Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Coexistence of passive and carrier-mediated processes in drug transport

Abstract

The permeability of biological membranes is one of the most important determinants of the pharmacokinetic processes of a drug. Although it is often accepted that many drug substances are transported across biological membranes by passive transcellular diffusion, a recent hypothesis speculated that carrier-mediated mechanisms might account for the majority of membrane drug transport processes in biological systems. Based on evidence of the physicochemical characteristics and of in vitro and in vivo findings for marketed drugs, as well as results from real-life discovery and development projects, we present the view that both passive transcellular processes and carrier-mediated processes coexist and contribute to drug transport activities across biological membranes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The potential of a drug to pass biological membranes by passive and carrier-mediated processes can be assessed by multiple techniques.
Figure 2: Temperature dependency (4 °C and 37 °C) of passive transport through an artificial membrane system of various drugs.
Figure 3: pH-dependent permation of benzoic acid in the rat intestine.
Figure 4: Partitioning versus permeation.
Figure 5: Competition between passive and active transport.
Figure 6: Influence of passive permeation and carrier-mediated efflux on the efflux ratio in Caco-2 cells, described by a theoretical model.

Similar content being viewed by others

References

  1. Dobson, P. D. & Kell, D. B. Carrier-mediated cellular uptake of pharmaceutical drugs: an exception or the rule? Nature Rev. Drug Discov. 7, 205–220 (2008).

    Article  CAS  Google Scholar 

  2. Dobson, P. D., Lanthaler, K., Oliver, S. G. & Kell, D. B. Implications of the dominant role of transporters in drug uptake by cells. Curr. Top. Med. Chem. 9, 163–181 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Giacomini, K. M. et al. Membrane transporters in drug development. Nature Rev. Drug Discov. 9, 215–236 (2010).

    Article  CAS  Google Scholar 

  4. Hoegerle, M. L. & Winne, D. Drug absorption by the rat jejunum perfused in situ. Dissociation from the pH-partition theory and role of microclimate-pH and unstirred layer. Naunyn Schmiedebergs Arch. Pharmacol. 322, 249–255 (1983).

    Article  CAS  Google Scholar 

  5. Hogben, C. A., Tocco, D. J., Brodie, B. B. & Schanker, L. S. On the mechanism of intestinal absorption of drugs. J. Pharmacol. Exp. Ther. 125, 275–282 (1959).

    CAS  PubMed  Google Scholar 

  6. Corti, G., Maestrelli, F., Cirri, M., Zerrouk, N. & Mura, P. Development and evaluation of an in vitro method for prediction of human drug absorption. Eur. J. Pharm. Sci. 27, 354–362 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Zhu, C., Jiang, L., Chen, T. M. & Hwang, K. K. A comparative study of artificial membrane permeability assay for high throughput profiling of drug absorption potential. Eur. J. Med. Chem. 37, 399–407 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Cohen, B. E. & Bangham, A. D. Diffusion of small nonelectrolytes across liposome membranes. Nature 236, 173–174 (1972).

    Article  CAS  PubMed  Google Scholar 

  9. Xiang, T. X. & Anderson, B. D. Influence of chain ordering on the selectivity of dipalmitoylphosphatidylcholine bilayer membranes for permeant size and shape. Biophys. J. 75, 2658–2671 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meier, M., Blatter, X. L., Seelig, A. & Seelig, J. Interaction of verapamil with lipid membranes and P–glycoprotein: connecting thermodynamics and membrane structure with functional activity. Biophys. J. 91, 2943–2955 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Seelig, A. The role of size and charge for blood–brain barrier permeation of drugs and fatty acids. J. Mol. Neurosci. 33, 32–41 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Irvine, J. D. et al. MDCK (Madin–Darby canine kidney) cells: a tool for membrane permeability screening. J. Pharm. Sci. 88, 28–33 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Fredriksson, R., Nordstrom, K. J., Stephansson, O., Hagglund, M. G. & Schioth, H. B. The solute carrier (SLC) complement of the human genome: phylogenetic classification reveals four major families. FEBS Lett. 582, 3811–3816 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. He, L., Vasiliou, K. & Nebert, D. W. Analysis and update of the human solute carrier (SLC) gene superfamily. Hum. Genomics 3, 195–206 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Van de Waterbeemd, H. in Comprehensive Medicinal Chemistry II Vol. 5 (eds Testa, B. & Van de Waterbeemd, H.) 669–697, (Elsevier Science, New York, 2006).

    Google Scholar 

  16. Chang, C., Ray, A. & Swaan, P. In silico strategies for modeling membrane transporter function. Drug Discov. Today 10, 663–671 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Wiese, M. & Pajeva, I. K. in Comprehensive Medicinal Chemistry II Vol. 5 (eds Testa, B. & Van de Waterbeemd, H.) 767–794 (Elsevier Science, New York, 2006).

    Google Scholar 

  18. Banerjee, A., Johnston, J. S. & Swaan, P. W. in Cellular Drug Delivery: Principles and Practice. Ch. 7 (eds Lu, D. R. & Oie, S.) 107–128 (Humana Press, New Jersey, 2004).

    Book  Google Scholar 

  19. Lee, V. H. Membrane transporters. Eur. J. Pharm. Sci. 11, S41–S50 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Mueller, P., Rudin, D. O., Tien, H. T. & Wescott, W. C. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature 194, 979–980 (1962).

    Article  CAS  PubMed  Google Scholar 

  21. Saparov, S. M., Antonenko, Y. N. & Pohl, P. A new model of weak acid permeation through membranes revisited: does Overton still rule? Biophys. J. 90, L86–L88 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Walter, A. & Gutknecht, J. Monocarboxylic acid permeation through lipid bilayer membranes. J. Membr. Biol. 77, 255–264 (1984).

    Article  CAS  PubMed  Google Scholar 

  23. Walter, A. & Gutknecht, J. Permeability of small nonelectrolytes through lipid bilayer membranes. J. Membr. Biol. 90, 207–217 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Paul, E. C., Hochman, J. & Quaroni, A. Conditionally immortalized intestinal epithelial cells: novel approach for study of differentiated enterocytes. Am. J. Physiol. 265, C266–C278 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Tavelin, S. et al. An improved cell culture model based on 2/4/A1 cell monolayers for studies of intestinal drug transport: characterization of transport routes. Pharm. Res. 20, 373–381 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Bermejo, M. et al. PAMPA — a drug absorption in vitro model 7. Comparing rat in situ, Caco-2, and PAMPA permeability of fluoroquinolones. Eur. J. Pharm. Sci. 21, 429–441 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Neuhoff, S., Ungell, A. L., Zamora, I. & Artursson, P. pH-dependent passive and active transport of acidic drugs across Caco-2 cell monolayers. Eur. J. Pharm. Sci. 25, 211–220 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Pade, V. & Stavchansky, S. Estimation of the relative contribution of the transcellular and paracellular pathway to the transport of passively absorbed drugs in the Caco-2 cell culture model. Pharm. Res. 14, 1210–1215 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Takanaga, H., Tamai, I. & Tsuji, A. pH-dependent and carrier-mediated transport of salicylic acid across Caco-2 cells. J. Pharm. Pharmacol. 46, 567–570 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Tsuji, A., Simanjuntak, M. T., Tamai, I. & Terasaki, T. pH-dependent intestinal transport of monocarboxylic acids: carrier-mediated and H+-cotransport mechanism versus pH-partition hypothesis. J. Pharm. Sci. 79, 1123–1124 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Kopplow, K., Letschert, K., Konig, J., Walter, B. & Keppler, D. Human hepatobiliary transport of organic anions analyzed by quadruple-transfected cells. Mol. Pharmacol. 68, 1031–1038 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Sasaki, M., Suzuki, H., Ito, K., Abe, T. & Sugiyama, Y. Transcellular transport of organic anions across a double-transfected Madin–Darby canine kidney II cell monolayer expressing both human organic anion-transporting polypeptide (OATP2/SLC21A6) and multidrug resistance-associated protein 2 (MRP2/ABCC2). J. Biol. Chem. 277, 6497–6503 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Lennernas, H. Human intestinal permeability. J. Pharm. Sci. 87, 403–410 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Lennernas, H. Intestinal permeability and its relevance for absorption and elimination. Xenobiotica 37, 1015–1051 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Lennernas, H. Modeling gastrointestinal drug absorption requires more in vivo biopharmaceutical data: experience from in vivo dissolution and permeability studies in humans. Curr. Drug Metab. 8, 645–657 (2007).

    Article  PubMed  Google Scholar 

  36. Collett, A., Tanianis-Hughes, J., Hallifax, D. & Warhurst, G. Predicting P-glycoprotein effects on oral absorption: correlation of transport in Caco-2 with drug pharmacokinetics in wild-type and mdr1a−/− mice in vivo. Pharm. Res. 21, 819–826 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Avdeef, A. et al. Caco-2 permeability of weakly basic drugs predicted with the double-sink PAMPA pKaflux method. Eur. J. Pharm. Sci. 24, 333–349 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Matsson, P., Pedersen, J. M., Norinder, U., Bergstroem, C. A. & Artursson, P. Identification of novel specific and general inhibitors of the three major human ATP-binding cassette transporters P-gp, BCRP and MRP2 among registered drugs. Pharm. Res. 26, 1816–1831 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Kim, R. B. et al. Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm. Res. 16, 408–414 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Kansy, M., Senner, F. & Gubernator, K. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J. Med. Chem. 41, 1007–1010 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Avdeef, A., Kansy, M., Bendels, S. & Tsinman, K. Absorption–excipient–pH classification gradient maps: sparingly soluble drugs and the pH partition hypothesis. Eur. J. Pharm. Sci. 33, 29–41 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Nielsen, P. E. & Avdeef, A. PAMPA — a drug absorption in vitro model 8. Apparent filter porosity and the unstirred water layer. Eur. J. Pharm. Sci. 22, 33–41 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Sugano, K. in Comprehensive Medicinal Chemistry II Vol. 5 (eds Testa, B. & Van de Waterbeemd, H.) 453–487 (Elsevier, Oxford, 2007).

    Book  Google Scholar 

  44. Artursson, P. & Borchardt, R. T. Intestinal drug absorption and metabolism in cell cultures: Caco-2 and beyond. Pharm. Res. 14, 1655–1658 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Englund, G. et al. Regional levels of drug transporters along the human intestinal tract: co-expression of ABC and SLC transporters and comparison with Caco-2 cells. Eur. J. Pharm. Sci. 29, 269–277 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Hilgendorf, C. et al. Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab. Dispos. 35, 1333–1340 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Hubatsch, I., Ragnarsson, E. G. & Artursson, P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nature Protoc. 2, 2111–2119 (2007).

    Article  CAS  Google Scholar 

  48. Neuhoff, S., Ungell, A.-L., Zamora, I. & Artursson, P. pH-dependent bidirectional transport of weakly basic drugs across Caco-2 monolayers: implications for drug-drug interactions. Pharm. Res. 20, 1141–1148 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Pickett, S. D., McLay, I. M. & Clark, D. E. Enhancing the hit-to-lead properties of lead optimization libraries. J. Chem. Inf. Comput. Sci. 40, 263–272 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Feng, B. et al. In vitro P-glycoprotein assays to predict the in vivo interactions of P-glycoprotein with drugs in the central nervous system. Drug Metab. Dispos. 36, 268–275 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Thiel-Demby, V. E. et al. Biopharmaceutics classification system: validation and learnings of an in vitro permeability assay. Mol. Pharm. 6, 11–18 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Volpe, D. A. Variability in Caco-2 and MDCK cell-based intestinal permeability assays. J. Pharm. Sci. 97, 712–725 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Hayeshi, R. et al. Comparison of drug transporter gene expression and functionality in Caco-2 cells from 10 different laboratories. Eur. J. Pharm. Sci. 35, 383–396 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Sugano, K., Takata, N., Machida, M., Saitoh, K. & Terada, K. Prediction of passive intestinal absorption using bio-mimetic artificial membrane permeation assay and the paracellular pathway model. Int. J. Pharm. 241, 241–251 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Avdeef, A. et al. Parallel artificial membrane permeability assay (PAMPA)-critical factors for better predictions of absorption. J. Pharm. Sci. 96, 2893–2909 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Galinis-Luciani, D., Nguyen, L. & Yazdanian, M. Is parallel artificial membrane permeability assay a useful tool for discovery? J. Pharm. Sci. 96, 2886–2892 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Rautio, J., Laine, K. & Gynther, M. Enhanced brain drug delivery and targeting. Pharm. Technol. Eur. 20, 27–29, 32–33 (2008).

    CAS  Google Scholar 

  58. Sugano, K., Nabuchi, Y., Machida, M. & Asoh, Y. Permeation characteristics of a hydrophilic basic compound across a bio-mimetic artificial membrane. Int. J. Pharm. 275, 271–278 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Takagi, M. et al. A new interpretation of salicylic acid transport across the lipid bilayer: implications of pH-dependent but not carrier-mediated absorption from the gastrointestinal tract. J. Pharmacol. Exp. Ther. 285, 1175–1180 (1998).

    CAS  PubMed  Google Scholar 

  60. Valko, K. & Reynolds, D. P. High-throughput physicochemical and in vitro ADMET screening: a role in pharmaceutical profiling. Am. J. Drug Deliv. 3, 83–100 (2005).

    Article  CAS  Google Scholar 

  61. Gustafsson, D. et al. The direct thrombin inhibitor melagatran and its oral prodrug H 376/95: intestinal absorption properties, biochemical and pharmacodynamic effects. Thromb. Res. 101, 171–181 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Sugano, K. et al. Quantitative structure–intestinal permeability relationship of benzamidine analogue thrombin inhibitor. Bioorg. Med. Chem. Lett. 10, 1939–1942 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Fischer, H., Kansy, M., Avdeef, A. & Senner, F. Permeation of permanently positive charged molecules through artificial membranes — influence of physico-chemical properties. Eur. J. Pharm. Sci. 31, 32–42 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Ruifrok, P. G. & Meijer, D. K. Transport of organic ions through lipid bilayers. Naunyn Schmiedebergs Arch. Pharmacol. 316, 266–272 (1981).

    Article  CAS  PubMed  Google Scholar 

  65. Poirier, A. et al. Design, data analysis and simulation of in vitro drug transport kinetic experiments using a mechanistic in vitro model. Drug Metab. Dispos. 36, 2434–2444 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Lei, Y. D., Wania, F., Shiu, W. Y. & Boocock, D. G. B. HPLC-based method for estimating the temperature dependence of n-Octanol–water partition coefficients. J. Chem. Eng. Data 45, 738–742 (2000).

    Article  CAS  Google Scholar 

  67. Tanaka, M., Fukuda, H. & Nagai, T. Permeation of a drug through a model membrane consisting of millipore filter with oil. Chem. Pharm. Bull. 26, 9–13 (1978).

    Article  CAS  Google Scholar 

  68. Raeissi, S. D., Li, J. & Hidalgo, I. J. The role of an α-amino group on H+-dependent transepithelial transport of cephalosporins in Caco-2 cells. J. Pharm. Pharmacol. 51, 35–40 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Takacs-Novak, K., Box, K. J. & Avdeef, A. Potentiometric pKa determination of water-insoluble compounds: validation study in methanol/water mixtures. Int. J. Pharm. 151, 235–248 (1997).

    Article  CAS  Google Scholar 

  70. Said, H. M., Blair, J. A., Lucas, M. L. & Hilburn, M. E. Intestinal surface acid microclimate in vitro and in vivo in the rat. J. Lab. Clin. Med. 107, 420–424 (1986).

    CAS  PubMed  Google Scholar 

  71. Xiang, T. X. & Anderson, B. D. Substituent contributions to the transport of substituted p-toluic acids across lipid bilayer membranes. J. Pharm. Sci. 83, 1511–1518 (1994).

    Article  CAS  PubMed  Google Scholar 

  72. Cohen, B. E. Permeability of liposomes to nonelectrolytes. II. Effect of nystatin and gramicidin A. J. Membr. Biol. 20, 235–268 (1975).

    Article  CAS  PubMed  Google Scholar 

  73. Cao, Y., Xiang, T.-X. & Anderson, B. D. Development of structure–lipid bilayer permeability relationships for peptide-like small organic molecules. Mol. Pharm. 5, 371–388 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Camenisch, G., Alsenz, J., van de Waterbeemd, H. & Folkers, G. Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs' lipophilicity and molecular weight. Eur. J. Pharm. Sci. 6, 313–319 (1998).

    Article  CAS  Google Scholar 

  75. Johnson, T. W., Dress, K. R. & Edwards, M. Using the Golden Triangle to optimize clearance and oral absorption. Bioorg. Med. Chem. Lett. 19, 5560–5564 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Linnankoski, J., Ranta, V.-P., Yliperttula, M. & Urtti, A. Passive oral drug absorption can be predicted more reliably by experimental than computational models — fact or myth. Eur. J. Pharm. Sci. 34, 129–139 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Lombardo, F., Obach, R. S., Shalaeva, M. Y. & Gao, F. Prediction of volume of distribution values in humans for neutral and basic drugs using physicochemical measurements and plasma protein binding data. J. Med. Chem. 45, 2867–2876 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Martin, Y. C. A practitioner's perspective of the role of quantitative structure–activity analysis in medicinal chemistry. J. Med. Chem. 24, 229–237 (1981).

    Article  CAS  PubMed  Google Scholar 

  79. Obach, R. S., Lombardo, F. & Waters, N. J. Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds. Drug Metab. Dispos. 36, 1385–1405 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Obata, K. et al. Prediction of oral drug absorption in humans by theoretical passive absorption model. Int. J. Pharm. 293, 183–192 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Rodgers, T. & Rowland, M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J. Pharm. Sci. 95, 1238–1257 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Rodgers, T. & Rowland, M. Mechanistic approaches to volume of distribution predictions: understanding the processes. Pharm. Res. 24, 918–933 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Veber, D. F. et al. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Winiwarter, S. et al. Correlation of human jejunal permeability (in vivo) of drugs with experimentally and theoretically derived parameters. A multivariate data analysis approach. J. Med. Chem. 41, 4939–4949 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Reynolds, D. P., Lanevskij, K., Japertas, P., Didziapetris, R. & Petrauskas, A. Ionization-specific analysis of human intestinal absorption. J. Pharm. Sci. 98, 4039–4054 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Fischer, H., Gottschlich, R. & Seelig, A. Blood–brain barrier permeation: molecular parameters governing passive diffusion. J. Membr. Biol. 165, 201–211 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Gratton, J. A., Abraham, M. H., Bradbury, M. W. & Chadha, H. S. Molecular factors influencing drug transfer across the blood–brain barrier. J. Pharm. Pharmacol. 49, 1211–1216 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Hou, T. J., Zhang, W., Xia, K., Qiao, X. B. & Xu, X. J. ADME evaluation in drug discovery. 5. Correlation of Caco-2 permeation with simple molecular properties. J. Chem. Inf. Comput. Sci. 44, 1585–1600 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Palm, K. et al. Evaluation of dynamic polar molecular surface area as predictor of drug absorption: comparison with other computational and experimental predictors. J. Med. Chem. 41, 5382–5392 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Zhao, Y. et al. Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure–activity relationship (QSAR) with the Abraham descriptors. J. Pharm. Sci. 90, 749–784 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Avdeef, A. in Absorption and Drug Development: Solubility, Permeability and Charge State 1–312 (Wiley-Interscience, Hoboken, New Jersey, 2003).

    Book  Google Scholar 

  92. Camenisch, G., Folkers, G. & van de Waterbeemd, H. Comparison of passive drug transport through Caco-2 cells and artificial membranes. Int. J. Pharm. 147, 61–70 (1997).

    Article  CAS  Google Scholar 

  93. Dagenais, C., Avdeef, A., Tsinman, O., Dudley, A. & Beliveau, R. P-glycoprotein deficient mouse in situ blood–brain barrier permeability and its prediction using an in combo PAMPA model. Eur. J. Pharm. Sci. 38, 121–137 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Di, L., Kerns, E. H., Bezar, I. F., Petusky, S. L. & Huang, Y. Comparison of blood–brain barrier permeability assays: in situ brain perfusion, MDR1–MDCKII and PAMPA–BBB. J. Pharm. Sci. 98, 1980–1991 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Di, L., Kerns, E. H., Fan, K., McConnell, O. J. & Carter, G. T. High throughput artificial membrane permeability assay for blood–brain barrier. Eur. J. Med. Chem. 38, 223–232 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Flaten, G. E., Dhanikula, A. B., Luthman, K. & Brandl, M. Drug permeability across a phospholipid vesicle based barrier: a novel approach for studying passive diffusion. Eur. J. Pharm. Sci. 27, 80–90 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Kerns, E. H. et al. Combined application of parallel artificial membrane permeability assay and Caco-2 permeability assays in drug discovery. J. Pharm. Sci. 93, 1440–1453 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Kwon, J.-H. & Escher, B. I. A modified parallel artificial membrane permeability assay for evaluating the bioconcentration of highly hydrophobic chemicals in fish. Environ. Sci. Technol. 42, 1787–1793 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Li, C. et al. Correlation between PAMPA permeability and cellular activities of hepatitis C virus protease inhibitors. Biochem. Pharmacol. 75, 1186–1197 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Matsson, P. et al. Exploring the role of different drug transport routes in permeability screening. J. Med. Chem. 48, 604–613 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Miret, S., Abrahamse, L. & de Groene, E. M. Comparison of in vitro models for the prediction of compound absorption across the human intestinal mucosa. J. Biomol. Screen. 9, 598–606 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Ottaviani, G., Martel, S. & Carrupt, P.-A. Parallel artificial membrane permeability assay: a new membrane for the fast prediction of passive human skin permeability. J. Med. Chem. 49, 3948–3954 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Saitoh, R. et al. Correction of permeability with pore radius of tight junctions in Caco-2 monolayers improves the prediction of the dose fraction of hydrophilic drugs absorbed by humans. Pharm. Res. 21, 749–755 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Sugano, K., Hamada, H., Machida, M. & Ushio, H. High throuput prediction of oral absorption: improvement of the composition of the lipid solution used in parallel artificial membrane permeation assay. J. Biomol. Screen. 6, 189–196 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Sugano, K., Nabuchi, Y., Machida, M. & Aso, Y. Prediction of human intestinal permeability using artificial membrane permeability. Int. J. Pharm. 257, 245–251 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Wohnsland, F. & Faller, B. High-throughput permeability pH profile and high-throughput alkane/water log P with artificial membranes. J. Med. Chem. 44, 923–930 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Avdeef, A. The rise of PAMPA. Expert Opin. Drug Metab. Toxicol. 1, 325–342 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Beigi, F. et al. Immobilized liposome and biomembrane partitioning chromatography of drugs for prediction of drug transport. Int. J. Pharm. 164, 129–137 (1998).

    Article  CAS  Google Scholar 

  109. Danelian, E. et al. SPR biosensor studies of the direct interaction between 27 drugs and a liposome surface: correlation with fraction absorbed in humans. J. Med. Chem. 43, 2083–2086 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Loidl-Stahlhofen, A., Eckert, A., Hartmann, T. & Schottner, M. Solid-supported lipid membranes as a tool for determination of membrane affinity: high-throughput screening of a physicochemical parameter. J. Pharm. Sci. 90, 599–606 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Pidgeon, C. et al. IAM chromatography: an in vitro screen for predicting drug membrane permeability. J. Med. Chem. 38, 590–594 (1995).

    Article  CAS  PubMed  Google Scholar 

  112. Ano, R. et al. Relationships between structure and high-throughput screening permeability of peptide derivatives and related compounds with artificial membranes: application to prediction of Caco-2 cell permeability. Bioorg. Med. Chem. 12, 257–264 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Fujikawa, M., Nakao, K., Shimizu, R. & Akamatsu, M. QSAR study on permeability of hydrophobic compounds with artificial membranes. Bioorg. Med. Chem. 15, 3756–3767 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Kansy, M. et al. in Pharmacokinetic Optimization in Drug Research: Biological, Physicochemical and Computational Strategies (eds Testa, B., Van de Waterbeemd, H., Folkers, G. & Guy, R.) 447–464 (Wiley-VCH, Zurich, 2001).

    Book  Google Scholar 

  115. Kubinyi, H. Drug partitioning: relationships between forward and reverse rate constants and partition coefficient. J. Pharm. Sci. 67, 262–263 (1978).

    Article  CAS  PubMed  Google Scholar 

  116. Kubinyi, H. Lipophilicity and drug activity. Prog. Drug Res. 23, 97–198 (1979).

    CAS  PubMed  Google Scholar 

  117. Wenlock, M. C., Austin, R. P., Barton, P., Davis, A. M. & Leeson, P. D. A comparison of physiochemical property profiles of development and marketed oral drugs. J. Med. Chem. 46, 1250–1256 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Balimane, P. V. et al. Peptide transporter substrate identification during permeability screening in drug discovery: comparison of transfected MDCK-hPepT1 cells to Caco-2 cells. Arch. Pharm. Res. 30, 507–518 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Balimane, P. V. et al. A novel high-throughput automated chip-based nanoelectrospray tandem mass spectrometric method for PAMPA sample analysis. J. Pharm. Biomed. Anal. 39, 8–16 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Di, L. & Kerns, E. H. Profiling drug-like properties in discovery research. Curr. Opin. Chem. Biol. 7, 402–408 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Sugano, K., Obata, K., Saitoh, R., Higashida, A. & Hamada, H. in Pharmacokinetic Profiling in Drug Research (eds Testa, B., Krämer, S., Wunderli-Allenspach, H. & Folkers, G.) 441–458 (Wiley-VCH, Zurich, 2006).

    Book  Google Scholar 

  122. Masungi, C. et al. Parallel artificial membrane permeability assay (PAMPA) combined with a 10-day multiscreen Caco-2 cell culture as a tool for assessing new drug candidates. Pharmazie 63, 194–199 (2008).

    CAS  PubMed  Google Scholar 

  123. Tavelin, S. et al. Prediction of the oral absorption of low-permeability drugs using small intestine-like 2/4/A1 cell monolayers. Pharm. Res. 20, 397–405 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Lagas, J. S., Vlaming, M. L. & Schinkel, A. H. Pharmacokinetic assessment of multiple ATP-binding cassette transporters: the power of combination knockout mice. Mol. Interv. 9, 136–145 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. van de Steeg, E. et al. Methotrexate pharmacokinetics in transgenic mice with liver-specific expression of human organic anion-transporting polypeptide 1B1 (SLCO1B1). Drug Metab. Dispos. 37, 277–281 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Chen, C., Liu, X. & Smith, B. J. Utility of Mdr1-gene deficient mice in assessing the impact of P-glycoprotein on pharmacokinetics and pharmacodynamics in drug discovery and development. Curr. Drug Metab. 4, 272–291 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Chiou, W. L., Chung, S. M. & Wu, T. C. Apparent lack of effect of P-glycoprotein on the gastrointestinal absorption of a substrate, tacrolimus, in normal mice. Pharm. Res. 17, 205–208 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. del Amo, E. M., Heikkinen, A. T. & Moenkkoenen, J. In vitroin vivo correlation in P-glycoprotein mediated transport in intestinal absorption. Eur. J. Pharm. Sci. 36, 200–211 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Kato, Y. et al. Investigation of the role of oligopeptide transporter PEPT1 and sodium/glucose cotransporter SGLT1 in intestinal absorption of their substrates using small GTP-binding protein Rab8-null mice. Drug Metab. Dispos. 37, 602–607 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Hironaka, T., Itokawa, S., Ogawara, K., Higaki, K. & Kimura, T. Quantitative evaluation of PEPT1 contribution to oral absorption of cephalexin in rats. Pharm. Res. 26, 40–50 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Johnson, W. W. P-glycoprotein-mediated efflux as a major factor in the variance of absorption and distribution of drugs: modulation of chemotherapy resistance. Methods Find. Exp. Clin. Pharmacol. 24, 501–514 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Brandsch, M., Knutter, I. & Bosse-Doenecke, E. Pharmaceutical and pharmacological importance of peptide transporters. J. Pharm. Pharmacol. 60, 543–585 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Knutter, I. et al. Transport of angiotensin-converting enzyme inhibitors by H+/peptide transporters revisited. J. Pharmacol. Exp. Ther. 327, 432–441 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Brandsch, M. Transport of drugs by proton-coupled peptide transporters: pearls and pitfalls. Expert Opin. Drug Metab. Toxicol. 5, 887–905 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Schoenmakers, R. G., Stehouwer, M. C. & Tukker, J. J. Structure–transport relationship for the intestinal small-peptide carrier: is the carbonyl group of the peptide bond relevant for transport? Pharm. Res. 16, 62–68 (1999).

    Article  CAS  PubMed  Google Scholar 

  136. Cao, X. et al. Why is it challenging to predict intestinal drug absorption and oral bioavailability in human using rat model. Pharm. Res. 23, 1675–1686 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Chiou, W. L., Chung, S. M., Wu, T. C. & Ma, C. A comprehensive account on the role of efflux transporters in the gastrointestinal absorption of 13 commonly used substrate drugs in humans. Int. J. Clin. Pharmacol. Ther. 39, 93–101 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Kwon, H., Lionberger, R. A. & Yu, L. X. Impact of P-glycoprotein-mediated intestinal efflux kinetics on oral bioavailability of P-glycoprotein substrates. Mol. Pharm. 1, 455–465 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Amidon, G. L., Lennernas, H., Shah, V. P. & Crison, J. R. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12, 413–420 (1995).

    Article  CAS  PubMed  Google Scholar 

  140. Lin, J. H. & Yamazaki, M. Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin. Pharmacokinet. 42, 59–98 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Cao, X. et al. Permeability dominates in vivo intestinal absorption of P-gp substrate with high solubility and high permeability. Mol. Pharm. 2, 329–340 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Doppenschmitt, S., Spahn-Langguth, H., Regardh, C. G. & Langguth, P. Role of P-glycoprotein-mediated secretion in absorptive drug permeability: an approach using passive membrane permeability and affinity to P-glycoprotein. J. Pharm. Sci. 88, 1067–1072 (1999).

    Article  CAS  PubMed  Google Scholar 

  143. Lentz, K. A., Polli, J. W., Wring, S. A., Humphreys, J. E. & Polli, J. E. Influence of passive permeability on apparent P-glycoprotein kinetics. Pharm. Res. 17, 1456–1460 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Varma, M. V., Sateesh, K. & Panchagnula, R. Functional role of P-glycoprotein in limiting intestinal absorption of drugs: contribution of passive permeability to P-glycoprotein mediated efflux transport. Mol. Pharm. 2, 12–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. von Richter, O. et al. A novel screening strategy to identify ABCB1 substrates and inhibitors. Naunyn Schmiedebergs Arch. Pharmacol. 379, 11–26 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. Faller, B. in Hit and Lead Profiling. Identification and Optimization of Drug-like Molecules. Methods and Principles in Medicinal Chemistry Vol. 43 (eds Faller, B. & Laszlo, U.) (Wiley VCH, Weinheim 2009).

    Google Scholar 

  147. Sun, H. & Pang, K. S. Permeability, transport, and metabolism of solutes in Caco-2 cell monolayers: a theoretical study. Drug Metab. Dispos. 36, 102–123 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. Eytan, G. D. Mechanism of multidrug resistance in relation to passive membrane permeation. Biomed. Pharmacother. 59, 90–97 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Wu, C.-Y. & Benet, L. Z. Predicting drug disposition via application of BCS: transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm. Res. 22, 11–23 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Fenner, K. S. et al. Drug–drug interactions mediated through P-glycoprotein: clinical relevance and in vitroin vivo correlation using digoxin as a probe drug. Clin. Pharmacol. Ther. 85, 173–181 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Oh, D.-M., Curl, R. L., Yong, C.-S. & Amidon, G. L. Effect of micronization on the extent of drug absorption from suspensions in humans. Arch. Pharm. Res. 18, 427–433 (1995).

    Article  CAS  Google Scholar 

  152. Shaw, T. R. & Carless, J. E. Effect of particle size on the absorption of digoxin. Eur. J. Clin. Pharmacol. 7, 269–273 (1974).

    Article  CAS  PubMed  Google Scholar 

  153. Yu, L. X. An integrated model for determining causes of poor oral drug absorption. Pharm. Res. 16, 1883–1887 (1999).

    Article  CAS  PubMed  Google Scholar 

  154. Ogihara, T. et al. What kinds of substrates show P-glycoprotein-dependent intestinal absorption? Comparison of verapamil with vinblastine. Drug Metab. Pharmacokinet. 21, 238–244 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Nagahara, N., Tavelin, S. & Artursson, P. Contribution of the paracellular route to the pH-dependent epithelial permeability to cationic drugs. J. Pharm. Sci. 93, 2972–2984 (2004).

    Article  CAS  PubMed  Google Scholar 

  156. Lafforgue, G. et al. Oral absorption of ampicillin: role of paracellular route vs. PepT1 transporter. Fund. Clin. Pharmacol. 22, 189–201 (2008).

    Article  CAS  Google Scholar 

  157. Linnankoski, J. et al. Paracellular porosity and pore size of the human intestinal epithelium in tissue and cell culture models. J. Pharm. Sci. 99 (Suppl. 4), 2166–2175 (2010).

    Article  CAS  PubMed  Google Scholar 

  158. Eytan, G. D., Regev, R., Oren, G. & Assaraf, Y. G. The role of passive transbilayer drug movement in multidrug resistance and its modulation. J. Biol. Chem. 271, 12897–12902 (1996).

    Article  CAS  PubMed  Google Scholar 

  159. Fagerholm, U. The role of permeability in drug ADME/PK, interactions and toxicity — presentation of a permeability-based classification system (PCS) for prediction of ADME/PK in humans. Pharm. Res. 25, 625–638 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Kohl, C. Transporters — the view from industry. Chem. Biodivers. 6, 1988–1999 (2009).

    Article  CAS  PubMed  Google Scholar 

  161. Scherrmann, J. M. Transporters in absorption, distribution, and elimination. Chem. Biodivers. 6, 1933–1942 (2009).

    Article  CAS  PubMed  Google Scholar 

  162. Shugarts, S. & Benet, L. Z. The role of transporters in the pharmacokinetics of orally administered drugs. Pharm. Res. 26, 2039–2054 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Petri, N., Tannergren, C., Rungstad, D. & Lennernaes, H. Transport characteristics of fexofenadine in the Caco-2 cell model. Pharm. Res. 21, 1398–1404 (2004).

    Article  CAS  PubMed  Google Scholar 

  164. Cvetkovic, M., Leake, B., Fromm, M. F., Wilkinson, G. R. & Kim, R. B. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab. Dispos. 27, 866–871 (1999).

    CAS  PubMed  Google Scholar 

  165. Tannergren, C., Knutson, T., Knutson, L. & Lennernas, H. The effect of ketoconazole on the in vivo intestinal permeability of fexofenadine using a regional perfusion technique. Br. J. Clin. Pharmacol. 55, 182–190 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Glaeser, H. et al. Intestinal drug transporter expression and the impact of grapefruit juice in humans. Clin. Pharmacol. Ther. 81, 362–370 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Russel, T., Stoltz, M. & Weir, S. Pharmacokinetics, pharmacodynamics, and tolerance of single- and multiple-dose fexofenadine hydrochloride in healthy male volunteers. Clin. Pharmacol. Ther. 64, 612–621 (1998).

    Article  CAS  Google Scholar 

  168. Lappin, G. et al. Pharmacokinetics of fexofenadine: evaluation of a microdose and assessment of absolute oral bioavailability. Eur. J. Pharm. Sci. 40, 125–131 (2010).

    Article  CAS  PubMed  Google Scholar 

  169. Korjamo, T., Kemilainen, H., Heikkinen, A. T. & Monkkonen, J. Decrease in intracellular concentration causes the shift in Km value of efflux pump substrates. Drug Metab. Dispos. 35, 1574–1579 (2007).

    Article  CAS  PubMed  Google Scholar 

  170. Tachibana, T. et al. Model analysis of the concentration-dependent permeability of P-gp substrates. Pharm. Res. 27, 442–446 (2010).

    Article  CAS  PubMed  Google Scholar 

  171. Trotter, P. J. & Storch, J. Fatty acid uptake and metabolism in a human intestinal cell line (Caco-2): comparison of apical and basolateral incubation. J. Lipid Res. 32, 293–304 (1991).

    CAS  PubMed  Google Scholar 

  172. Troutman, M. D. & Thakker, D. R. Novel experimental parameters to quantify the modulation of absorptive and secretory transport of compounds by P-glycoprotein in cell culture models of intestinal epithelium. Pharm. Res. 20, 1210–1224 (2003).

    Article  CAS  PubMed  Google Scholar 

  173. Troutman, M. D. & Thakker, D. R. Efflux ratio cannot assess P-glycoprotein-mediated attenuation of absorptive transport: asymmetric effect of P-glycoprotein on absorptive and secretory transport across Caco-2 cell monolayers. Pharm. Res. 20, 1200–1209 (2003).

    Article  CAS  PubMed  Google Scholar 

  174. Bailey, D. G., Dresser, G. K., Leake, B. F. & Kim, R. B. Naringin is a major and selective clinical inhibitor of organic anion-transporting polypeptide 1A2 (OATP1A2) in grapefruit juice. Clin. Pharmacol. Ther. 81, 495–502 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. Yasui-Furukori, N., Uno, T., Sugawara, K. & Tateishi, T. Different effects of three transporting inhibitors, verapamil, cimetidine, and probenecid, on fexofenadine pharmacokinetics. Clin. Pharmacol. Ther. 77, 17–23 (2005).

    Article  CAS  PubMed  Google Scholar 

  176. Kikuchi, A., Nozawa, T., Wakasawa, T., Maeda, T. & Tamai, I. Transporter-mediated intestinal absorption of fexofenadine in rats. Drug Metab. Pharmacokinet. 21, 308–314 (2006).

    Article  CAS  PubMed  Google Scholar 

  177. Tannergren, C. et al. Multiple transport mechanisms involved in the intestinal absorption and first-pass extraction of fexofenadine. Clin. Pharmacol. Ther. 74, 423–436 (2003).

    Article  CAS  PubMed  Google Scholar 

  178. Matsushima, S., Maeda, K., Ishiguro, N., Igarashi, T. & Sugiyama, Y. Investigation of the inhibitory effects of various drugs on the hepatic uptake of fexofenadine in humans. Drug Metab. Dispos. 36, 663–669 (2008).

    Article  CAS  PubMed  Google Scholar 

  179. Swift, B., Tian, X. & Brouwer, K. L. Integration of preclinical and clinical data with pharmacokinetic modeling and simulation to evaluate fexofenadine as a probe for hepatobiliary transport function. Pharm. Res. 26, 1942–1951 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Matsushima, S. et al. The inhibition of human multidrug and toxin extrusion 1 is involved in the drug–drug interaction caused by cimetidine. Drug Metab. Dispos. 37, 555–559 (2009).

    Article  CAS  PubMed  Google Scholar 

  181. Grahnen, A. Cimetidine bioavailability and variable renal clearance. Eur. J. Clin. Pharmacol. 27, 623–624 (1984).

    Article  CAS  PubMed  Google Scholar 

  182. Grahnen, A., Jameson, S., Loof, L., Tyllstrom, J. & Lindstrom, B. Pharmacokinetics of cimetidine in advanced cirrhosis. Eur. J. Clin. Pharmacol. 26, 347–355 (1984).

    Article  CAS  PubMed  Google Scholar 

  183. Grahnen, A., Von Bahr, C., Lindstroem, B. & Rosen, A. Bioavailability and pharmacokinetics of cimetidine. Eur. J. Clin. Pharmacol. 16, 335–340 (1979).

    Article  CAS  PubMed  Google Scholar 

  184. Collett, A., Higgs, N. B., Sims, E., Rowland, M. & Warhurst, G. Modulation of the permeability of H2 receptor antagonists cimetidine and ranitidine by P-glycoprotein in rat intestine and the human colonic cell line Caco-2. J. Pharmacol. Exp. Ther. 288, 171–178 (1999).

    CAS  PubMed  Google Scholar 

  185. Sun, D. et al. Comparison of human duodenum and Caco-2 gene expression profiles for 12,000 gene sequences tags and correlation with permeability of 26 drugs. Pharm. Res. 19, 1400–1416 (2002).

    Article  CAS  PubMed  Google Scholar 

  186. Sun, W., Wu, R. R., van Poelje, P. D. & Erion, M. D. Isolation of a family of organic anion transporters from human liver and kidney. Biochem. Biophys. Res. Commun. 283, 417–422 (2001).

    Article  CAS  PubMed  Google Scholar 

  187. Takamatsu, N. et al. Human jejunal permeability of two polar drugs: cimetidine and ranitidine. Pharm. Res. 18, 742–744 (2001).

    Article  CAS  PubMed  Google Scholar 

  188. Jantratid, E. et al. Biowaiver monographs for immediate release solid oral dosage forms: cimetidine. J. Pharm. Sci. 95, 974–984 (2006).

    Article  CAS  PubMed  Google Scholar 

  189. Christians, U., Jacobsen, W., Benet, L. Z. & Lampen, A. Mechanisms of clinically relevant drug interactions associated with tacrolimus. Clin. Pharmacokinet. 41, 813–851 (2002).

    Article  CAS  PubMed  Google Scholar 

  190. Floren, L. C. et al. Tacrolimus oral bioavailability doubles with coadministration of ketoconazole. Clin. Pharmacol. Ther. 62, 41–49 (1997).

    Article  CAS  PubMed  Google Scholar 

  191. Fricker, G., Drewe, J., Huwyler, J., Gutmann, H. & Beglinger, C. Relevance of P-glycoprotein for the enteral absorption of cyclosporin A: in vitroin vivo correlation. Br. J. Pharmacol. 118, 1841–1847 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Glavinas, H., Krajcsi, P., Cserepes, J. & Sarkadi, B. The role of ABC transporters in drug resistance, metabolism, and toxicity. Curr. Drug Deliv. 1, 27–42 (2004).

    Article  CAS  PubMed  Google Scholar 

  193. Kruijtzer, C. M., Beijnen, J. H. & Schellens, J. H. Improvement of oral drug treatment by temporary inhibition of drug transporters and/or cytochrome P450 in the gastrointestinal tract and liver: an overview. Oncologist 7, 516–530 (2002).

    Article  CAS  PubMed  Google Scholar 

  194. Kunta, J. R. & Sinko, P. J. Intestinal drug transporters: in vivo function and clinical importance. Curr. Drug Metab. 5, 109–124 (2004).

    Article  CAS  PubMed  Google Scholar 

  195. Lown, K. S. et al. Role of intestinal P-glycoprotein (mdr1) in interpatient variation in the oral bioavailability of cyclosporine. Clin. Pharmacol. Ther. 62, 248–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  196. Benet, L. Z., Cummins, C. L. & Wu, C. Y. Unmasking the dynamic interplay between efflux transporters and metabolic enzymes. Int. J. Pharm. 277, 3–9 (2004).

    Article  CAS  PubMed  Google Scholar 

  197. Ito, K., Kusuhara, H. & Sugiyama, Y. Effects of intestinal CYP3A4 and P-glycoprotein on oral drug absorption — theoretical approach. Pharm. Res. 16, 225–231 (1999).

    Article  CAS  PubMed  Google Scholar 

  198. Bardelmeijer, H. A. et al. Entrapment by Cremophor EL decreases the absorption of paclitaxel from the gut. Cancer Chemother. Pharmacol. 49, 119–125 (2002).

    Article  CAS  PubMed  Google Scholar 

  199. Stephens, R. H. et al. Resolution of P-glycoprotein and non-P-glycoprotein effects on drug permeability using intestinal tissues from mdr1a−/− mice. Br. J. Pharmacol. 135, 2038–2046 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Peltier, S., Oger, J. M., Lagarce, F., Couet, W. & Benoit, J. P. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded lipid nanocapsules. Pharm. Res. 23, 1243–1250 (2006).

    Article  CAS  PubMed  Google Scholar 

  201. Walle, U. K. & Walle, T. Taxol transport by human intestinal epithelial Caco-2 cells. Drug Metab. Dispos. 26, 343–346 (1998).

    CAS  PubMed  Google Scholar 

  202. Sandstrom, M., Simonsen, L. E., Freijs, A. & Karlsson, M. O. The pharmacokinetics of epirubicin and docetaxel in combination in rats. Cancer Chemother. Pharmacol. 44, 469–474 (1999).

    Article  CAS  PubMed  Google Scholar 

  203. Strum, W. B. A pH-dependent, carrier-mediated transport system for the folate analog, amethopterin, in rat jejunum. J. Pharmacol. Exp. Ther. 203, 640–645 (1977).

    CAS  PubMed  Google Scholar 

  204. Yokooji, T., Mori, N. & Murakami, T. Site-specific contribution of proton-coupled folate transporter/haem carrier protein 1 in the intestinal absorption of methotrexate in rats. J. Pharm. Pharmacol. 61, 911–918 (2009).

    Article  CAS  PubMed  Google Scholar 

  205. Lennernas, H. et al. The effect of L-leucine on the absorption of levodopa, studied by regional jejunal perfusion in man. Br. J. Clin. Pharmacol. 35, 243–250 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Biegel, A. et al. Three-dimensional quantitative structure–activity relationship analyses of b-lactam antibiotics and tripeptides as substrates of the mammalian H+/peptide cotransporter PEPT1. J. Med. Chem. 48, 4410–4419 (2005).

    Article  CAS  PubMed  Google Scholar 

  207. Tannergren, C., Bergendal, A., Lennernas, H. & Abrahamsson, B. Toward an increased understanding of the barriers to colonic drug absorption in humans: implications for early controlled release candidate assessment. Mol. Pharm. 6, 60–73 (2009).

    Article  CAS  PubMed  Google Scholar 

  208. Skold, C. et al. Presentation of a structurally diverse and commercially available drug data set for correlation and benchmarking studies. J. Med. Chem. 49, 6660–6671 (2006).

    Article  CAS  PubMed  Google Scholar 

  209. Adachi, Y., Suzuki, H. & Sugiyama, Y. Comparative studies on in vitro methods for evaluating in vivo function of MDR1 P-glycoprotein. Pharm. Res. 18, 1660–1668 (2001).

    Article  CAS  PubMed  Google Scholar 

  210. Shitara, Y., Sato, H. & Sugiyama, Y. Evaluation of drug–drug interaction in the hepatobiliary and renal transport of drugs. Annu. Rev. Pharmacol. Toxicol. 45, 689–723 (2005).

    Article  CAS  PubMed  Google Scholar 

  211. Maeda, K., Suzuki, H. & Sugiyama, Y. Hepatic transport. Methods Princ. Med. Chem. 40, 277–332 (2009).

    CAS  Google Scholar 

  212. Hosea, N. A. et al. Prediction of human pharmacokinetics from preclinical information: comparative accuracy of quantitative prediction approaches. J. Clin. Pharmacol. 49, 513–533 (2009).

    Article  CAS  PubMed  Google Scholar 

  213. Seelig, A. How does P-glycoprotein recognize its substrates? Int. J. Clin. Pharmacol. Ther. 36, 50–54 (1998).

    CAS  PubMed  Google Scholar 

  214. Seelig, A. & Landwojtowicz, E. Structure–activity relationship of P-glycoprotein substrates and modifiers. Eur. J. Pharm. Sci. 12, 31–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  215. Maher Doan, K. M. et al. Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J. Pharmacol. Exp. Ther. 303, 1029–1037 (2002).

    Article  CAS  Google Scholar 

  216. Adachi, Y., Suzuki, H. & Sugiyama, Y. Quantitative evaluation of the function of small intestinal P-glycoprotein: comparative studies between in situ and in vitro. Pharm. Res. 20, 1163–1169 (2003).

    Article  CAS  PubMed  Google Scholar 

  217. Poulin, P. & Theil, F. P. A priori prediction of tissue:plasma partition coefficients of drugs to facilitate the use of physiologically-based pharmacokinetic models in drug discovery. J. Pharm. Sci. 89, 16–35 (2000).

    Article  CAS  PubMed  Google Scholar 

  218. Schinkel, A. H. et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood–brain barrier and to increased sensitivity to drugs. Cell 77, 491–502 (1994).

    Article  CAS  PubMed  Google Scholar 

  219. Shitara, Y., Horie, T. & Sugiyama, Y. Transporters as a determinant of drug clearance and tissue distribution. Eur. J. Pharm. Sci. 27, 425–446 (2006).

    Article  CAS  PubMed  Google Scholar 

  220. Ieiri, I., Higuchi, S. & Sugiyama, Y. Genetic polymorphisms of uptake (OATP1B1, 1B3) and efflux (MRP2, BCRP) transporters: implications for inter-individual differences in the pharmacokinetics and pharmacodynamics of statins and other clinically relevant drugs. Expert Opin. Drug Metab. Toxicol. 5, 703–729 (2009).

    Article  CAS  PubMed  Google Scholar 

  221. Chou, C., McLachlan, A. J. & Rowland, M. Membrane permeability and lipophilicity in the isolated perfused rat liver: 5-ethyl barbituric acid and other compounds. J. Pharmacol. Exp. Ther. 275, 933–940 (1995).

    CAS  PubMed  Google Scholar 

  222. Huang, L. et al. Relationship between passive permeability, efflux, and predictability of clearance from in vitro metabolic intrinsic clearance. Drug Metab. Dispos. 38, 223–231 (2009).

    Article  CAS  PubMed  Google Scholar 

  223. Fagerholm, U. Prediction of human pharmacokinetics — renal metabolic and excretion clearance. J. Pharm. Pharmacol. 59, 1463–1471 (2007).

    Article  CAS  PubMed  Google Scholar 

  224. Abrahamsson, B. & Lennernaes, H. Application of the biopharmaceutics classification system now and in the future. Methods Princ. Med. Chem. 40, 523–558 (2009).

    CAS  Google Scholar 

  225. Balimane, P. V., Han, Y. H. & Chong, S. Current industrial practices of assessing permeability and P-glycoprotein interaction. AAPS J. 8, E1–13 (2006).

  226. Ganapathy, M. E., Huang, W., Wang, H., Ganapathy, V. & Leibach, F. H. Valacyclovir: a substrate for the intestinal and renal peptide transporters PEPT1 and PEPT2. Biochem. Biophys. Res. Commun. 246, 470–475 (1998).

    Article  CAS  PubMed  Google Scholar 

  227. Han, H. et al. 5′-amino acid esters of antiviral nucleosides, acyclovir, and AZT are absorbed by the intestinal PEPT1 peptide transporter. Pharm. Res. 15, 1154–1159 (1998).

    Article  CAS  PubMed  Google Scholar 

  228. Mealey, K. L., Bentjen, S. A., Gay, J. M. & Cantor, G. H. Ivermectin sensitivity in collies is associated with a deletion mutation of the mdr1 gene. Pharmacogenetics 11, 727–733 (2001).

    Article  CAS  PubMed  Google Scholar 

  229. Testa, B. in Comprehensive Medicinal Chemistry II Vol. 5 (eds. Testa, B. & van de Waterbeemd, H.) 1009–1041 (Elsevier Science, New York, 2006).

    Google Scholar 

  230. Watanabe, T., Kusuhara, H., Maeda, K., Shitara, Y. & Sugiyama, Y. Physiologically based pharmacokinetic modeling to predict transporter-mediated clearance and distribution of pravastatin in humans. J. Pharmacol. Exp. Ther. 328, 652–662 (2009).

    Article  CAS  PubMed  Google Scholar 

  231. Winterhalter, M. Black lipid membranes. Curr. Opin. Colloid Interface Sci. 5, 250–255 (2000).

    Article  CAS  Google Scholar 

  232. Balon, K., Riebesehl, B. U. & Muller, B. W. Drug liposome partitioning as a tool for the prediction of human passive intestinal absorption. Pharm. Res. 16, 882–888 (1999).

    Article  CAS  PubMed  Google Scholar 

  233. Harrigan, P. R., Wong, K. F., Redelmeier, T. E., Wheeler, J. J. & Cullis, P. R. Accumulation of doxorubicin and other lipophilic amines into large unilamellar vesicles in response to transmembrane pH gradients. Biochim. Biophys. Acta 1149, 329–338 (1993).

    Article  CAS  PubMed  Google Scholar 

  234. Yan, E. C. & Eisenthal, K. B. Effect of cholesterol on molecular transport of organic cations across liposome bilayers probed by second harmonic generation. Biophys. J. 79, 898–903 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Xiang, T. X. & Anderson, B. D. The relationship between permeant size and permeability in lipid bilayer membranes. J. Membr. Biol. 140, 111–122 (1994).

    Article  CAS  PubMed  Google Scholar 

  236. Ahlin, G. et al. Structural requirements for drug inhibition of the liver specific human organic cation transport protein. J. Med. Chem. 51, 5932–5942 (2008).

    Article  CAS  PubMed  Google Scholar 

  237. Pedersen, J. M. et al. Prediction and identification of drug interactions with the human ATP-binding cassette transporter multidrug-resistance associated protein 2 (MRP2; ABCC2). J. Med. Chem. 51, 3275–3287 (2008).

    Article  CAS  PubMed  Google Scholar 

  238. Palm, K., Stenberg, P., Luthman, K. & Artursson, P. Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharm. Res. 14, 568–571 (1997).

    Article  CAS  PubMed  Google Scholar 

  239. Chen, X., Murawski, A., Patel, K., Crespi, C. L. & Balimane, P. V. A novel design of artificial membrane for improving the parallel artificial membrane permeability assay model. Pharm. Res. 25, 1511–1520 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper is the joint effort of several colleagues from academia and the pharmaceutical industry working on a topic of common interest. We have to thank all involved colleagues for rapid feedback to support this task. We have to thank H. Kubinyi for comments at the initial phase of this activity.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kiyohiko Sugano or Manfred Kansy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (Table)

Literatures supporting the evidence of CM transport (PDF 470 kb)

Glossary

Active transport

An energy dependent, carrier protein-mediated transport process that can be against a concentration gradient.

Area under the plasma concentration–time curve

(AUC). A measure of how much of an administered drug reaches the bloodstream in a defined period of time.

Bioavailability

In this article, bioavailability means absolute bioavailability. Bioavailability describes the fraction of an administered dose (unchanged drug) that reaches the systemic circulation. Intravenously administered drugs by definition have a bioavailability of 100%. Other routes of administration may lead to lower bioavailability, usually expressed by a ratio or percentage of the maximum value.

Biopharmaceutics classification system

(BCS). A classification system for drug molecules that considers solubility and permeation. There are four classes: BCS class I (molecules have high permeation/high solubility), BCS class II (molecules have high permeation/low solubility), BCS class III (molecules have low permeation/high solubility) and BCS class IV (molecules have low permeation/low solubility). Secondary factors considered in BCS include the rate of dissolution and the pH.

Black lipid membrane

A single bilayer phospholipid membrane and optically black in appearance. It slowly forms when a small quantity of an egg lecithin dissolved in n-decane is placed over a small hole in a thin sheet of Teflon suspended in an aqueous buffer solution. Such membranes have been viewed as useful models of the more complex natural membranes.

Caco-2 cells

An immortalized line of heterogeneous human epithelial colorectal adenocarcinoma cells used as a drug transport model for assessing intestinal absorption. Transport measurements can be performed in two directions: apical to basolateral or basolateral to apical.

Carrier-mediated transport

This refers to active or facilitated transport that has a limited capacity and thus is saturable and subject to inhibition.

CYP3A4

(Cytochrome P450 3A4). The most important member of the cytochrome P450 mixed-function oxidase system. It is involved in the metabolism of xenobiotics. CYP3A4 metabolism can occur in the gut wall and in the liver.

Efflux ratio

(EfR). The ratio of the apparent permeation of a compound in the absorptive (apical to basolateral) direction to that in the secretory (basolateral to apical) direction, as determined in cell-based experiments. The EfR is used to determine possible active transport.

Fa

The fraction of a dose of drug that is absorbed after oral administration. Fα depends on membrane permeance, solubility and the dissolution rate of a compound. It is expressed as a percentage.

First pass metabolism

After intestinal absorption, drug molecules first pass through the liver before entering the systemic circulation. During this process, the drug can be metabolized in the liver and the systemic bioavailability can be reduced.

Lipophilicity

The affinity of a compound for a lipid environment, for example, the hydrocarbon core of a phospholipid bilayer. It can also be described as the inter-molecular interaction between a compound and the solvent environment, such as the total hydrogen bond strength and dipole/polarizability.

Log Doct

The octanol–water apparent partition coefficient at a certain pH. Both dissociated and undissociated (uncharged) molecular species are taken into account. In this article, when log Doct is less than zero, it is referred to as having low lipophilicity, when log Doct is greater than zero but less than 2, it is referred to as having moderate lipophilicity and when log Doct is greater than 2 it is referred to as having high lipophilicity.

Log Poct

The octanol–water partition coefficient of a compound (neutral form). This parameter is most widely used as a whole molecule lipophilicity parameter.

Oral bioavailability

The fraction or percentage of a drug that reaches the systemic circulation following oral administration. It is determined by the fraction absorbed and the fraction not metabolized in the gut wall and in the liver.

P app

(Permeability coefficient). The apparent permeation for example, in Caco-2 cell-based permeation assays. Papp is the sum of passive transport and carrier-mediated transport when the effect of the aqueous boundary layer and the paracellular pathway is neglected.

Passive transport

This refers to the movement of a permeant across a membrane from a region of high concentration to that of low concentration by a process of diffusion. The rate of passive transport is proportional to the concentration gradient of the permeant across the membrane.

P eff

(Effective intestinal membrane permeation). Peff is measured by an in vivo experiment, for example, the in situ perfusion method. Peff is the sum of passive transport and carrier-mediated transport.

P-glycoprotein

(P-gp). Also called ABCB1, P-gp is a protein involved in active efflux transport processes.

pH partition theory

A theory that describes passive transport based on the pH of the aqueous phase, the dissociation constant (pKa) and the lipophilicity of a permeant. It states that an ionizable drug moves across a membrane by passive diffusion as its uncharged form, depending on its lipophilicity.

pKa

The dissociation constant pKa for an ionizable molecule is the pH at which it would be ionized by 50%. The degree (%) of ionization is pH dependent. For an acid it decreases by lowering pH. For a base it increases by lowering pH.

Tissue distribution coefficient

This represents the degree of drug molecule distributing into a tissue. This value depends on both passive transport and carrier-mediated transport across the cellular membrane of the tissue.

Total permeation

This refers to the combination of passive transport and carrier-mediated transport processes.

Ussing chamber

An instrument used to measure transport (for example, of drugs) across epithelial barriers. A sheet of epithelia (for example, intestinal mucosa) is clamped between two chambers and drug transport across the epithelia is measured.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugano, K., Kansy, M., Artursson, P. et al. Coexistence of passive and carrier-mediated processes in drug transport. Nat Rev Drug Discov 9, 597–614 (2010). https://doi.org/10.1038/nrd3187

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3187

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing