Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structural diversity of G protein-coupled receptors and significance for drug discovery

An Erratum to this article was published on 25 April 2008

Key Points

  • The elucidation of the primary structure of the first identified G-protein-coupled receptor (GPCR) rhodopsin 25 years ago was a key step in the development of the concept of a GPCR superfamily. Now, data from our recent mining of the human genome suggests that humans have at least 799 full-length GPCRs, making them the largest superfamily of membrane-bound receptors.

  • Members of the GPCR superfamily are diverse in their primary structure, and classification of these receptors has been made on the basis of phylogenetic criteria. This showed that most of the human GPCRs can be grouped into five main families: Glutamate, Rhodopsin, Adhesion, Frizzled/Taste2 and Secretin.

  • The Rhodopsin family is the largest family of GPCRs, containing 670 full-length human receptor proteins. They can be divided into four groups and bind to a wide range of ligands. Their diversity is attributed to differences within the transmembrane regions. So far, the only crystal structures available for the transmembrane regions of GPCRs are the bovine rhodopsin receptor and the human β2-adrenoceptor (ADRB2). These two structures have aided the understanding of how GPCRs are activated and in homology modelling.

  • The Adhesion family is the second largest and can be subdivided into eight subgroups. They are rich in functional domains and most have long and diverse N termini. The N termini may contain domains that are also found in other proteins (for example, lectin, cadherin), and the number and structure of these domains has been shown to have an important role in the specificity of the receptor–ligand binding interactions.

  • The Secretin family is small and share between 21–67% sequence identity. They all have an extracellular hormone-binding domain and bind peptide hormones.

  • The Glutamate family consists of 22 human proteins, and most members bind to their respective endogenous ligand within the N-terminal region.

  • The frizzled receptors bind the family of Wnt glycoproteins and are implicated in cancer development. The Taste2 receptors can be divided into five subgroups and have great sequence diversity. This diversity may explain how a limited number of receptors can distinguish between the thousands of bitter compounds that humans can detect.

  • GPCRs are one of most common targets of therapeutic drugs so far, with drugs available that target at least 46 receptors in three of the families: Rhodopsin, Secretin and Glutamate. It is proposed that 323 GPCRs could also represent drug targets, and 150 are still orphans.

Abstract

G protein-coupled receptors (GPCRs) are the largest family of membrane-bound receptors and also the targets of many drugs. Understanding of the functional significance of the wide structural diversity of GPCRs has been aided considerably in recent years by the sequencing of the human genome and by structural studies, and has important implications for the future therapeutic potential of targeting this receptor family. This article aims to provide a comprehensive overview of the five main human GPCR families — Rhodopsin, Secretin, Adhesion, Glutamate and Frizzled/Taste2 — with a focus on gene repertoire, general ligand preference, common and unique structural features, and the potential for future drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conserved features and structural motifs within the Rhodopsin receptor family/class A.
Figure 2: Conserved features and structural motifs within the Secretin receptor family/class B.
Figure 3: Conserved features and structural motifs within the Adhesion receptor family.
Figure 4: Conserved features and structural motifs within the Glutamate receptor family/class C.
Figure 5: Conserved features and structural motifs within the frizzled and smoothened receptors.
Figure 6: Conserved features and structural motifs within the bitter taste 2 receptors (T2Rs).

Similar content being viewed by others

References

  1. Nathans, J. & Hogness, D. S. Isolation, sequence analysis, and intron–exon arrangement of the gene encoding bovine rhodopsin. Cell 34, 807–814 (1983).

    CAS  PubMed  Google Scholar 

  2. Hargrave, P. A. et al. The structure of bovine rhodopsin. Biophys. Struct. Mech. 9, 235–244 (1983).

    CAS  PubMed  Google Scholar 

  3. Hargrave, P. A. et al. Rhodopsin's protein and carbohydrate structure: selected aspects. Vision Res. 24, 1487–1499 (1984).

    CAS  PubMed  Google Scholar 

  4. Lefkowitz, R. J. Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol. Sci. 25, 413–422 (2004).

    CAS  PubMed  Google Scholar 

  5. Dixon, R. A. et al. Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature 321, 75–79 (1986).

    CAS  PubMed  Google Scholar 

  6. Kobilka, B. K. et al. Functional activity and regulation of human β2-adrenergic receptors expressed in Xenopus oocytes. J. Biol. Chem. 262, 15796–15802 (1987).

    CAS  PubMed  Google Scholar 

  7. Felder, C. C. et al. Anandamide, an endogenous cannabimimetic eicosanoid, binds to the cloned human cannabinoid receptor and stimulates receptor-mediated signal transduction. Proc. Natl Acad. Sci. USA 90, 7656–7660 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Masu, Y. et al. cDNA cloning of bovine substance-K receptor through oocyte expression system. Nature 329, 836–838 (1987).

    CAS  PubMed  Google Scholar 

  9. Parmentier, M. et al. Molecular cloning of the thyrotropin receptor. Science 246, 1620–1622 (1989).

    CAS  PubMed  Google Scholar 

  10. Attwood, T. K. & Findlay, J. B. Design of a discriminating fingerprint for G-protein-coupled receptors. Protein Eng. 6, 167–176 (1993).

    CAS  PubMed  Google Scholar 

  11. Attwood, T. K. & Findlay, J. B. Fingerprinting G-protein-coupled receptors. Protein Eng. 7, 195–203 (1994).

    CAS  PubMed  Google Scholar 

  12. Kolakowski, L. F. Jr. GCRDb: a G-protein-coupled receptor database. Receptors Channels 2, 1–7 (1994).

    CAS  PubMed  Google Scholar 

  13. Foord, S. M. et al. International Union of Pharmacology. XLVI. G protein-coupled receptor list. Pharmacol. Rev. 57, 279–288 (2005). The NC-IUPHAR committee is central for improving the nomenclature within the GPCR field. This paper provides the reader with an updated list of the human GPCRs, their ligands and appropriate abbreviations.

    CAS  PubMed  Google Scholar 

  14. Bockaert, J. & Pin, J. P. Molecular tinkering of G protein-coupled receptors: an evolutionary success. Embo J. 18, 1723–1729 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    CAS  PubMed  Google Scholar 

  16. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    CAS  PubMed  Google Scholar 

  17. Vassilatis, D. K. et al. The G protein-coupled receptor repertoires of human and mouse. Proc. Natl Acad. Sci. USA 100, 4903–4908 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fredriksson, R., Lagerstrom, M. C., Lundin, L. G. & Schioth, H. B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256–1272 (2003). This articles introduces the concept of the five main families of GPCRs: Glutamate, Rhodopsin, Adhesion, Frizzled/Taste2 and Secretin . The paper subdivides the Rhodopsin family into four groups and divides the former class B into two different families based on sequence comparison (phylogeny) and also introduces the bitter taste2 receptors into the nomenclature system.

    CAS  PubMed  Google Scholar 

  19. Adler, E. et al. A novel family of mammalian taste receptors. Cell 100, 693–702 (2000).

    CAS  PubMed  Google Scholar 

  20. Matsunami, H., Montmayeur, J. P. & Buck, L. B. A family of candidate taste receptors in human and mouse. Nature 404, 601–604 (2000).

    CAS  PubMed  Google Scholar 

  21. Fredriksson, R. & Schioth, H. B. The repertoire of G-protein-coupled receptors in fully sequenced genomes. Mol. Pharmacol. 67, 1414–1425 (2005).

    CAS  PubMed  Google Scholar 

  22. Gloriam, D. E., Fredriksson, R. & Schioth, H. B. The G protein-coupled receptor subset of the rat genome. BMC Genomics 8, 338–405 (2007). This paper provides the currently most up-to-date list of human, mouse and rat repertoires of GPCRs.

    PubMed  PubMed Central  Google Scholar 

  23. Lagerstrom, M. C. et al. The G protein-coupled receptor subset of the chicken genome. PLoS Comput. Biol. 2, e54 (2006).

    PubMed  PubMed Central  Google Scholar 

  24. Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745 (2000). This report of the first crystallized GPCR, the bovine rhodopsin receptor, has been vital for understanding the three-dimensional structure of a GPCR. The information has been used extensively for homology modelling and the article has so far been cited over 2,000 times.

    Article  CAS  PubMed  Google Scholar 

  25. Schwartz, T. W. Locating ligand-binding sites in 7TM receptors by protein engineering. Curr. Opin. Biotechnol. 5, 434–444 (1994).

    CAS  PubMed  Google Scholar 

  26. Frimurer, T. M. et al. A physicogenetic method to assign ligand-binding relationships between 7TM receptors. Bioorg. Med. Chem. Lett. 15, 3707–3712 (2005).

    CAS  PubMed  Google Scholar 

  27. Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein coupled receptor. Science 318, 1258–1265 (2007). Seven years after the crystallization of rhodopsin, the next GPCR structure was reported. The high-resolution structure of the β 2 -adrenergic receptor provides the field with the first coordinates of a GPCR interacting with diffusible ligands.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rasmussen, S. G. et al. Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450, 383–387 (2007).

    CAS  PubMed  Google Scholar 

  29. Vu, T. K., Hung., D. T., Wheaton, V. I. & Coughlin, S. R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64, 1057–1068 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Xu, W. F. et al. Cloning and characterization of human protease-activated receptor 4. Proc. Natl Acad. Sci. USA 95, 6642–6646 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Nystedt, S., Emilsson, K., Larsson, A. K., Strombeck, B. & Sundelin, J. Molecular cloning and functional expression of the gene encoding the human proteinase-activated receptor 2. Eur. J. Biochem. 232, 84–89 (1995).

    CAS  PubMed  Google Scholar 

  32. Ishihara, H. et al. Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386, 502–506 (1997).

    CAS  PubMed  Google Scholar 

  33. Oikonomopoulou, K. et al. Proteinase-mediated cell signalling: targeting proteinase-activated receptors (PARs) by kallikreins and more. Biol. Chem. 387, 677–685 (2006).

    CAS  PubMed  Google Scholar 

  34. Hsu, S. Y. et al. The three subfamilies of leucine-rich repeat-containing G protein-coupled receptors (LGR): identification of LGR6 and LGR7 and the signaling mechanism for LGR7. Mol. Endocrinol. 14, 1257–1271 (2000).

    CAS  PubMed  Google Scholar 

  35. Hsu, S. Y. et al. Activation of orphan receptors by the hormone relaxin. Science 295, 671–674 (2002).

    CAS  PubMed  Google Scholar 

  36. Fan, Q. R. & Hendrickson, W. A. Structure of human follicle-stimulating hormone in complex with its receptor. Nature 433, 269–277 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tyndall, J. D. & Sandilya, R. GPCR agonists and antagonists in the clinic. Med. Chem. 1, 405–421 (2005). This review summarizes clinically available drugs that target GPCRs.

    CAS  PubMed  Google Scholar 

  38. Surgand, J. S., Rodrigo, J., Kellenberger, E. & Rognan, D. A chemogenomic analysis of the transmembrane binding cavity of human G-protein-coupled receptors. Proteins 62, 509–538 (2006).

    CAS  PubMed  Google Scholar 

  39. Jacoby, E., Bouhelal, R., Gerspacher, M. & Seuwen, K. The 7 TM G-protein-coupled receptor target family. ChemMedChem 1, 761–782 (2006).

    PubMed  Google Scholar 

  40. Strader, C. D., Sigal, I. S. & Dixon, R. A. Structural basis of β-adrenergic receptor function. Faseb J. 3, 1825–1832 (1989).

    CAS  PubMed  Google Scholar 

  41. Liapakis, G. et al. The forgotten serine. A critical role for Ser-2035.42 in ligand binding to and activation of the β2-adrenergic receptor. J. Biol. Chem. 275, 37779–37788 (2000).

    CAS  PubMed  Google Scholar 

  42. Swaminath, G. et al. Sequential binding of agonists to the β2 adrenoceptor. Kinetic evidence for intermediate conformational states. J. Biol. Chem. 279, 686–691 (2004).

    CAS  PubMed  Google Scholar 

  43. Van Gaal, L. F., Rissanen, A. M., Scheen, A. J., Ziegler, O. & Rossner, S. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 365, 1389–1397 (2005).

    CAS  PubMed  Google Scholar 

  44. Onuffer, J. J. & Horuk, R. Chemokines, chemokine receptors and small-molecule antagonists: recent developments. Trends Pharmacol. Sci. 23, 459–467 (2002).

    CAS  PubMed  Google Scholar 

  45. Civelli, O., Saito, Y., Wang, Z., Nothacker, H. P. & Reinscheid, R. K. Orphan GPCRs and their ligands. Pharmacol. Ther. 110, 525–532 (2006).

    CAS  PubMed  Google Scholar 

  46. Overton, H. A. et al. Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell. Metab. 3, 167–175 (2006).

    CAS  PubMed  Google Scholar 

  47. Fredriksson, R., Hoglund, P. J., Gloriam, D. E., Lagerstrom, M. C. & Schioth, H. B. Seven evolutionarily conserved human rhodopsin G protein-coupled receptors lacking close relatives. FEBS Lett. 554, 381–388 (2003).

    CAS  PubMed  Google Scholar 

  48. Hirasawa, A. et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nature Med. 11, 90–94 (2005).

    CAS  PubMed  Google Scholar 

  49. Thomas, P., Pang, Y., Filardo, E. J. & Dong, J. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology 146, 624–632 (2005).

    CAS  PubMed  Google Scholar 

  50. Wang, J. et al. Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J. Biol. Chem. 281, 22021–22028 (2006).

    CAS  PubMed  Google Scholar 

  51. Tabata, K., Baba, K., Shiraishi, A., Ito, M. & Fujita, N. The orphan GPCR GPR87 was deorphanized and shown to be a lysophosphatidic acid receptor. Biochem. Biophys. Res. Commun. 363, 861–866 (2007).

    CAS  PubMed  Google Scholar 

  52. Bjarnadottir, T. K. et al. Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics 88, 263–273 (2006).

    CAS  PubMed  Google Scholar 

  53. Levoye, A. et al. The orphan GPR50 receptor specifically inhibits MT1 melatonin receptor function through heterodimerization. Embo J. 25, 3012–3023 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Galvez, T. et al. Allosteric interactions between GB1 and GB2 subunits are required for optimal GABAB receptor function. Embo J. 20, 2152–2159 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Jones, K. A. et al. GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2. Nature 396, 674–679 (1998).

    CAS  PubMed  Google Scholar 

  56. Robbins, M. J. et al. GABAB2 is essential for G-protein coupling of the GABAB receptor heterodimer. J. Neurosci. 21, 8043–8052 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hoon, M. A. et al. Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell 96, 541–551 (1999).

    CAS  PubMed  Google Scholar 

  58. Li, X. et al. Human receptors for sweet and umami taste. Proc. Natl Acad. Sci. USA 99, 4692–4696 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Nelson, G. et al. An amino-acid taste receptor. Nature 416, 199–202 (2002).

    CAS  PubMed  Google Scholar 

  60. Nelson, G. et al. Mammalian sweet taste receptors. Cell 106, 381–390 (2001).

    CAS  PubMed  Google Scholar 

  61. Sainz, E., Korley, J. N., Battey, J. F. & Sullivan, S. L. Identification of a novel member of the T1R family of putative taste receptors. J. Neurochem. 77, 896–903 (2001).

    CAS  PubMed  Google Scholar 

  62. Libert, F. et al. Selective amplification and cloning of four new members of the G protein-coupled receptor family. Science 244, 569–572 (1989).

    CAS  PubMed  Google Scholar 

  63. Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 (1991).

    CAS  PubMed  Google Scholar 

  64. Parmentier, M. et al. Expression of members of the putative olfactory receptor gene family in mammalian germ cells. Nature 355, 453–455 (1992).

    CAS  PubMed  Google Scholar 

  65. Mombaerts, P. The human repertoire of odorant receptor genes and pseudogenes. Annu. Rev. Genomics Hum. Genet. 2, 493–510 (2001).

    CAS  PubMed  Google Scholar 

  66. Malnic, B., Godfrey, P. A. & Buck, L. B. The human olfactory receptor gene family. Proc. Natl Acad. Sci. USA 101, 2584–2589 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Niimura, Y. & Nei, M. Evolution of olfactory receptor genes in the human genome. Proc. Natl Acad. Sci. USA 100, 12235–12240 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Zozulya, S., Echeverri, F. & Nguyen, T. The human olfactory receptor repertoire. Genome Biol. 2, Research0018.1–0018.12 (2001).

  69. Glusman, G. et al. The olfactory receptor gene superfamily: data mining, classification, and nomenclature. Mamm. Genome 11, 1016–1023 (2000).

    CAS  PubMed  Google Scholar 

  70. Rovati, G. E., Capra, V. & Neubig, R. R. The highly conserved DRY motif of class A G protein-coupled receptors: beyond the ground state. Mol. Pharmacol. 71, 959–964 (2007).

    CAS  PubMed  Google Scholar 

  71. Man, O., Gilad, Y. & Lancet, D. Prediction of the odorant binding site of olfactory receptor proteins by human–mouse comparisons. Protein Sci. 13, 240–254 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Floriano, W. B., Vaidehi, N., Goddard, W. A. 3rd, Singer, M. S. & Shepherd, G. M. Molecular mechanisms underlying differential odor responses of a mouse olfactory receptor. Proc. Natl Acad. Sci. USA 97, 10712–10716 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Gaillard, I., Rouquier, S., Chavanieu, A., Mollard, P. & Giorgi, D. Amino-acid changes acquired during evolution by olfactory receptor 912–93 modify the specificity of odorant recognition. Hum. Mol. Genet. 13, 771–780 (2004).

    CAS  PubMed  Google Scholar 

  74. Singer, M. S. Analysis of the molecular basis for octanal interactions in the expressed rat 17 olfactory receptor. Chem. Senses 25, 155–165 (2000).

    CAS  PubMed  Google Scholar 

  75. Malnic, B., Hirono, J., Sato, T. & Buck, L. B. Combinatorial receptor codes for odors. Cell 96, 713–723 (1999). A seminal paper describing the concept of combinatorial receptor codes for different odorants, which enables humans to distinguish a vast number of odorants from each other.

    CAS  PubMed  Google Scholar 

  76. Wetzel, C. H. et al. Specificity and sensitivity of a human olfactory receptor functionally expressed in human embryonic kidney 293 cells and Xenopus laevis oocytes. J. Neurosci. 19, 7426–7433 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Spehr, M. et al. Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299, 2054–2058 (2003).

    CAS  PubMed  Google Scholar 

  78. Shirokova, E. et al. Identification of specific ligands for orphan olfactory receptors. G protein-dependent agonism and antagonism of odorants. J. Biol. Chem. 280, 11807–11815 (2005).

    CAS  PubMed  Google Scholar 

  79. Krautwurst, D., Yau, K. W. & Reed, R. R. Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell 95, 917–926 (1998).

    CAS  PubMed  Google Scholar 

  80. Matarazzo, V. et al. Functional characterization of two human olfactory receptors expressed in the baculovirus sf9 insect cell system. Chem. Senses 30, 195–207 (2005).

    CAS  PubMed  Google Scholar 

  81. Young, J. M. & Trask, B. J. The sense of smell: genomics of vertebrate odorant receptors. Hum. Mol. Genet. 11, 1153–1160 (2002).

    CAS  PubMed  Google Scholar 

  82. Harmar, A. J. Family-B G-protein-coupled receptors. Genome Biol. 2, Reviews3013.1–3113.10 (2001).

  83. Ishihara, T. et al. Molecular cloning and expression of a cDNA encoding the secretin receptor. Embo J. 10, 1635–1641 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hofmann, B. A. et al. Functional and protein chemical characterization of the N-terminal domain of the rat corticotropin-releasing factor receptor 1. Protein Sci. 10, 2050–2062 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Grauschopf, U. et al. The N-terminal fragment of human parathyroid hormone receptor 1 constitutes a hormone binding domain and reveals a distinct disulfide pattern. Biochemistry 39, 8878–8887 (2000).

    CAS  PubMed  Google Scholar 

  86. Bazarsuren, A. et al. In vitro folding, functional characterization, and disulfide pattern of the extracellular domain of human GLP-1 receptor. Biophys. Chem. 96, 305–318 (2002).

    CAS  PubMed  Google Scholar 

  87. Grace, C. R. et al. NMR structure and peptide hormone binding site of the first extracellular domain of a type B1 G protein-coupled receptor. Proc. Natl Acad. Sci. USA 101, 12836–12841 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Godfrey, P. et al. GHRH receptor of little mice contains a missense mutation in the extracellular domain that disrupts receptor function. Nature Genet. 4, 227–232 (1993).

    CAS  PubMed  Google Scholar 

  89. DeAlmeida, V. I. & Mayo, K. E. Identification of binding domains of the growth hormone-releasing hormone receptor by analysis of mutant and chimeric receptor proteins. Mol. Endocrinol. 12, 750–765 (1998).

    CAS  PubMed  Google Scholar 

  90. Assil, I. Q., Qi, L. J., Arai, M., Shomali, M. & Abou-Samra, A. B. Juxtamembrane region of the amino terminus of the corticotropin releasing factor receptor type 1 is important for ligand interaction. Biochemistry 40, 1187–1195 (2001).

    CAS  PubMed  Google Scholar 

  91. Vilardaga, J. P., Lin, I. & Nissenson, R. A. Analysis of parathyroid hormone (PTH)/secretin receptor chimeras differentiates the role of functional domains in the pth/ pth-related peptide (PTHrP) receptor on hormone binding and receptor activation. Mol. Endocrinol. 15, 1186–1199 (2001).

    CAS  PubMed  Google Scholar 

  92. Unson, C. G. et al. Roles of specific extracellular domains of the glucagon receptor in ligand binding and signaling. Biochemistry 41, 11795–11803 (2002).

    CAS  PubMed  Google Scholar 

  93. Pham, V., Wade, J. D., Purdue, B. W. & Sexton, P. M. Spatial proximity between a photolabile residue in position 19 of salmon calcitonin and the amino terminus of the human calcitonin receptor. J. Biol. Chem. 279, 6720–6729 (2004).

    CAS  PubMed  Google Scholar 

  94. Dong, M. et al. Spatial approximation between two residues in the mid-region of secretin and the amino terminus of its receptor. Incorporation of seven sets of such constraints into a three-dimensional model of the agonist-bound secretin receptor. J. Biol. Chem. 278, 48300–48312 (2003).

    CAS  PubMed  Google Scholar 

  95. Dong, M., Pinon, D. I., Cox, R. F. & Miller, L. J. Importance of the amino terminus in secretin family G protein-coupled receptors. Intrinsic photoaffinity labeling establishes initial docking constraints for the calcitonin receptor. J. Biol. Chem. 279, 1167–1175 (2004).

    CAS  PubMed  Google Scholar 

  96. Dong, M., Li, Z., Pinon, D. I., Lybrand, T. P. & Miller, L. J. Spatial approximation between the amino terminus of a peptide agonist and the top of the sixth transmembrane segment of the secretin receptor. J. Biol. Chem. 279, 2894–2903 (2004).

    CAS  PubMed  Google Scholar 

  97. Nauck, M. A. & Meier, J. J. Glucagon-like peptide 1 and its derivatives in the treatment of diabetes. Regul. Pept. 128, 135–148 (2005).

    CAS  PubMed  Google Scholar 

  98. Stacey, M., Lin, H. H., Gordon, S. & McKnight, A. J. LNB-TM7, a group of seven-transmembrane proteins related to family-B G-protein-coupled receptors. Trends Biochem. Sci. 25, 284–289 (2000).

    CAS  PubMed  Google Scholar 

  99. Bjarnadottir, T. K. et al. The human and mouse repertoire of the adhesion family of G-protein-coupled receptors. Genomics 84, 23–33 (2004). This paper highlighted the diversity of functional domains within the Adhesion family of GPCRs.

    CAS  PubMed  Google Scholar 

  100. Baud, V. et al. EMR1, an unusual member in the family of hormone receptors with seven transmembrane segments. Genomics 26, 334–344 (1995).

    CAS  PubMed  Google Scholar 

  101. Krasnoperov, V. G. et al. α-Latrotoxin stimulates exocytosis by the interaction with a neuronal G-protein-coupled receptor. Neuron 18, 925–937 (1997).

    CAS  PubMed  Google Scholar 

  102. Krasnoperov, V. et al. Post-translational proteolytic processing of the calcium-independent receptor of α-latrotoxin (CIRL), a natural chimera of the cell adhesion protein and the G protein-coupled receptor. Role of the G protein-coupled receptor proteolysis site (GPS) motif. J. Biol. Chem. 277, 46518–46526 (2002).

    CAS  PubMed  Google Scholar 

  103. Lin, H. H. et al. Autocatalytic cleavage of the EMR2 receptor occurs at a conserved G protein-coupled receptor proteolytic site motif. J. Biol. Chem. 279, 31823–31832 (2004).

    CAS  PubMed  Google Scholar 

  104. Nechiporuk, T., Urness, L. D. & Keating, M. T. ETL, a novel seven-transmembrane receptor that is developmentally regulated in the heart. ETL is a member of the secretin family and belongs to the epidermal growth factor-seven-transmembrane subfamily. J. Biol. Chem. 276, 4150–4157 (2001).

    CAS  PubMed  Google Scholar 

  105. Lin, H. H. et al. Molecular analysis of the epidermal growth factor-like short consensus repeat domain-mediated protein–protein interactions: dissection of the CD97–CD55 complex. J. Biol. Chem. 276, 24160–24169 (2001).

    CAS  PubMed  Google Scholar 

  106. Lelianova, V. G. et al. α-Latrotoxin receptor, latrophilin, is a novel member of the secretin family of G protein-coupled receptors. J. Biol. Chem. 272, 21504–21508 (1997).

    CAS  PubMed  Google Scholar 

  107. Little, K. D., Hemler, M. E. & Stipp, C. S. Dynamic regulation of a GPCR–tetraspanin–G protein complex on intact cells: central role of CD81 in facilitating GPR56–Gαq/11 association. Mol. Biol. Cell 15, 2375–2387 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Stacey, M. et al. The epidermal growth factor-like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans. Blood 102, 2916–2924 (2003).

    CAS  PubMed  Google Scholar 

  109. Stacey, M., Lin, H. H., Hilyard, K. L., Gordon, S. & McKnight, A. J. Human epidermal growth factor (EGF) module-containing mucin-like hormone receptor 3 is a new member of the EGF-TM7 family that recognizes a ligand on human macrophages and activated neutrophils. J. Biol. Chem. 276, 18863–18870 (2001).

    CAS  PubMed  Google Scholar 

  110. Stacey, M. et al. EMR4, a novel epidermal growth factor (EGF)-TM7 molecule up-regulated in activated mouse macrophages, binds to a putative cellular ligand on B lymphoma cell line A20. J. Biol. Chem. 277, 29283–29293 (2002).

    CAS  PubMed  Google Scholar 

  111. Hamann, J., Vogel, B., van Schijndel, G. M. & van Lier, R. A. The seven-span transmembrane receptor CD97 has a cellular ligand (CD55, DAF). J. Exp. Med. 184, 1185–1189 (1996). This paper is the first to show that GPCRs can bind to ligands attached to the extracellular matrix of other cells, thereby further widening our concepts about the ligand preferences of GPCRs.

    CAS  PubMed  Google Scholar 

  112. Hamann, J. et al. Characterization of the CD55 (DAF)-binding site on the seven-span transmembrane receptor CD97. Eur. J. Immunol. 28, 1701–1707 (1998).

    CAS  PubMed  Google Scholar 

  113. Xu, L., Begum, S., Hearn, J. D. & Hynes, R. O. GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis. Proc. Natl Acad. Sci. USA 103, 9023–9028 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Liu, M. et al. GPR56, a novel secretin-like human G-protein-coupled receptor gene. Genomics 55, 296–305 (1999).

    CAS  PubMed  Google Scholar 

  115. Sugita, S., Ichtchenko, K., Khvotchev, M. & Sudhof, T. C. α-Latrotoxin receptor CIRL/latrophilin 1 (CL1) defines an unusual family of ubiquitous G-protein-linked receptors. G-protein coupling not required for triggering exocytosis. J. Biol. Chem. 273, 32715–32724 (1998).

    CAS  PubMed  Google Scholar 

  116. Krasnoperov, V., Bittner, M. A., Holz, R. W., Chepurny, O. & Petrenko, A. G. Structural requirements for α-latrotoxin binding and α-latrotoxin-stimulated secretion. A study with calcium-independent receptor of α-latrotoxin (CIRL) deletion mutants. J. Biol. Chem. 274, 3590–3596 (1999).

    CAS  PubMed  Google Scholar 

  117. Hadjantonakis, A. K. et al. Celsr1, a neural-specific gene encoding an unusual seven-pass transmembrane receptor, maps to mouse chromosome 15 and human chromosome 22qter. Genomics 45, 97–104 (1997).

    CAS  PubMed  Google Scholar 

  118. Nakayama, M. et al. Identification of high-molecular-weight proteins with multiple EGF-like motifs by motif-trap screening. Genomics 51, 27–34 (1998).

    CAS  PubMed  Google Scholar 

  119. Usui, T. et al. Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 98, 585–595 (1999).

    CAS  PubMed  Google Scholar 

  120. Curtin, J. A. et al. Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Curr. Biol. 13, 1129–1133 (2003).

    CAS  PubMed  Google Scholar 

  121. Nishimori, H. et al. A novel brain-specific p53-target gene, BAI1, containing thrombospondin type 1 repeats inhibits experimental angiogenesis. Oncogene 15, 2145–2150 (1997).

    CAS  PubMed  Google Scholar 

  122. Osterhoff, C., Ivell, R. & Kirchhoff, C. Cloning of a human epididymis-specific mRNA, HE6, encoding a novel member of the seven transmembrane-domain receptor superfamily. DNA Cell Biol. 16, 379–389 (1997).

    CAS  PubMed  Google Scholar 

  123. Shiratsuchi, T., Nishimori, H., Ichise, H., Nakamura, Y. & Tokino, T. Cloning and characterization of BAI2 and BAI3, novel genes homologous to brain-specific angiogenesis inhibitor 1 (BAI1). Cytogenet. Cell Genet. 79, 103–108 (1997).

    CAS  PubMed  Google Scholar 

  124. Nikkila, H. et al. Sequence similarities between a novel putative G protein-coupled receptor and Na+/Ca2+ exchangers define a cation binding domain. Mol. Endocrinol. 14, 1351–1364 (2000).

    CAS  PubMed  Google Scholar 

  125. Fredriksson, R., Lagerstrom, M. C., Hoglund, P. J. & Schioth, H. B. Novel human G protein-coupled receptors with long N-terminals containing GPS domains and Ser/Thr-rich regions. FEBS Lett. 531, 407–414 (2002).

    CAS  PubMed  Google Scholar 

  126. Fredriksson, R., Gloriam, D. E., Hoglund, P. J., Lagerstrom, M. C. & Schioth, H. B. There exist at least 30 human G-protein-coupled receptors with long Ser/Thr-rich N-termini. Biochem. Biophys. Res. Commun. 301, 725–734 (2003).

    CAS  PubMed  Google Scholar 

  127. Lopezjimenez, N. D. et al. Two novel genes, Gpr113, which encodes a family 2 G-protein-coupled receptor, and Trcg1, are selectively expressed in taste receptor cells. Genomics 85, 472–482 (2005).

    CAS  PubMed  Google Scholar 

  128. Abe, J., Suzuki, H., Notoya, M., Yamamoto, T. & Hirose, S. Ig-hepta, a novel member of the G protein-coupled hepta-helical receptor (GPCR) family that has immunoglobulin-like repeats in a long N-terminal extracellular domain and defines a new subfamily of GPCRs. J. Biol. Chem. 274, 19957–19964 (1999).

    CAS  PubMed  Google Scholar 

  129. Abe, J., Fukuzawa, T. & Hirose, S. Cleavage of Ig-Hepta at a “SEA” module and at a conserved G protein-coupled receptor proteolytic site. J. Biol. Chem. 277, 23391–23398 (2002).

    CAS  PubMed  Google Scholar 

  130. Wreschner, D. H. et al. Generation of ligand-receptor alliances by “SEA” module-mediated cleavage of membrane-associated mucin proteins. Protein Sci. 11, 698–706 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. McMillan, D. R., Kayes-Wandover, K. M., Richardson, J. A. & White, P. C. Very large G protein-coupled receptor-1, the largest known cell surface protein, is highly expressed in the developing central nervous system. J. Biol. Chem. 277, 785–792 (2002).

    CAS  PubMed  Google Scholar 

  132. McMillan, D. R. & White, P. C. Loss of the transmembrane and cytoplasmic domains of the very large G-protein-coupled receptor-1 (VLGR1 or Mass1) causes audiogenic seizures in mice. Mol. Cell Neurosci. 26, 322–329 (2004).

    CAS  PubMed  Google Scholar 

  133. Bjarnadottir, T. K. et al. Identification of novel splice variants of adhesion G protein-coupled receptors. Gene 387, 38–48 (2006).

    PubMed  Google Scholar 

  134. Lagerstrom, M. C. et al. The evolutionary history and tissue mapping of GPR123: specific CNS expression pattern predominantly in thalamic nuclei and regions containing large pyramidal cells. J. Neurochem. 100, 1129–1142 (2007).

    PubMed  Google Scholar 

  135. Bjarnadottir, T. K., Fredriksson, R. & Schioth, H. B. The gene repertoire and the common evolutionary history of glutamate, pheromone (V2R), taste(1) and other related G protein-coupled receptors. Gene 362, 70–84 (2005).

    CAS  PubMed  Google Scholar 

  136. Kunishima, N. et al. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407, 971–977 (2000). This paper provides the first high-resolution structure of the extracellular ligand binding domain of a Glutamate family member, GRM1, from rat.

    CAS  PubMed  Google Scholar 

  137. O'Hara, P. J. et al. The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron 11, 41–52 (1993).

    CAS  PubMed  Google Scholar 

  138. Parmentier, M. L. et al. Conservation of the ligand recognition site of metabotropic glutamate receptors during evolution. Neuropharmacology 39, 1119–1131 (2000).

    CAS  PubMed  Google Scholar 

  139. Muto, T., Tsuchiya, D., Morikawa, K. & Jingami, H. Structures of the extracellular regions of the group II/III metabotropic glutamate receptors. Proc. Natl Acad. Sci. USA 104, 3759–3764 (2007). This paper highlights the importance of the conserved linker region between the extracellular ligand binding domain and the transmembrane signalling region in Glutamate family receptors.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Brauner-Osborne, H., Jensen, A. A., Sheppard, P. O., O'Hara, P. & Krogsgaard-Larsen, P. The agonist-binding domain of the calcium-sensing receptor is located at the amino-terminal domain. J. Biol. Chem. 274, 18382–18386 (1999).

    CAS  PubMed  Google Scholar 

  141. Brown, E. M. et al. Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature 366, 575–580 (1993).

    CAS  PubMed  Google Scholar 

  142. Kuang, D. et al. Molecular similarities in the ligand binding pockets of an odorant receptor and the metabotropic glutamate receptors. J. Biol. Chem. 278, 42551–42559 (2003).

    CAS  PubMed  Google Scholar 

  143. Wellendorph, P. & Brauner-Osborne, H. Molecular cloning, expression, and sequence analysis of GPRC6A, a novel family C G-protein-coupled receptor. Gene 335, 37–46 (2004).

    CAS  PubMed  Google Scholar 

  144. Silve, C. et al. Delineating a Ca2+ binding pocket within the venus flytrap module of the human calcium-sensing receptor. J. Biol. Chem. 280, 37917–37923 (2005).

    CAS  PubMed  Google Scholar 

  145. Hermans, E. & Challiss, R. A. Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors. Biochem. J. 359, 465–484 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Nakanishi, S. Molecular diversity of glutamate receptors and implications for brain function. Science 258, 597–603 (1992).

    CAS  PubMed  Google Scholar 

  147. Kubo, Y., Miyashita, T. & Murata, Y. Structural basis for a Ca2+-sensing function of the metabotropic glutamate receptors. Science 279, 1722–1725 (1998).

    CAS  PubMed  Google Scholar 

  148. Conigrave, A. D., Quinn, S. J. & Brown, E. M. L-Amino acid sensing by the extracellular Ca2+-sensing receptor. Proc. Natl Acad. Sci. USA 97, 4814–4819 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Xu, H. et al. Different functional roles of T1R subunits in the heteromeric taste receptors. Proc. Natl Acad. Sci. USA 101, 14258–14263 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Rondard, P. et al. Coupling of agonist binding to effector domain activation in metabotropic glutamate-like receptors. J. Biol. Chem. 281, 24653–24661 (2006).

    CAS  PubMed  Google Scholar 

  151. Yu, L. et al. NCD3G: a novel nine-cysteine domain in family 3 GPCRs. Trends Biochem. Sci. 29, 458–461 (2004).

    PubMed  Google Scholar 

  152. Hu, J., Hauache, O. & Spiegel, A. M. Human Ca2+ receptor cysteine-rich domain. Analysis of function of mutant and chimeric receptors. J. Biol. Chem. 275, 16382–16389 (2000).

    CAS  PubMed  Google Scholar 

  153. Tan, Y. M. et al. Autosomal dominant hypocalcemia: a novel activating mutation (E604K) in the cysteine-rich domain of the calcium-sensing receptor. J. Clin. Endocrinol. Metab. 88, 605–610 (2003).

    CAS  PubMed  Google Scholar 

  154. Jiang, P. et al. The cysteine-rich region of T1R3 determines responses to intensely sweet proteins. J. Biol. Chem. 279, 45068–45075 (2004).

    CAS  PubMed  Google Scholar 

  155. Kaupmann, K. et al. Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors. Nature 386, 239–246 (1997).

    CAS  PubMed  Google Scholar 

  156. Martin, S. C., Russek, S. J. & Farb, D. H. Human GABABR genomic structure: evidence for splice variants in GABABR1 but not GABABR2. Gene 278, 63–79 (2001).

    CAS  PubMed  Google Scholar 

  157. Galvez, T. et al. Mutagenesis and modeling of the GABAB receptor extracellular domain support a venus flytrap mechanism for ligand binding. J. Biol. Chem. 274, 13362–13369 (1999).

    CAS  PubMed  Google Scholar 

  158. Reid, K. B. & Day, A. J. Structure–function relationships of the complement components. Immunol. Today 10, 177–180 (1989).

    CAS  PubMed  Google Scholar 

  159. Ichinose, A., Bottenus, R. E. & Davie, E. W. Structure of transglutaminases. J. Biol. Chem. 265, 13411–13414 (1990).

    CAS  PubMed  Google Scholar 

  160. Liu, J. et al. Molecular determinants involved in the allosteric control of agonist affinity in the GABAB receptor by the GABAB2 subunit. J. Biol. Chem. 279, 15824–15830 (2004).

    CAS  Google Scholar 

  161. Kniazeff, J. et al. Locking the dimeric GABAB G-protein-coupled receptor in its active state. J. Neurosci. 24, 370–377 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Shoback, D. M. et al. The calcimimetic cinacalcet normalizes serum calcium in subjects with primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 88, 5644–5649 (2003).

    CAS  PubMed  Google Scholar 

  163. Malherbe, P. et al. Mutational analysis and molecular modeling of the binding pocket of the metabotropic glutamate 5 receptor negative modulator 2-methyl-6-(phenylethynyl)-pyridine. Mol. Pharmacol. 64, 823–832 (2003).

    CAS  PubMed  Google Scholar 

  164. Litschig, S. et al. CPCCOEt, a noncompetitive metabotropic glutamate receptor 1 antagonist, inhibits receptor signaling without affecting glutamate binding. Mol. Pharmacol. 55, 453–461 (1999).

    CAS  PubMed  Google Scholar 

  165. Gasparini, F., Kuhn, R. & Pin, J. P. Allosteric modulators of group I metabotropic glutamate receptors: novel subtype-selective ligands and therapeutic perspectives. Curr. Opin. Pharmacol. 2, 43–49 (2002).

    CAS  PubMed  Google Scholar 

  166. Petrel, C. et al. Positive and negative allosteric modulators of the Ca2+-sensing receptor interact within overlapping but not identical binding sites in the transmembrane domain. J. Biol. Chem. 279, 18990–18997 (2004).

    CAS  PubMed  Google Scholar 

  167. Petrel, C. et al. Modeling and mutagenesis of the binding site of Calhex 231, a novel negative allosteric modulator of the extracellular Ca2+-sensing receptor. J. Biol. Chem. 278, 49487–49494 (2003).

    CAS  PubMed  Google Scholar 

  168. Knoflach, F. et al. Positive allosteric modulators of metabotropic glutamate 1 receptor: characterization, mechanism of action, and binding site. Proc. Natl Acad. Sci. USA 98, 13402–13407 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Jiang, P. et al. Identification of the cyclamate interaction site within the transmembrane domain of the human sweet taste receptor subunit T1R3. J. Biol. Chem. 280, 34296–34305 (2005).

    CAS  PubMed  Google Scholar 

  170. Jiang, P. et al. Lactisole interacts with the transmembrane domains of human T1R3 to inhibit sweet taste. J. Biol. Chem. 280, 15238–15246 (2005).

    CAS  PubMed  Google Scholar 

  171. Binet, V. et al. The heptahelical domain of GABAB2 is activated directly by CGP7930, a positive allosteric modulator of the GABAB receptor. J. Biol. Chem. 279, 29085–29091 (2004).

    CAS  PubMed  Google Scholar 

  172. Chen, Y. et al. Interaction of novel positive allosteric modulators of metabotropic glutamate receptor 5 with the negative allosteric antagonist site is required for potentiation of receptor responses. Mol. Pharmacol. 71, 1389–1398 (2007).

    CAS  PubMed  Google Scholar 

  173. Wellendorph, P. et al. Deorphanization of GPRC6A: a promiscuous L-α-amino acid receptor with preference for basic amino acids. Mol. Pharmacol. 67, 589–597 (2005).

    CAS  PubMed  Google Scholar 

  174. Christiansen, B., Hansen, K. B., Wellendorph, P. & Brauner-Osborne, H. Pharmacological characterization of mouse GPRC6A, an L-α--amino-acid receptor modulated by divalent cations. Br. J. Pharmacol. 150, 798–807 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Calver, A. R. et al. Molecular cloning and characterisation of a novel GABAB-related G-protein coupled receptor. Brain Res. Mol. Brain Res. 110, 305–317 (2003).

    CAS  PubMed  Google Scholar 

  176. Cheng, Y. & Lotan, R. Molecular cloning and characterization of a novel retinoic acid-inducible gene that encodes a putative G protein-coupled receptor. J. Biol. Chem. 273, 35008–35015 (1998).

    CAS  PubMed  Google Scholar 

  177. Brauner-Osborne, H. et al. Cloning and characterization of a human orphan family C G-protein coupled receptor GPRC5D. Biochim. Biophys. Acta 1518, 237–248 (2001).

    CAS  PubMed  Google Scholar 

  178. Brauner-Osborne, H. & Krogsgaard-Larsen, P. Sequence and expression pattern of a novel human orphan G-protein-coupled receptor, GPRC5B, a family C receptor with a short amino-terminal domain. Genomics 65, 121–128 (2000).

    CAS  PubMed  Google Scholar 

  179. Robbins, M. J. et al. Molecular cloning and characterization of two novel retinoic acid-inducible orphan G-protein-coupled receptors (GPRC5B and GPRC5C). Genomics 67, 8–18 (2000).

    CAS  PubMed  Google Scholar 

  180. Ota, T. et al. Complete sequencing and characterization of 21,243 full-length human cDNAs. Nature Genet. 36, 40–45 (2004).

    PubMed  Google Scholar 

  181. Vinson, C. R., Conover, S. & Adler, P. N. A Drosophila tissue polarity locus encodes a protein containing seven potential transmembrane domains. Nature 338, 263–264 (1989).

    CAS  PubMed  Google Scholar 

  182. Wang, Y. et al. A large family of putative transmembrane receptors homologous to the product of the Drosophila tissue polarity gene frizzled. J. Biol. Chem. 271, 4468–4476 (1996).

    CAS  PubMed  Google Scholar 

  183. Wang, Y. K. et al. A novel human homologue of the Drosophila frizzled wnt receptor gene binds wingless protein and is in the Williams syndrome deletion at 7q11.23. Hum. Mol. Genet. 6, 465–472 (1997).

    CAS  PubMed  Google Scholar 

  184. Zhao, Z., Lee, C. C., Baldini, A. & Caskey, C. T. A human homologue of the Drosophila polarity gene frizzled has been identified and mapped to 17q21.1. Genomics 27, 370–373 (1995).

    CAS  PubMed  Google Scholar 

  185. Tokuhara, M., Hirai, M., Atomi, Y., Terada, M. & Katoh, M. Molecular cloning of human Frizzled-6. Biochem. Biophys. Res. Commun. 243, 622–627 (1998).

    CAS  PubMed  Google Scholar 

  186. Sala, C. F., Formenti, E., Terstappen, G. C. & Caricasole, A. Identification, gene structure, and expression of human frizzled-3 (FZD3). Biochem. Biophys. Res. Commun. 273, 27–34 (2000).

    CAS  PubMed  Google Scholar 

  187. Sagara, N., Toda, G., Hirai, M., Terada, M. & Katoh, M. Molecular cloning, differential expression, and chromosomal localization of human frizzled-1, frizzled-2, and frizzled-7. Biochem. Biophys. Res. Commun. 252, 117–122 (1998).

    CAS  PubMed  Google Scholar 

  188. Saitoh, T., Hirai, M. & Katoh, M. Molecular cloning and characterization of human Frizzled-8 gene on chromosome 10p11.2. Int. J. Oncol. 18, 991–996 (2001).

    CAS  PubMed  Google Scholar 

  189. Kirikoshi, H. et al. Molecular cloning and characterization of human Frizzled-4 on chromosome 11q14-q21. Biochem. Biophys. Res. Commun. 264, 955–961 (1999).

    CAS  PubMed  Google Scholar 

  190. Koike, J. et al. Molecular cloning of Frizzled-10, a novel member of the Frizzled gene family. Biochem. Biophys. Res. Commun. 262, 39–43 (1999).

    CAS  PubMed  Google Scholar 

  191. Bhanot, P. et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382, 225–230 (1996).

    CAS  PubMed  Google Scholar 

  192. Murone, M., Rosenthal, A. & de Sauvage, F. J. Sonic hedgehog signaling by the patched-smoothened receptor complex. Curr. Biol. 9, 76–84 (1999).

    CAS  PubMed  Google Scholar 

  193. Slusarski, D. C., Corces, V. G. & Moon, R. T. Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature 390, 410–413 (1997).

    CAS  PubMed  Google Scholar 

  194. Riobo, N. A., Saucy, B., Dilizio, C. & Manning, D. R. Activation of heterotrimeric G proteins by Smoothened. Proc. Natl Acad. Sci. USA 103, 12607–12612 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Barnes, M. R., Duckworth, D. M. & Beeley, L. J. Frizzled proteins constitute a novel family of G protein-coupled receptors, most closely related to the secretin family. Trends Pharmacol. Sci. 19, 399–400 (1998).

    CAS  PubMed  Google Scholar 

  196. Carron, C. et al. Frizzled receptor dimerization is sufficient to activate the Wnt/β-catenin pathway. J. Cell Sci. 116, 2541–2550 (2003).

    CAS  PubMed  Google Scholar 

  197. Dann, C. E. et al. Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains. Nature 412, 86–90 (2001). This paper provided the first high-resolution structure of the ligand binding region of a Frizzled family member.

    CAS  PubMed  Google Scholar 

  198. Chen, C. M., Strapps, W., Tomlinson, A. & Struhl, G. Evidence that the cysteine-rich domain of Drosophila Frizzled family receptors is dispensable for transducing Wingless. Proc. Natl Acad. Sci. USA 101, 15961–15966 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Xu, Q. et al. Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell 116, 883–895 (2004).

    CAS  PubMed  Google Scholar 

  200. Robitaille, J. et al. Mutant frizzled-4 disrupts retinal angiogenesis in familial exudative vitreoretinopathy. Nature Genet. 32, 326–330 (2002).

    CAS  PubMed  Google Scholar 

  201. Fritze, O. et al. Role of the conserved NPxxY(x)5, 6F motif in the rhodopsin ground state and during activation. Proc. Natl Acad. Sci. USA 100, 2290–2295 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Stone, D. M. et al. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 384, 129–134 (1996).

    CAS  PubMed  Google Scholar 

  203. Nakano, Y. et al. Functional domains and sub-cellular distribution of the Hedgehog transducing protein Smoothened in Drosophila. Mech. Dev. 121, 507–518 (2004).

    CAS  PubMed  Google Scholar 

  204. Chen, Y. & Struhl, G. In vivo evidence that Patched and Smoothened constitute distinct binding and transducing components of a Hedgehog receptor complex. Development 125, 4943–4948 (1998).

    CAS  PubMed  Google Scholar 

  205. Taipale, J. et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406, 1005–1009 (2000).

    CAS  PubMed  Google Scholar 

  206. Chen, J. K., Taipale, J., Young, K. E., Maiti, T. & Beachy, P. A. Small molecule modulation of Smoothened activity. Proc. Natl Acad. Sci. USA 99, 14071–14076 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Frank-Kamenetsky, M. et al. Small-molecule modulators of Hedgehog signaling: identification and characterization of Smoothened agonists and antagonists. J. Biol. 1, 10 (2002).

    PubMed  PubMed Central  Google Scholar 

  208. Nagayama, S. et al. Therapeutic potential of antibodies against FZD 10, a cell-surface protein, for synovial sarcomas. Oncogene 24, 6201–6212 (2005).

    CAS  PubMed  Google Scholar 

  209. Shi, P., Zhang, J., Yang, H. & Zhang, Y. P. Adaptive diversification of bitter taste receptor genes in mammalian evolution. Mol. Biol. Evol. 20, 805–814 (2003).

    CAS  PubMed  Google Scholar 

  210. Go, Y., Satta, Y., Takenaka, O. & Takahata, N. Lineage-specific loss of function of bitter taste receptor genes in humans and nonhuman primates. Genetics 170, 313–326 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Conte, C., Ebeling, M., Marcuz, A., Nef, P. & Andres-Barquin, P. J. Identification and characterization of human taste receptor genes belonging to the TAS2R family. Cytogenet. Genome Res. 98, 45–53 (2002).

    CAS  PubMed  Google Scholar 

  212. Bufe, B., Hofmann, T., Krautwurst, D., Raguse, J. D. & Meyerhof, W. The human TAS2R16 receptor mediates bitter taste in response to β-glucopyranosides. Nature Genet. 32, 397–401 (2002).

    CAS  PubMed  Google Scholar 

  213. Chandrashekar, J. et al. T2Rs function as bitter taste receptors. Cell 100, 703–711 (2000). This is one of the first reports to directly show that the bitter taste sensation is mediated through GPCRs.

    CAS  PubMed  Google Scholar 

  214. Behrens, M. et al. The human taste receptor hTAS2R14 responds to a variety of different bitter compounds. Biochem. Biophys. Res. Commun. 319, 479–485 (2004).

    CAS  PubMed  Google Scholar 

  215. Kuhn, C. et al. Bitter taste receptors for saccharin and acesulfame K. J. Neurosci. 24, 10260–10265 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Ueda, T. et al. Identification of coding single-nucleotide polymorphisms in human taste receptor genes involving bitter tasting. Biochem. Biophys. Res. Commun. 285, 147–151 (2001).

    CAS  PubMed  Google Scholar 

  217. Pronin, A. N., Tang, H., Connor, J. & Keung, W. Identification of ligands for two human bitter T2R receptors. Chem. Senses 29, 583–593 (2004).

    CAS  PubMed  Google Scholar 

  218. Gloriam, D. E. et al. The repertoire of trace amine G-protein-coupled receptors: large expansion in zebrafish. Mol. Phylogenet Evol. 35, 470–482 (2005).

    CAS  PubMed  Google Scholar 

  219. Kostenis, E. A glance at G-protein-coupled receptors for lipid mediators: a growing receptor family with remarkably diverse ligands. Pharmacol. Ther. 102, 243–257 (2004).

    CAS  PubMed  Google Scholar 

  220. Cavalier-Smith, T. Only six kingdoms of life. Proc. Biol. Sci. 271, 1251–1262 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Pupillo, M., Insall, R., Pitt, G. S. & Devreotes, P. N. Multiple cyclic AMP receptors are linked to adenylyl cyclase in Dictyostelium. Mol. Biol. Cell 3, 1229–1234 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Blumer, K. J. & Thorner, J. β and γ subunits of a yeast guanine nucleotide-binding protein are not essential for membrane association of the α subunit but are required for receptor coupling. Proc. Natl Acad. Sci. USA 87, 4363–4367 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Xue, Y., Batlle, M. & Hirsch, J. P. GPR1 encodes a putative G protein-coupled receptor that associates with the Gpa2p Gα subunit and functions in a Ras-independent pathway. Embo J. 17, 1996–2007 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Prabhu, Y. & Eichinger, L. The Dictyostelium repertoire of seven transmembrane domain receptors. Eur. J. Cell Biol. 85, 937–946 (2006).

    CAS  PubMed  Google Scholar 

  225. Williams, J. G., Noegel, A. A. & Eichinger, L. Manifestations of multicellularity: Dictyostelium reports in. Trends Genet. 21, 392–398 (2005).

    CAS  PubMed  Google Scholar 

  226. Perez, D. M. From plants to man: the GPCR “tree of life”. Mol. Pharmacol. 67, 1383–1384 (2005).

    CAS  PubMed  Google Scholar 

  227. Perez, D. M. The evolutionarily triumphant G-protein-coupled receptor. Mol. Pharmacol. 63, 1202–1205 (2003).

    CAS  PubMed  Google Scholar 

  228. Parameswaran, N. & Spielman, W. S. RAMPs: the past, present and future. Trends Biochem. Sci. 31, 631–638 (2006).

    CAS  PubMed  Google Scholar 

  229. Gurevich, E. V. & Gurevich, V. V. Arrestins: ubiquitous regulators of cellular signaling pathways. Genome Biol. 7, 236 (2006).

    PubMed  PubMed Central  Google Scholar 

  230. McCudden, C. R., Hains, M. D., Kimple, R. J., Siderovski, D. P. & Willard, F. S. G-protein signaling: back to the future. Cell. Mol. Life Sci. 62, 551–577 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Whitehead, I. P., Zohn, I. E. & Der, C. J. Rho GTPase-dependent transformation by G protein-coupled receptors. Oncogene 20, 1547–1555 (2001).

    CAS  PubMed  Google Scholar 

  232. Shi, P. & Zhang, J. Contrasting modes of evolution between vertebrate sweet/umami receptor genes and bitter receptor genes. Mol. Biol. Evol. 23, 292–300 (2005).

    PubMed  Google Scholar 

  233. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Donnelly, D. The arrangement of the transmembrane helices in the secretin receptor family of G-protein-coupled receptors. FEBS Lett. 409, 431–436 (1997).

    CAS  PubMed  Google Scholar 

  235. Couvineau, A. et al. Highly conserved aspartate 68, tryptophane 73 and glycine 109 in the N-terminal extracellular domain of the human VIP receptor are essential for its ability to bind VIP. Biochem. Biophys. Res. Commun. 206, 246–252 (1995).

    CAS  PubMed  Google Scholar 

  236. Carruthers, C. J., Unson, C. G., Kim, H. N. & Sakmar, T. P. Synthesis and expression of a gene for the rat glucagon receptor. Replacement of an aspartic acid in the extracellular domain prevents glucagon binding. J. Biol. Chem. 269, 29321–29328 (1994).

    CAS  PubMed  Google Scholar 

  237. Holtmann, M. H., Ganguli, S., Hadac, E. M., Dolu, V. & Miller, L. J. Multiple extracellular loop domains contribute critical determinants for agonist binding and activation of the secretin receptor. J. Biol. Chem. 271, 14944–14949 (1996).

    CAS  PubMed  Google Scholar 

  238. Bisello, A. et al. Parathyroid hormone-receptor interactions identified directly by photocross-linking and molecular modeling studies. J. Biol. Chem. 273, 22498–22505 (1998).

    CAS  PubMed  Google Scholar 

  239. Di Paolo, E. et al. Role of charged amino acids conserved in the vasoactive intestinal polypeptide/secretin family of receptors on the secretin receptor functionality. Peptides 20, 1187–1193 (1999).

    CAS  PubMed  Google Scholar 

  240. Zhou, A. T. et al. Direct mapping of an agonist-binding domain within the parathyroid hormone/parathyroid hormone-related protein receptor by photoaffinity crosslinking. Proc. Natl Acad. Sci. USA 94, 3644–3649 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Sydow, S., Flaccus, A., Fischer, A. & Spiess, J. The role of the fourth extracellular domain of the rat corticotropin-releasing factor receptor type 1 in ligand binding. Eur. J. Biochem. 259, 55–62 (1999).

    CAS  PubMed  Google Scholar 

  242. Piserchio, A., Bisello, A., Rosenblatt, M., Chorev, M. & Mierke, D. F. Characterization of parathyroid hormone/receptor interactions: structure of the first extracellular loop. Biochemistry 39, 8153–8160 (2000).

    CAS  PubMed  Google Scholar 

  243. Solano, R. M. et al. Two basic residues of the h-VPAC1 receptor second transmembrane helix are essential for ligand binding and signal transduction. J. Biol. Chem. 276, 1084–1088 (2001).

    CAS  PubMed  Google Scholar 

  244. Runge, S. et al. Three distinct epitopes on the extracellular face of the glucagon receptor determine specificity for the glucagon amino terminus. J. Biol. Chem. 278, 28005–28010 (2003).

    CAS  PubMed  Google Scholar 

  245. Lins, L. et al. The human VPAC1 receptor: three-dimensional model and mutagenesis of the N-terminal domain. J. Biol. Chem. 276, 10153–10160 (2001).

    CAS  PubMed  Google Scholar 

  246. Langer, I., Vertongen, P., Perret, J., Waelbroeck, M. & Robberecht, P. Lysine 195 and aspartate 196 in the first extracellular loop of the VPAC1 receptor are essential for high affinity binding of agonists but not of antagonists. Neuropharmacology 44, 125–131 (2003).

    CAS  PubMed  Google Scholar 

  247. Marchler-Bauer, A. et al. CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res. 33, D192–D196 (2005).

    CAS  PubMed  Google Scholar 

  248. Lin, H. H., Stacey, M., Hamann, J., Gordon, S. & McKnight, A. J. Human EMR2, a novel EGF-TM7 molecule on chromosome 19p13.1, is closely related to CD97. Genomics 67, 188–200 (2000).

    CAS  PubMed  Google Scholar 

  249. Zhang, Z. et al. Three adjacent serines in the extracellular domains of the CaR are required for L-amino acid-mediated potentiation of receptor function. J. Biol. Chem. 277, 33727–33735 (2002).

    CAS  PubMed  Google Scholar 

  250. Galvez, T. et al. Mapping the agonist-binding site of GABAB type 1 subunit sheds light on the activation process of GABAB receptors. J. Biol. Chem. 275, 41166–41174 (2000).

    CAS  PubMed  Google Scholar 

  251. Laurie, D. J., Schoeffter, P., Wiederhold, K. H. & Sommer, B. Cloning, distribution and functional expression of the human mGlu6 metabotropic glutamate receptor. Neuropharmacology 36, 145–152 (1997).

    CAS  PubMed  Google Scholar 

  252. Hendy, G. N., D'Souza-Li, L., Yang, B., Canaff, L. & Cole, D. E. Mutations of the calcium-sensing receptor (CASR) in familial hypocalciuric hypercalcemia, neonatal severe hyperparathyroidism, and autosomal dominant hypocalcemia. Hum. Mutat. 16, 281–296 (2000).

    CAS  PubMed  Google Scholar 

  253. Fatkenheuer G. et al. Efficacy of short-term monotherapy with maraviroc, a new CCR5 antagonist, in patients infected with HIV-1. Nature Med. 11, 1170–1172 (2005).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank J.-P. Pin, R. Bywater, D. Rognan, K. Kullander and C. Pickering for valuable comments on the manuscript. We also thank R. Fredriksson for fruitful discussions on the topic. This study was supported by The Swedish Research Council and the Swedish Brain Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helgi B. Schiöth.

Related links

Related links

FURTHER INFORMATION

Helgi B. Schiöth's research group homepage

IUPHAR Receptor Database

Glossary

Phylogenetic classification

The classification of protein sequences that is based on primary sequence similarity.

Sequence hidden Markov model

A statistical representation of a multiple sequence alignment. The model can later be used as a search tool to identify similar sequences.

Bilateral

The body of a bilateral animal is symmetrical around the midline, which results in two almost mirror image halves. The Bilateria can be divided into two main groups: deuterostomes and proto-stomes, in which mammals belong to the former.

Pharmacophore

The steric and electronic features of a ligand that are necessary to ensure optimal interactions with a biological target structure and to trigger (or to block) its biological response.

Allosteric ligands

Ligands binding to a site that is separate from the site of the endogenous ligand/ligands.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lagerström, M., Schiöth, H. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7, 339–357 (2008). https://doi.org/10.1038/nrd2518

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2518

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing