Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tumour-initiating cells: challenges and opportunities for anticancer drug discovery

Key Points

  • The experimental demonstration of tumour-initiating cells (popularly known as cancer stem cells) in several human tumours in recent years supports tumour hierarchy as a fundamental concept in tumour biology.

  • Many patients with cancer, particularly those with solid tumours, either do not respond to existing cancer therapies or relapse quickly after initial remission. Key possible reasons for this failure include the inherent drug resistance of tumour-initiating cells, the inefficiency of the treatment and/or the genetic instability of cancer cells.

  • The cancer stem cell hypothesis provides a rationale for several therapeutic strategies beyond traditional antiproliferative agents. Potential approaches to kill tumour-initiating cells include inhibiting the survival mechanisms of these cells, blocking essential self-renewal signalling, or targeting tumour-initiating cell surface markers through antibody-based cytotoxic approaches.

  • Another strategy is to induce tumour cell differentiation, which can potentially be achieved by inhibiting developmental pathways or epigenetic programmes. As many tumour-initiating cells might be dependent on a niche for their identities, targeting the niche could be a strategy to indirectly inhibit or differentiate tumour-initiating cells.

  • The conventional approach for anticancer drug discovery is to target cell proliferation rather than self-renewal and/or differentiation, and so is often biased to select targets with homogeneous expression patterns and potent compounds that kill the cells of the bulk tumour. In addition, some traditional preclinical models may not reflect clinical complexities such as tumour hierarchy.

  • The large body of evidence in support of the cancer stem cell hypothesis and the related therapeutic strategies suggest that adjustments to anticancer drug discovery platforms are required to make them more clinically relevant, which are discussed in this article.

  • Although the paths for developing agents that target tumour-initiating cells are not straightforward, the cancer stem cell hypothesis provides an important framework for drug discovery and cancer treatment, with the potential to find novel antitumour activities, to have an impact on cancers with undifferentiated phenotypes and to yield long-term benefits for many patients with cancer.

Abstract

The hypothesis that cancer is driven by tumour-initiating cells (popularly known as cancer stem cells) has recently attracted a great deal of attention, owing to the promise of a novel cellular target for the treatment of haematopoietic and solid malignancies. Furthermore, it seems that tumour-initiating cells might be resistant to many conventional cancer therapies, which might explain the limitations of these agents in curing human malignancies. Although much work is still needed to identify and characterize tumour-initiating cells, efforts are now being directed towards identifying therapeutic strategies that could target these cells. This Review considers recent advances in the cancer stem cell field, focusing on the challenges and opportunities for anticancer drug discovery.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The cancer stem cell hypothesis and therapeutic strategies to target tumour-initiating cells.
Figure 2: Signalling pathways that regulate self renewal during normal stem cell development and cancer transformation.
Figure 3: Anticancer drug discovery platforms to target tumour-initiating cells.

Similar content being viewed by others

References

  1. Gilman, A. The initial clinical trial of nitrogen mustard. Am. J. Surg. 105, 574–578 (1963).

    Article  CAS  PubMed  Google Scholar 

  2. Kohn, K. W. Beyond DNA cross-linking: history and prospects of DNA-targeted cancer treatment — fifteenth Bruce F. Cain Memorial Award Lecture. Cancer Res. 56, 5533–5546 (1996).

    CAS  PubMed  Google Scholar 

  3. Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med. 3, 730–737 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Singh, S. K. et al. Identification of human brain tumour-initiating cells. Nature 432, 396–401 (2004). References 4 and 5 provide an early description of the purification of tumour-initiating cells that give rise to solid malignancies.

    Article  CAS  PubMed  Google Scholar 

  6. O'Brien, C. A., Pollett, A., Gallinger, S. & Dick, J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Ricci-Vitiani, L. et al. Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111–115 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Li, C. et al. Identification of pancreatic cancer stem cells. Cancer Res. 67, 1030–1037 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Schatton, T. et al. Identification of cells initiating human melanomas. Nature 451, 345–349 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang, Z. F. et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 13, 153–166 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Pardal, R., Clarke, M. F. & Morrison, S. J. Applying the principles of stem-cell biology to cancer. Nature Rev. Cancer 3, 895–902 (2003).

    Article  CAS  Google Scholar 

  13. Clarke, M. F. et al. Cancer stem cells — perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 66, 9339–9344 (2006b).

    Article  CAS  PubMed  Google Scholar 

  14. Kelly, P. N., Dakic, A., Adams, J. M., Nutt, S. L. & Strasser, A. Tumor growth need not be driven by rare cancer stem cells. Science 317, 337 (2007). This paper described the observation that three mouse models of leukaemia and lymphoma are maintained by a dominant tumour cell population. The authors posit that xenotransplantation may select for tumour cells that are capable of surviving in a foreign environment.

    Article  CAS  PubMed  Google Scholar 

  15. Quintana, E. et al. Efficient tumour formation by single human melanoma cells. Nature 456, 593–598 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kennedy, J. A., Barabe, F., Poeppl, A. G., Wang, J. C. & Dick, J. E. Comment on “Tumor growth need not be driven by rare cancer stem cells”. Science 318, 1722 (2007); author reply 318, 1722 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 (1994). The original report that showed the existence of stem cells in leukaemia.

    Article  CAS  PubMed  Google Scholar 

  18. Wang, J. C. et al. High level engraftment of NOD/SCID mice by primitive normal and leukemic hematopoietic cells from patients with chronic myeloid leukemia in chronic phase. Blood 91, 2406–2414 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Miyamoto, T., Weissman, I. L. & Akashi, K. AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc. Natl Acad. Sci. USA 97, 7521–7526 (2000). This study showed that purified populations of leukaemia stem cells contained the identical translocation as that found in their progeny, the blast cells, suggesting that the clonal progression to cancer could operate through the 'stem cell compartment'.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hill, R. P. Identifying cancer stem cells in solid tumors: case not proven. Cancer Res. 66, 1891–1895; discussion 1890 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Haug, J. S. et al. N-cadherin expression level distinguishes reserved versus primed states of hematopoietic stem cells. Cell Stem Cell 2, 367–379 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Chen, G. Y., Tang, J., Zheng, P. & Liu, Y. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science 323, 1722–1725 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zeppernick, F. et al. Stem cell marker CD133 affects clinical outcome in glioma patients. Clin. Cancer Res. 14, 123–129 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. So, C. W. et al. MLL-GAS7 transforms multipotent hematopoietic progenitors and induces mixed lineage leukemias in mice. Cancer Cell 3, 161–171 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Jaiswal, S. et al. Expression of BCR/ABL and BCL-2 in myeloid progenitors leads to myeloid leukemias. Proc. Natl Acad. Sci. USA 100, 10002–10007 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huntly, B. J. et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6, 587–596 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Liu, J. C., Deng, T., Lehal, R. S., Kim, J. & Zacksenhaus, E. Identification of tumorsphere- and tumor-initiating cells in HER2/Neu-induced mammary tumors. Cancer Res. 67, 8671–8681 (2007a).

  28. Cho, R. W. et al. Isolation and molecular characterization of cancer stem cells in MMTV-Wnt-1 murine breast tumors. Stem Cells 26, 364–371 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Read, T. A. et al. Identification of CD15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma. Cancer Cell 15, 135–147 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Zhu, L. et al. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457, 603–607 (2009). References 30 and 31 described lineage-tracing experiments using transgenic models that can bypass the limitations and experimental variability of the transplantation assay.

    Article  CAS  PubMed  Google Scholar 

  32. Ward, R. J. et al. Multipotent CD15+ cancer stem cells in patched-1-deficient mouse medulloblastoma. Cancer Res. 69, 4682–4690 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. The Cancer Genome Atlas Research network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  34. Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801–1806 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Warner, J. K., Wang, J. C., Hope, K. J., Jin, L. & Dick, J. E. Concepts of human leukemic development. Oncogene 23, 7164–7177 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Hess, A. R., Margaryan, N. V., Seftor, E. A. & Hendrix, M. J. Deciphering the signaling events that promote melanoma tumor cell vasculogenic mimicry and their link to embryonic vasculogenesis: role of the Eph receptors. Dev. Dyn. 236, 3283–3296 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Beachy, P. A., Karhadkar, S. S. & Berman, D. M. Tissue repair and stem cell renewal in carcinogenesis. Nature 432, 324–331 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Park, I. K. et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423, 302–305 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Lessard, J. & Sauvageau, G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423, 255–260 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Zhao, C. et al. Loss of β-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 12, 528–541 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Malanchi, I. et al. Cutaneous cancer stem cell maintenance is dependent on β-catenin signalling. Nature 452, 650–653 (2008). This paper described different requirements for Wnt signalling in cutaneous tumour-initiating cells and normal stem cells.

    Article  CAS  PubMed  Google Scholar 

  43. Peacock, C. D. et al. Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc. Natl Acad. Sci. USA 104, 4048–4053 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao, C. et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 458, 776–779 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature 434, 843–850 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Krivtsov, A. V. et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442, 818–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Akala, O. O. et al. Long-term haematopoietic reconstitution by Trp53−/− p16Ink4a−/−p19Arf−/− multipotent progenitors. Nature 453, 228–232 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Wu, M. et al. Imaging hematopoietic precursor division in real time. Cell Stem Cell 1, 541–554 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Guan, Y., Gerhard, B. & Hogge, D. E. Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML). Blood 101, 3142–3149 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Holyoake, T., Jiang, X., Eaves, C. & Eaves, A. Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood 94, 2056–2064 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Yang, Z. J. et al. Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. Cancer Cell 14, 135–145 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. He, X. C. et al. PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nature Genet. 39, 189–198 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Ashkenazi, R., Gentry, S. N. & Jackson, T. L. Pathways to tumorigenesis — modeling mutation acquisition in stem cells and their progeny. Neoplasia 10, 1170–1182 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Brabletz, T., Jung, A., Spaderna, S., Hlubek, F. & Kirchner, T. Opinion: migrating cancer stem cells — an integrated concept of malignant tumour progression. Nature Rev. Cancer 5, 744–749 (2005).

    Article  CAS  Google Scholar 

  55. Balic, M. et al. Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin. Cancer Res. 12, 5615–5621 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Hermann, P. C. et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1, 313–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Thiery, J. P. Epithelial–mesenchymal transitions in tumour progression. Nature Rev. Cancer 2, 442–454 (2002).

    Article  CAS  Google Scholar 

  58. Eger, A. et al. β-Catenin and TGFβ signalling cooperate to maintain a mesenchymal phenotype after FosER-induced epithelial to mesenchymal transition. Oncogene 23, 2672–2680 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Timmerman, L. A. et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 18, 99–115 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yu, F. et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131, 1109–1123 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Mani, S. A. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Moore, K. A. & Lemischka, I. R. Stem cells and their niches. Science 311, 1880–1885 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836–841 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Calvi, L. M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Li, L. & Neaves, W. B. Normal stem cells and cancer stem cells: the niche matters. Cancer Res. 66, 4553–4557 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Bissell, M. J. & Labarge, M. A. Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell 7, 17–23 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Walkley, C. R. et al. A microenvironment-induced myeloproliferative syndrome caused by RARγ deficiency. Cell 129, 1097–1110 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sipkins, D. A. et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435, 969–973 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Calabrese, C. et al. A perivascular niche for brain tumor stem cells. Cancer Cell 11, 69–82 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Hambardzumyan, D. et al. PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev. 22, 436–448 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bao, S. et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 66, 7843–7848 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Clarke, M. F. & Becker, M. W. Stem cells: the real culprits in cancer? Sci. Am. 295, 52–59 (2006).

    Article  PubMed  Google Scholar 

  73. Singh, S. K., Clarke, I. D., Hide, T. & Dirks, P. B. Cancer stem cells in nervous system tumors. Oncogene 23, 7267–7273 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Al-Hajj, M., Becker, M. W., Wicha, M., Weissman, I. & Clarke, M. F. Therapeutic implications of cancer stem cells. Curr. Opin. Genet. Dev. 14, 43–47 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. van Rhenen, A. et al. High stem cell frequency in acute myeloid leukemia at diagnosis predicts high minimal residual disease and poor survival. Clin. Cancer Res. 11, 6520–6527 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Shipitsin, M. et al. Molecular definition of breast tumor heterogeneity. Cancer Cell 11, 259–273 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Li, X. et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J. Natl Cancer Inst. 100, 672–679 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Gottesman, M. M. Mechanisms of cancer drug resistance. Annu. Rev. Med. 53, 615–627 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Zhou, S. et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature Med. 7, 1028–1034 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Ito, K. et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431, 997–1002 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Diehn, M. et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458, 780–783 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Potten, C. S., Wilson, J. W. & Booth, C. Regulation and significance of apoptosis in the stem cells of the gastrointestinal epithelium. Stem Cells 15, 82–93 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Era, T. Bcr-Abl is a “molecular switch” for the decision for growth and differentiation in hematopoietic stem cells. Int. J. Hematol. 76, 35–43 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Bedi, A. et al. BCR-ABL gene rearrangement and expression of primitive hematopoietic progenitors in chronic myeloid leukemia. Blood 81, 2898–2902 (1993).

    Article  CAS  PubMed  Google Scholar 

  86. Graham, S. M. et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 99, 319–325 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Hughes, T. P. et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N. Engl. J. Med. 349, 1423–1432 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Bhatia, R. et al. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood 101, 4701–4707 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Hamilton, A. et al. BCR-ABL activity and its response to drugs can be determined in CD34+ CML stem cells by CrkL phosphorylation status using flow cytometry. Leukemia 20, 1035–1039 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Mullighan, C. G. et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453, 110–114 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Huff, C. A., Matsui, W., Smith, B. D. & Jones, R. J. The paradox of response and survival in cancer therapeutics. Blood 107, 431–434 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wicha, M. S., Liu, S. & Dontu, G. Cancer stem cells: an old idea — a paradigm shift. Cancer Res. 66, 1883–1890; discussion 1895–1986 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Korkaya, H., Paulson, A., Iovino, F. & Wicha, M. S. HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 27, 6120–6130 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Magnifico, A. et al. Tumor-initiating cells of HER2-positive carcinoma cell lines express the highest oncoprotein levels and are sensitive to trastuzumab. Clin. Cancer Res. 15, 2010–2021 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Nahta, R., Yu, D., Hung., M. C., Hortobagyi, G. N. & Esteva, F. J. Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nature Clin. Pract. Oncol. 3, 269–280 (2006).

    Article  CAS  Google Scholar 

  96. Jordan, C. T. Cancer stem cells: controversial or just misunderstood? Cell Stem Cell 4, 203–205 (2009). An excellent review discussing the issues and misconceptions in the cancer stem cell field.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hogan, B. L. et al. Branching morphogenesis of the lung: new models for a classical problem. Cold Spring Harb. Symp. Quant. Biol. 62, 249–256 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. Bitgood, M. J. & McMahon, A. P. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev. Biol. 172, 126–138 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Kawano, Y. & Kypta, R. Secreted antagonists of the Wnt signalling pathway. J. Cell Sci. 116, 2627–2634 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Suzuki, H. et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nature Genet. 36, 417–422 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Lepourcelet, M. et al. Small-molecule antagonists of the oncogenic Tcf/β-catenin protein complex. Cancer Cell 5, 91–102 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Emami, K. H. et al. A small molecule inhibitor of β-catenin/CREB-binding protein transcription [corrected]. Proc. Natl Acad. Sci. USA 101, 12682–12687 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. You, L. et al. An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth. Cancer Res. 64, 5385–5389 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. You, L. et al. Inhibition of Wnt-2-mediated signaling induces programmed cell death in non-small-cell lung cancer cells. Oncogene 23, 6170–6174 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Sanchez, P. et al. Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc. Natl Acad. Sci. USA 101, 12561–12566 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Romer, J. T. et al. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1+/− p53−/− mice. Cancer Cell 6, 229–240 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Berman, D. M. et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 425, 846–851 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Thayer, S. P. et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425, 851–856 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Watkins, D. N. et al. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 422, 313–317 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Athar, M. et al. Inhibition of smoothened signaling prevents ultraviolet B-induced basal cell carcinomas through regulation of Fas expression and apoptosis. Cancer Res. 64, 7545–7552 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Lee, J. et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9, 391–403 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Sasai, K. et al. Shh pathway activity is down-regulated in cultured medulloblastoma cells: implications for preclinical studies. Cancer Res. 66, 4215–4222 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Fan, L. et al. Hedgehog signaling promotes prostate xenograft tumor growth. Endocrinology 145, 3961–3970 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Yauch, R. L. et al. A paracrine requirement for hedgehog signalling in cancer. Nature 455, 406–410 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Weijzen, S. et al. Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nature Med. 8, 979–986 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Bocchetta, M., Miele, L., Pass, H. I. & Carbone, M. Notch-1 induction, a novel activity of SV40 required for growth of SV40-transformed human mesothelial cells. Oncogene 22, 81–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. van Es, J. H. et al. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435, 959–963 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Fan, X. et al. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res. 66, 7445–7452 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Ridgway, J. et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444, 1083–1087 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Noguera-Troise, I. et al. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444, 1032–1037 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Li, K. et al. Modulation of Notch signaling by antibodies specific for the extracellular negative regulatory region of NOTCH3. J. Biol. Chem. 283, 8046–8054 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Guzman, M. L. et al. Preferential induction of apoptosis for primary human leukemic stem cells. Proc. Natl Acad. Sci. USA 99, 16220–16225 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Diamandis, P. et al. Chemical genetics reveals a complex functional ground state of neural stem cells. Nature Chem. Biol. 3, 268–273 (2007).

    Article  CAS  Google Scholar 

  125. Ayyanan, A. et al. Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism. Proc. Natl Acad. Sci. USA 103, 3799–3804 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Palomero, T. et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nature Med. 13, 1203–1210 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Piccirillo, S. G. et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444, 761–765 (2006). References 118 and 127 describe differentiation as a strategy to combat tumour-initiating cells.

    Article  CAS  PubMed  Google Scholar 

  128. Cozzio, A. et al. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev. 17, 3029–3035 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sparmann, A. & van Lohuizen, M. Polycomb silencers control cell fate, development and cancer. Nature Rev. Cancer 6, 846–856 (2006).

    Article  CAS  Google Scholar 

  130. Lee, J. et al. Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell 13, 69–80 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bracken, A. P. et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 21, 525–530 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Gonzalez, M. E. et al. Downregulation of EZH2 decreases growth of estrogen receptor-negative invasive breast carcinoma and requires BRCA1. Oncogene 28, 843–853 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Todaro, M. et al. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1, 389–402 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Zhou, J. et al. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc. Natl Acad. Sci. USA 104, 16158–16163 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Viale, A. et al. Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature 457, 51–56 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Zhou, B. B. & Elledge, S. J. The DNA damage response: putting checkpoints in perspective. Nature 408, 433–439 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Evan, G. I. The ever-lengthening arm of p53. Cancer Cell 14, 108–110 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Godar, S. et al. Growth-inhibitory and tumor- suppressive functions of p53 depend on its repression of CD44 expression. Cell 134, 62–73 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Blair, A., Hogge, D. E., Ailles, L. E., Lansdorp, P. M. & Sutherland, H. J. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood 89, 3104–3112 (1997).

    Article  CAS  PubMed  Google Scholar 

  140. Blair, A. & Sutherland, H. J. Primitive acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo lack surface expression of c-kit (CD117). Exp. Hematol. 28, 660–671 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Jordan, C. T. et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 14, 1777–1784 (2000).

    Article  CAS  PubMed  Google Scholar 

  142. Adams, G. P. & Weiner, L. M. Monoclonal antibody therapy of cancer. Nature Biotech. 23, 1147–1157 (2005).

    Article  CAS  Google Scholar 

  143. Kawasaki, B. T., Mistree, T., Hurt, E. M., Kalathur, M. & Farrar, W. L. Co-expression of the toleragenic glycoprotein, CD200, with markers for cancer stem cells. Biochem. Biophys. Res. Commun. 364, 778–782 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wu, A. M. & Senter, P. D. Arming antibodies: prospects and challenges for immunoconjugates. Nature Biotech. 23, 1137–1146 (2005).

    Article  CAS  Google Scholar 

  145. Burges, A. et al. Effective relief of malignant ascites in patients with advanced ovarian cancer by a trifunctional anti-EpCAM x anti-CD3 antibody: a phase I/II study. Clin. Cancer Res. 13, 3899–3905 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Szakacs, G., Paterson, J. K., Ludwig, J. A., Booth-Genthe, C. & Gottesman, M. M. Targeting multidrug resistance in cancer. Nature Rev. Drug Discov. 5, 219–234 (2006).

    Article  CAS  Google Scholar 

  147. Ishikawa, F. et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nature Biotech. 25, 1315–1321 (2007).

    Article  CAS  Google Scholar 

  148. Jin, L., Hope, K. J., Zhai, Q., Smadja-Joffe, F. & Dick, J. E. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nature Med. 12, 1167–1174 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Kiel, M. J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Palmer, T. D., Willhoite, A. R. & Gage, F. H. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 425, 479–494 (2000).

    Article  CAS  PubMed  Google Scholar 

  151. Capela, A. & Temple, S. LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron 35, 865–875 (2002).

    Article  PubMed  Google Scholar 

  152. Louissaint, A. Jr, Rao, S., Leventhal, C. & Goldman, S. A. Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron 34, 945–960 (2002).

    Article  CAS  PubMed  Google Scholar 

  153. Yilmaz, O. H. et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441, 475–482 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Zhang, J. et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441, 518–522 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Molckovsky, A. & Siu, L. L. First-in-class, first-in-human phase I results of targeted agents: highlights of the 2008 American Society of Clinical Oncology meeting. J. Hematol. Oncol. 1, 20 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Cullion, K. et al. Targeting the Notch1 and mTOR pathways in a mouse T-ALL model. Blood 24, 6172–6181 (2009).

    Article  CAS  Google Scholar 

  157. Mimeault, M. et al. Cytotoxic effects induced by a combination of cyclopamine and gefitinib, the selective hedgehog and epidermal growth factor receptor signaling inhibitors, in prostate cancer cells. Int. J. Cancer 118, 1022–1031 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. Riobo, N. A., Lu, K., Ai, X., Haines, G. M. & Emerson, C. P. Jr. Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog signaling. Proc. Natl Acad. Sci. USA 103, 4505–4510 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ito, K. et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature 453, 1072–1078 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Bleau, A. M. et al. PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4, 226–235 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Jimeno, A. et al. A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development. Mol. Cancer Ther. 8, 310–314 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kondo, T., Setoguchi, T. & Taga, T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc. Natl Acad. Sci. USA 101, 781–786 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Fillmore, C. M. & Kuperwasser, C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res. 10, R25 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Charafe-Jauffret, E. et al. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res. 69, 1302–1313 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hirschmann-Jax, C. et al. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc. Natl Acad. Sci. USA 101, 14228–14233 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Patrawala, L. et al. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2 cancer cells are similarly tumorigenic. Cancer Res. 65, 6207–6219 (2005).

    Article  CAS  PubMed  Google Scholar 

  168. Ponti, D. et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 65, 5506–5511 (2005).

    Article  CAS  PubMed  Google Scholar 

  169. Pollard, S. M. et al. Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4, 568–580 (2009).

    Article  CAS  PubMed  Google Scholar 

  170. Ginestier, C. et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1, 555–567 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Singh, S. K. et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828 (2003).

    CAS  PubMed  Google Scholar 

  172. Reynolds, B. A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710 (1992).

    Article  CAS  PubMed  Google Scholar 

  173. Ince, T. A. et al. Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell 12, 160–170 (2007).

    Article  CAS  PubMed  Google Scholar 

  174. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  175. Underhill, G. H. & Bhatia, S. N. High-throughput analysis of signals regulating stem cell fate and function. Curr. Opin. Chem. Biol. 11, 357–366 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Bhardwaj, G. et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nature Immunol. 2, 172–180 (2001).

    Article  CAS  Google Scholar 

  177. Androutsellis-Theotokis, A. et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442, 823–826 (2006).

    Article  CAS  PubMed  Google Scholar 

  178. Ezashi, T., Das, P. & Roberts, R. M. Low O2 tensions and the prevention of differentiation of hES cells. Proc. Natl Acad. Sci. USA 102, 4783–4788 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Olivotto, M. & Dello Sbarba, P. Environmental restrictions within tumor ecosystems select for a convergent, hypoxia-resistant phenotype of cancer stem cells. Cell Cycle 7, 176–187 (2008).

    Article  CAS  PubMed  Google Scholar 

  180. Chen, S. et al. Self-renewal of embryonic stem cells by a small molecule. Proc. Natl Acad. Sci. USA 103, 17266–17271 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Desbordes, S. C. et al. High-throughput screening assay for the identification of compounds regulating self-renewal and differentiation in human embryonic stem cells. Cell Stem Cell 2, 602–612 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Falk, A., Karlsson, T. E., Kurdija, S., Frisen, J. & Zupicich, J. High-throughput identification of genes promoting neuron formation and lineage choice in mouse embryonic stem cells. Stem Cells 25, 1539–1545 (2007).

    Article  CAS  PubMed  Google Scholar 

  183. Saxe, J. P. et al. A phenotypic small-molecule screen identifies an orphan ligand-receptor pair that regulates neural stem cell differentiation. Chem. Biol. 14, 1019–1030 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Bushway, P. J. & Mercola, M. High-throughput screening for modulators of stem cell differentiation. Methods Enzymol. 414, 300–316 (2006).

    Article  CAS  PubMed  Google Scholar 

  185. Ungrin, M. D., Joshi, C., Nica, A., Bauwens, C. & Zandstra, P. W. Reproducible, ultra high-throughput formation of multicellular organization from single cell suspension-derived human embryonic stem cell aggregates. PLoS ONE 3, e1565 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Kim, K. H. et al. Three-dimensional tissue cytometer based on high-speed multiphoton microscopy. Cytometry A 71, 991–1002 (2007).

    Article  PubMed  Google Scholar 

  187. Mazurier, F., Gan, O. I., McKenzie, J. L., Doedens, M. & Dick, J. E. Lentivector-mediated clonal tracking reveals intrinsic heterogeneity in the human hematopoietic stem cell compartment and culture-induced stem cell impairment. Blood 103, 545–552 (2004).

    Article  CAS  PubMed  Google Scholar 

  188. Gupta, P. B. et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138, 645–659 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Kern, S. E. & Shibata, D. The fuzzy math of solid tumor stem cells: a perspective. Cancer Res. 67, 8985–8988 (2007).

    Article  CAS  PubMed  Google Scholar 

  190. Galli, R. et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 64, 7011–7021 (2004).

    Article  CAS  PubMed  Google Scholar 

  191. McKenzie, J. L., Gan, O. I., Doedens, M. & Dick, J. E. Human short-term repopulating stem cells are efficiently detected following intrafemoral transplantation into NOD/SCID recipients depleted of CD122+ cells. Blood 106, 1259–1261 (2005).

    Article  CAS  PubMed  Google Scholar 

  192. Shimosato, Y. et al. Transplantation of human tumors in nude mice. J. Natl Cancer Inst. 56, 1251–1260 (1976).

    Article  CAS  PubMed  Google Scholar 

  193. Anderson, S. A. et al. Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood 105, 420–425 (2005).

    Article  CAS  PubMed  Google Scholar 

  194. Vlashi, E. et al. In vivo imaging, tracking, and targeting of cancer stem cells. J. Natl Cancer Inst. 101, 350–359 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Xie, Y. et al. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 457, 97–101 (2009).

    Article  CAS  PubMed  Google Scholar 

  196. Abraham, B. K. et al. Prevalence of CD44+/CD24−/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin. Cancer Res. 11, 1154–1159 (2005).

    CAS  PubMed  Google Scholar 

  197. Liu, R. et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N. Engl. J. Med. 356, 217–226 (2007).

    Article  CAS  PubMed  Google Scholar 

  198. Nagrath, S. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Weinstein, I. B. Cancer. Addiction to oncogenes — the Achilles heal of cancer. Science 297, 63–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  200. Tabs, S. & Avci, O. Induction of the differentiation and apoptosis of tumor cells in vivo with efficiency and selectivity. Eur. J. Dermatol. 14, 96–102 (2004).

    PubMed  Google Scholar 

  201. Marangoni, E. et al. CD44 targeting reduces tumour growth and prevents post-chemotherapy relapse of human breast cancers xenografts. Br. J. Cancer 100, 918–922 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    Article  CAS  PubMed  Google Scholar 

  203. Beier, D. et al. CD133+ and CD133 glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res. 67, 4010–4015 (2007).

    Article  CAS  PubMed  Google Scholar 

  204. Barabe, F., Kennedy, J. A., Hope, K. J. & Dick, J. E. Modeling the initiation and progression of human acute leukemia in mice. Science 316, 600–604 (2007).

    Article  CAS  PubMed  Google Scholar 

  205. Sausville, E. A. & Burger, A. M. Contributions of human tumor xenografts to anticancer drug development. Cancer Res. 66, 3351–3354, (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Dick, L. Li, K. Arndt, R. Abraham, J. Rosen and F. Behbod for discussions and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin-Bing S. Zhou or Justin C. Grindley.

Ethics declarations

Competing interests

B.-B.S.Z., M.D., K.G.G. and J.C.G. are employees of Wyeth Pharmaceuticals. H.Z. is an employee of Abbott Laboratories. P.B.D declares no conflict of interest.

Related links

Related links

FURTHER INFORMATION

Genentech website

Infinity Pharmaceuticals website

Micromet website

Trion Pharma website

Glossary

Self-renewal

The ability of a cell to reproduce itself without losing developmental potential, characterized by cell divisions in which differentiation is blocked in at least one daughter cell.

Anoikis

A form of programmed cell death that is induced in anchorage-dependent cells when they become detached from the surrounding extracellular matrix.

Niche

Cells and/or extracellular matrix components in specific anatomical locations that regulate the participation of the normal stem cells in tissue generation, maintenance and repair. In some cases, the behaviour of tumour-initiating cells might also be influenced by interactions with surrounding cells and matrix.

Asymmetrical division

A form of cellular replication in which a cell renews itself and generates a more differentiated progeny.

Symmetrical division

A form of cellular replication in which a single cell gives rise to two identical cells.

Epithelial–mesenchymal transition

A cellular program in normal development and in cancer whereby cells of an epithelial origin acquire the properties of mesenchymal cells, typically characterized by loss of cell adhesion, repression of E-cadherin expression, and increased cell motility.

Oncomir

MicroRNA known to be involved in cancer and tumorigenesis.

Orthotopic model

A system in which tumour cells are implanted at the site of the organ of origin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, BB., Zhang, H., Damelin, M. et al. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 8, 806–823 (2009). https://doi.org/10.1038/nrd2137

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2137

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing