus infection. Hepatology 28, 179–91 (1998).

    CAS  PubMed  Google Scholar 

  68. Taanman, J. W. et al. Molecular mechanisms in mitochondrial DNA depletion syndrome. Hum. Mol. Genet. 6, 935–942 (1997).

    CAS  PubMed  Google Scholar 

  69. Swartz, M. N. Mitochondrial toxicity – new adverse drug effects. N. Engl. J. Med. 333, 1146–1148 (1995). A crystalization of the potential toxicity of NRTIs.

    CAS  PubMed  Google Scholar 

  70. Sinnwell, T. M. et al. Metabolic abnormalities in skeletal muscle of patients receiving zidovudine therapy observed by 31P in vivo magnetic resonance spectroscopy. J. Clin. Invest. 96, 126–131 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Saada, A. et al. Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Nature Genet. 29, 342–344 (2001).

    CAS  PubMed  Google Scholar 

  72. Kit, S. & Leung, W. C. Submitochondrial localization and characteristics of thymidine kinase molecular forms in parental and kinase-deficient HeLa cells. Biochem. Genet. 11, 231–247 (1974).

    CAS  PubMed  Google Scholar 

  73. Wang, L., Hellman, U. & Eriksson, S. Cloning and expression of human mitochondrial deoxyguanosine kinase cDNA. FEBS Lett. 390, 39–43 (1996).

    CAS  PubMed  Google Scholar 

  74. Petrakis, T. G., Ktistaki, E., Wang, L., Eriksson, S. & Talianidis, I. Cloning and characterization of mouse deoxyguanosine kinase. Evidence for a cytoplasmic isoform. J. Biol. Chem. 274, 24726–24730 (1999).

    CAS  PubMed  Google Scholar 

  75. Mandel, H. et al. The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA. Nature Genet. 29, 337–341 (2001).

    CAS  PubMed  Google Scholar 

  76. Lim, S. E., Longley, M. J. & Copeland, W. C. The mitochondrial p55 accessory subunit of human DNA polymerase γ enhances DNA binding, promotes processive DNA synthesis, and confers N-ethylmaleimide resistance. J. Biol. Chem. 274, 38197–38203 (1999).

    CAS  PubMed  Google Scholar 

  77. Longley, M. J., Nguyen, D., Kunkel, T. A. & Copeland, W. C. The fidelity of human DNA polymerase γ with and without exonucleolytic proofreading and the p55 accessory subunit. J. Biol. Chem. 276, 38555–38562 (2001).

    CAS  PubMed  Google Scholar 

  78. Huang, P., Farquhar, D. & Plunkett, W. Selective action of 3′-azido-3′-deoxythymidine 5′-triphosphate on viral reverse transcriptases and human DNA polymerases. J. Biol. Chem. 265, 11914–11918 (1990).

    CAS  PubMed  Google Scholar 

  79. Eriksson, S., Xu, B. & Clayton, D. A. Efficient incorporation of anti-HIV deoxynucleotides by recombinant yeast mitochondrial DNA polymerase. J. Biol. Chem. 270, 18929–18934 (1995).

    CAS  PubMed  Google Scholar 

  80. Huang, P., Farquhar, D. & Plunkett, W. Selective action of 2′,3′-didehydro-2′,3′-dideoxythymidine triphosphate on human immunodeficiency virus reverse transcriptase and human DNA polymerases. J. Biol. Chem. 267, 2817–2822 (1992).

    CAS  PubMed  Google Scholar 

  81. Kaguni, L. S., Wernette, C. M., Conway, M. C. & Yang-Cashman, P. in Eukaryotic DNA Replication Vol. 6 (eds Kelly, T. & Stillman, B.) 425–432 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1988).

    Google Scholar 

  82. Hart, G. J. et al. Effects of (−)-2′-deoxy-3′-thiacytidine (3TC) 5′-triphosphate on human immunodeficiency virus reverse transcriptase and mammalian DNA polymerases α, β, and γ. Antimicrob. Agents Chemother. 36, 1688–1694 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Parker, W. B. & Cheng, Y. C. Mitochondrial toxicity of NRTI analogs. J. NIH Res. 6, 57–61 (1994).

    Google Scholar 

  84. Nickel, W., Austermann, S., Bialek, G. & Grosse, F. Interactions of azidothymidine triphosphate with the cellular DNA polymerases α, δ, and ε and with DNA primase. J. Biol. Chem. 267, 848–854 (1992).

    CAS  PubMed  Google Scholar 

  85. Martin, J. L., Brown, C. E., Matthews-Davis, N. & Reardon, J. E. Effects of antiviral nucleoside analogs on human DNA polymerases and mitochondrial DNA synthesis. Antimicrob. Agents Chemother. 38, 2743–2749 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Matsuda, T. et al. Error rate and specificity of human and murine DNA polymerase η. J. Mol. Biol. 312, 335–346 (2001).

    CAS  Google Scholar 

  87. Maga, G. et al. Molecular basis for the enantioselectivity of HIV-1 reverse transcriptase: role of the 3′-hydroxyl group of the L-(β)-ribose in chiral discrimination between D- and L-enantiomers of deoxy- and dideoxy-nucleoside triphosphate analogs. Nucleic Acids Res. 27, 972–978 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Cao, W., Mayer, A. N. & Barany, F. Stringent and relaxed specificities of TaqI endonuclease: interactions with metal cofactors and DNA sequences. Biochemistry 34, 2276–2283 (1995).

    CAS  PubMed  Google Scholar 

  89. Lim, S. E., Ponamarev, M. V., Longley, M. J. & Copeland, W. C. Structural determinants in human DNA polymerase γ account for mitochondrial toxicity from nucleoside analogs. J. Mol. Biol. 329, 45–57 (2003). Reports that residues in the active site relate to the selectivity of antiviral toxicity to DNA pol-γ.

    CAS  PubMed  Google Scholar 

  90. Simpson, M. V., Chin, C. D., Keilbaugh, S. A., Lin, T. S. & Prusoff, W. H. Studies on the inhibition of mitochondrial DNA replication by 3′-azido-3′-deoxythymidine and other dideoxynucleoside analogs which inhibit HIV-1 replication. Biochem. Pharmacol. 38, 1033–1036 (1989). One of the earliest studies that addresses mtDNA replication defects by NRTIs.

    CAS  PubMed  Google Scholar 

  91. Chen, C. H. & Cheng, Y. C. Delayed cytotoxicity and selective loss of mitochondrial DNA in cells treated with the anti-human immunodeficiency virus compound 2′,3′-dideoxycytidine. J. Biol. Chem. 264, 11934–11937 (1989). One of the earliest studies that addresses mtDNA replication defects by NRTIs.

    CAS  PubMed  Google Scholar 

  92. Chen, C. H., Vazquez-Padua, M. & Cheng, Y. C. Effect of anti-human immunodeficiency virus nucleoside analogs on mitochondrial DNA and its implication for delayed toxicity. Mol. Pharmacol. 39, 625–628 (1991).

    CAS  PubMed  Google Scholar 

  93. Wallace, D. C. Mitochondrial diseases in man and mouse. Science 283, 1482–1488 (1999). A concise review of mitochondrial genetics and disease.

    CAS  Google Scholar 

  94. de la Asuncion, J. G., del Olmo, M. L., Sastre, J., Pallardo, F. V. & Vina, J. Zidovudine (AZT) causes an oxidation of mitochondrial DNA in mouse liver. Hepatology 29, 985–987 (1999).

    CAS  PubMed  Google Scholar 

  95. Szabados, E. et al. Role of reactive oxygen species and poly-ADP-ribose polymerase in the development of AZT-induced cardiomyopathy in rat. Free Radic. Biol. Med. 26, 309–317 (1999).

    CAS  PubMed  Google Scholar 

  96. Yamaguchi, T., Katoh, I. & Kurata, S. Azidothymidine causes functional and structural destruction of mitochondria, glutathione deficiency and HIV-1 promoter sensitization. Eur. J. Biochem. 269, 2782–2788 (2002).

    CAS  PubMed  Google Scholar 

  97. Bridges, E. G., LeBoeuf, R. B., Weidner, D. A. & Sommadossi, J. P. Influence of template primary structure on 3′-azido-3′-deoxythymidine triphosphate incorporation into DNA. Antiviral Res. 21, 93–102 (1993).

    CAS  PubMed  Google Scholar 

  98. Bebenek, K., Thomas, D. C., Roberts, J. D., Eckstein, F. & Kunkel, T. A. Effects of 3′-azido-3′-deoxythymidine metabolites on simian virus 40 origin-dependent replication and heteroduplex repair in HeLa cell extracts. Mol. Pharmacol. 43, 57–63 (1993).

    CAS  PubMed  Google Scholar 

  99. Frick, L. W., Nelson, D. J., St Clair, M. H., Furman, P. A. & Krenitsky, T. A. Effects of 3′-azido-3′-deoxythymidine on the deoxynucleotide triphosphate pools of cultured human cells. Biochem Biophys. Res. Commun. 154, 124–129 (1988).

    CAS  PubMed  Google Scholar 

  100. Furman, P. A. et al. Phosphorylation of 3′-azido-3′-deoxythymidine and selective interaction of the 5′-triphosphate with human immunodeficiency virus reverse transcriptase. Proc. Natl Acad. Sci. USA 83, 8333–8337 (1986). The original work describing the antiretroviral effects of AZT.

    CAS  PubMed  Google Scholar 

  101. Kunkel, T. A. & Mosbaugh, D. W. Exonucleolytic proofreading by a mammalian DNA polymerase. Biochemistry 28, 988–995 (1989).

    CAS  PubMed  Google Scholar 

  102. Kunkel, T. A. & Soni, A. Exonucleolytic proofreading enhances the fidelity of DNA synthesis by chick embryo DNA polymerase-γ. J. Biol. Chem. 263, 4450–4459 (1988).

    CAS  PubMed  Google Scholar 

  103. Foury, F. Cloning and sequencing of the nuclear gene MIP1 encoding the catalytic subunit of the yeast mitochondrial DNA polymerase. J. Biol. Chem. 264, 20552–20560 (1989).

    CAS  PubMed  Google Scholar 

  104. Zhang, D. et al. Construction of transgenic mice with tissue-specific acceleration of mitochondrial DNA mutagenesis. Genomics 69, 151–161 (2000).

    CAS  PubMed  Google Scholar 

  105. Esposito, L. A., Melov, S., Panov, A., Cottrell, B. A. & Wallace, D. C. Mitochondrial disease in mouse results in increased oxidative stress. Proc. Natl Acad. Sci. USA 96, 4820–4825 (1999).

    CAS  PubMed  Google Scholar 

  106. Bialkowska, A. et al. Oxidative DNA damage in fetal tissues after transplacental exposure to 3′-azido-3′-deoxythymidine (AZT). Carcinogenesis 21, 1059–1062 (2000).

    CAS  PubMed  Google Scholar 

  107. Ayers, K. M., Clive, D., Tucker, W. E., Jr., Hajian, G. & de Miranda, P. Nonclinical toxicology studies with zidovudine: genetic toxicity tests and carcinogenicity bioassays in mice and rats. Fundam. Appl. Toxicol. 32, 148–158 (1996).

    CAS  PubMed  Google Scholar 

  108. Agarwal, R. P. & Olivero, O. A. Genotoxicity and mitochondrial damage in human lymphocytic cells chronically exposed to 3′-azido-2′,3′-dideoxythymidine. Mutat. Res. 390, 223–231 (1997).

    CAS  PubMed  Google Scholar 

  109. Gonzalez Cid, M. & Larripa, I. Genotoxic activity of azidothymidine (AZT) in in vitro systems. Mutat. Res. 321, 113–118 (1994).

    CAS  PubMed  Google Scholar 

  110. Meng, Q. et al. Relationships between DNA incorporation, mutant frequency, and loss of heterozygosity at the TK locus in human lymphoblastoid cells exposed to 3′-azido-3′-deoxythymidine. Toxicol. Sci. 54, 322–329 (2000).

    CAS  PubMed  Google Scholar 

  111. Meng, Q., Grosovsky, A. J., Shi, X. & Walker, V. E. Mutagenicity and loss of heterozygosity at the APRT locus in human lymphoblastoid cells exposed to 3′-azido- 3′-deoxythymidine. Mutagenesis 15, 405–410 (2000).

    CAS  PubMed  Google Scholar 

  112. Olivero, O. A. et al. Incorporation of zidovudine into leukocyte DNA from HIV-1-positive adults and pregnant women, and cord blood from infants exposed in utero. AIDS 13, 919–925 (1999).

    CAS  PubMed  Google Scholar 

  113. Sussman, H. E. et al. Genotoxicity of 3′-azido-3′-deoxythymidine in the human lymphoblastoid cell line, TK6: relationships between DNA incorporation, mutant frequency, and spectrum of deletion mutations in HPRT. Mutat. Res. 429, 249–259 (1999).

    CAS  PubMed  Google Scholar 

  114. Martin, A. M. et al. Accumulation of mitochondrial DNA mutations in human immunodeficiency virus-infected patients treated with nucleoside-analogue reverse-transcriptase inhibitors. Am. J. Hum. Genet. 72, 549–560 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Carrozzo, R. et al. Mutation analysis in 16 patients with mtDNA depletion. Hum. Mutat. 21, 453–454 (2003).

    CAS  PubMed  Google Scholar 

  116. Wang, H. et al. Zidovudine and dideoxynucleosides deplete wild-type mitochondrial DNA levels and increase deleted mitochondrial DNA levels in cultured Kearns-Sayre syndrome fibroblasts. Biochim. Biophys. Acta 1316, 51–59 (1996).

    PubMed  Google Scholar 

  117. Mishmar, D. et al. Natural selection shaped regional mtDNA variation in humans. Proc. Natl Acad. Sci. USA 100, 171–176 (2003).

    CAS  PubMed  Google Scholar 

  118. Ropp, P. A. & Copeland, W. C. Cloning and characterization of the human mitochondrial DNA polymerase, DNA polymerase γ. Genomics 36, 449–458 (1996).

    CAS  PubMed  Google Scholar 

  119. Van Goethem, G., Dermaut, B., Lofgren, A., Martin, J. J. & Van Broeckhoven, C. Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nature Genet. 28, 211–212 (2001).

    CAS  PubMed  Google Scholar 

  120. Lamantea, E. et al. Mutations of mitochondrial DNA polymerase γA are a frequent cause of autosomal dominant or recessive progressive external ophthalmoplegia. Ann. Neurol. 52, 211–219 (2002).

    CAS  PubMed  Google Scholar 

  121. Carr, A. et al. An objective case definition of lipodystrophy in HIV-infected adults: a case-control study. Lancet 361, 726–735 (2003).

    CAS  PubMed  Google Scholar 

  122. Cherry, C. L. et al. Exposure to dideoxynucleosides is reflected in lowered mitochondrial DNA in subcutaneous fat. J. Acquir. Immune Defic. Syndr. 30, 271–277 (2002).

    CAS  PubMed  Google Scholar 

  123. Shikuma, C. M. et al. Mitochondrial DNA decrease in subcutaneous adipose tissue of HIV- infected individuals with peripheral lipoatrophy. AIDS 15, 1801–1809 (2001).

    CAS  PubMed  Google Scholar 

  124. Zaera, M. G. et al. Mitochondrial involvement in antiretroviral therapy-related lipodystrophy. AIDS 15, 1643–1651 (2001).

    CAS  PubMed  Google Scholar 

  125. Cossarizza, A., Mussini, C. & Vigano, A. Mitochondria in the pathogenesis of lipodystrophy induced by anti-HIV antiretroviral drugs: actors or bystanders? Bioessays 23, 1070–1080 (2001).

    CAS  PubMed  Google Scholar 

  126. Cossarizza, A. Tests for mitochondrial function and DNA: potentials and pitfalls. Curr. Opin. Infect. Dis. 16, 5–10 (2003).

    CAS  PubMed  Google Scholar 

  127. Betteridge, D. J. What is oxidative stress? Metabolism 49, 3–8 (2000).

    CAS  PubMed  Google Scholar 

  128. Freeman, B. A. & Crapo, J. D. Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J. Biol. Chem. 256, 10986–10992 (1981).

    CAS  PubMed  Google Scholar 

  129. Boveris, A. & Chance, B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J. 134, 707–716 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Turrens, J. F., Freeman, B. A. & Crapo, J. D. Hyperoxia increases H2O2 release by lung mitochondria and microsomes. Arch. Biochem. Biophys. 217, 411–421 (1982).

    CAS  PubMed  Google Scholar 

  131. Nohl, H., Jordan, W. & Hegner, D. Mitochondrial formation of OH radicals by an ubisemiquinone-dependent reaction an alternative pathway to the iron-catalysed Haber-Weiss cycle. Hoppe-Seylers Z Physiol. Chem. 363, 599–607 (1982).

    CAS  PubMed  Google Scholar 

  132. Taylor, D. E., Ghio, A. J. & Piantadosi, C. A. Reactive oxygen species produced by liver mitochondria of rats in sepsis. Arch. Biochem. Biophys. 316, 70–76 (1995).

    CAS  PubMed  Google Scholar 

  133. Tangeras, A., Flatmark, T., Backstrom, D. & Ehrenberg, A. Mitochondrial iron not bound in heme and iron-sulfur centers. Estimation, compartmentation and redox state. Biochim. Biophys. Acta. 589, 162–175 (1980).

    CAS  PubMed  Google Scholar 

  134. Flint, D. H., Tuminello, J. F. & Emptage, M. H. The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J. Biol. Chem. 268, 22369–22376 (1993).

    CAS  PubMed  Google Scholar 

  135. Graziewicz, M. A., Day, B. J. & Copeland, W. C. The mitochondrial DNA polymerase as a target of oxidative damage. Nucleic Acids Res. 30, 2817–2824 (2002). The establishment of a cycle of injury to mtDNA via oxidative damage.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Buckley, B. J., Tanswell, A. K. & Freeman, B. A. Liposome-mediated augmentation of catalase in alveolar type II cells protects against H2O2 injury. J. Appl. Physiol. 63, 359–367 (1987).

    CAS  PubMed  Google Scholar 

  137. Asayama, K. et al. Immunolocalization of cellular glutathione peroxidase in adult rat lungs and quantitative analysis after postembedding immunogold labeling. Histochem. Cell Biol. 105, 383–389 (1996).

    CAS  PubMed  Google Scholar 

  138. Marinho, H. S., Antunes, F. & Pinto, R. E. Role of glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase in the reduction of lysophospholipid hydroperoxides. Free Radic. Biol. Med. 22, 871–883 (1997).

    CAS  PubMed  Google Scholar 

  139. Halliwell, B. & Gutteridge, J. M. The importance of free radicals and catalytic metal ions in human diseases. Mol. Aspects Med. 8, 89–193 (1985).

    CAS  PubMed  Google Scholar 

  140. de la Asuncion, J. G. et al. AZT treatment induces molecular and ultrastructural oxidative damage to muscle mitochondria. Prevention by antioxidant vitamins. J. Clin. Invest. 102, 4–9 (1998). Identification of oxidative injury from AZT in human and murine samples.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Gerschenson, M. et al. Chronic stavudine exposure induces hepatic mitochondrial toxicity in adult Erythrocebus patas monkeys. J. Hum. Virol. 4, 335–342 (2001).

    CAS  PubMed  Google Scholar 

  142. Valenti, D., Atlante, A., Barile, M. & Passarella, S. Inhibition of phosphate transport in rat heart mitochondria by 3′-azido-3′-deoxythymidine due to stimulation of superoxide anion mitochondrial production. Biochem. Pharmacol. 64, 201–206 (2002).

    CAS  PubMed  Google Scholar 

  143. Choi, J. et al. Molecular mechanism of decreased glutathione content in human immunodeficiency virus type 1 Tat-transgenic mice. J. Biol. Chem. 275, 3693–3698 (2000).

    CAS  PubMed  Google Scholar 

  144. Flores, S. C. et al. Tat protein of human immunodeficiency virus type 1 represses expression of manganese superoxide dismutase in HeLa cells. Proc. Natl Acad. Sci. USA 90, 7632–7636 (1993).

    CAS  PubMed  Google Scholar 

  145. Prakash, O. et al. The human immunodeficiency virus type 1 Tat protein potentiates zidovudine-induced cellular toxicity in transgenic mice. Arch. Biochem. Biophys. 343, 173–180 (1997).

    CAS  PubMed  Google Scholar 

  146. Raidel, S. M. et al. Targeted myocardial transgenic expression of HIV Tat causes cardiomyopathy and mitochondrial damage. Am. J. Physiol. Heart Circ. Physiol. 282, H1672–H1678 (2002).

    CAS  PubMed  Google Scholar 

  147. Kukielka, E., Dicker, E. & Cederbaum, A. I. Increased production of reactive oxygen species by rat liver mitochondria after chronic ethanol treatment. Arch. Biochem. Biophys. 309, 377–386 (1994).

    CAS  PubMed  Google Scholar 

  148. Fernandez-Checa, J. C. et al. GSH transport in mitochondria: defense against TNF-induced oxidative stress and alcohol-induced defect. Am. J. Physiol. 273, G7–G17 (1997).

    CAS  PubMed  Google Scholar 

  149. Okuda, M. et al. Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology 122, 366–375 (2002).

    CAS  PubMed  Google Scholar 

  150. Waris, G., Huh, K. W. & Siddiqui, A. Mitochondrially associated hepatitis B virus X protein constitutively activates transcription factors STAT-3 and NF-κB via oxidative stress. Mol. Cell. Biol. 21, 7721–7730 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Pociot, F., Lorenzen, T. & Nerup, J. A manganese superoxide dismutase (SOD2) gene polymorphism in insulin-dependent diabetes mellitus. Dis. Markers 11, 267–274 (1993).

    CAS  PubMed  Google Scholar 

  152. Van Landeghem, G. F., Tabatabaie, P., Kucinskas, V., Saha, N. & Beckman, G. Ethnic variation in the mitochondrial targeting sequence polymorphism of MnSOD. Hum. Hered. 49, 190–193 (1999).

    CAS  PubMed  Google Scholar 

  153. Luft, R. The development of mitochondrial medicine. Proc. Natl Acad. Sci. USA 91, 8731–8738 (1994).

    CAS  PubMed  Google Scholar 

  154. Ponamarev, M. V., Longley, M. J., Nguyen, D., Kunkel, T. A. & Copeland, W. C. Active site mutation in DNA polymerase γ associated with progressive external ophthalmoplegia causes error-prone DNA synthesis. J. Biol. Chem. 277, 15225–15228 (2002).

    CAS  PubMed  Google Scholar 

  155. Zeviani, M. The expanding spectrum of nuclear gene mutations in mitochondrial disorders. Semin. Cell Dev. Biol. 12, 407–416 (2001).

    CAS  PubMed  Google Scholar 

  156. Doublie, S., Tabor, S., Long, A. M., Richardson, C. C. & Ellenberger, T. Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution. Nature 391, 251–258 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by DHHS NIH R01 HL59798, HL63666, HL72707, and AA13551 to WL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Lewis.

Related links

Related links

DATABASES

LocusLink

DNA pol-α

DNA pol-δ

DNA pol-ε

DNA pol-γ

HIV-1 reverse transcriptase

TK1

TK2

Online Mendelian Inheritance in Man

Alper's syndrome

congestive heart failure

mtDNA depletion syndromes

PEO

Glossary

MITOCHONDRIA

Mitochondria generate cellular energy in the form of ATP by the process of oxidative phosphorylation. Mammalian mitochondrial DNA contains 13 genes that code for proteins, all of which are essential for oxidative phosphorylation.

ADP/ATP TRANSLOCATOR

The protein that transports ADP and ATP across the mitochondrial membrane.

OXIDATIVE PHOSPHORYLATION

The production of ATP from ADP using the electrochemical gradient established by the mitochondrial electron transport chain. The proteins involved in oxidative phosphorylation are located within the mitochondrial inner membrane, and include the ADP/ATP translocator, the electron-transport-chain complexes I, II, III and IV and ATP synthase.

S-PHASE

The phase of the eukaryotic cell cycle in which DNA is synthesized.

MITOCHONDRIAL SALVAGE PATHWAY

The enzymatic pathway available to maintain the pool of intramitochondrial nucleosides.

FIDELITY OF REPLICATION

The accuracy with which DNA polymerase copies DNA.

KEARNS-SAYRE SYNDROME

A combination of progressive external opthalmoplegia, cardiac conduction defects and progressive hearing loss, usually due to large mtDNA deletions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, W., Day, B. & Copeland, W. Mitochondrial toxicity of nrti antiviral drugs: an integrated cellular perspective. Nat Rev Drug Discov 2, 812–822 (2003). https://doi.org/10.1038/nrd1201

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1201

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing