Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Targeting G-quadruplexes in gene promoters: a novel anticancer strategy?

Abstract

G-quadruplexes are four-stranded DNA structures that are over-represented in gene promoter regions and are viewed as emerging therapeutic targets in oncology, as transcriptional repression of oncogenes through stabilization of these structures could be a novel anticancer strategy. Many gene promoter G-quadruplexes have physicochemical properties and structural characteristics that might make them druggable, and their structural diversity suggests that a high degree of selectivity might be possible. Here, we describe the evidence for G-quadruplexes in gene promoters and discuss their potential as therapeutic targets, as well as progress in the development of strategies to harness this potential through intervention with small-molecule ligands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: G-quadruplexes in promoter regions: MYC as an example.
Figure 2: Identification of putative G-quadruplex-forming regions in gene promoters using computational analysis.
Figure 3: Structures of selected G-quadruplex ligands.
Figure 4: G-quadruplexes in the promoter of the gene coding for KIT.
Figure 5: Properties of quarfloxin.

Similar content being viewed by others

References

  1. Kohn, K. W. Beyond DNA cross-linking: history and prospects of DNA-targeted cancer treatment — fifteenth Bruce F. Cain Memorial Award Lecture. Cancer Res. 56, 5533–5546 (1996).

    CAS  PubMed  Google Scholar 

  2. Roche, V. F. in Foye's Principles of Medicinal Chemistry (eds Lemke, T. L., Williams, D. A., Roche, V. F. & Zito, S. W.) 1147–1192 (Lippincott Williams & Wilkins, Baltimore, 2008).

    Google Scholar 

  3. Sen, D. & Gilbert, W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334, 364–366 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Sundquist, W. I. & Klug, A. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature 342, 825–829 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Zahler, A. M., Williamson, J. R., Cech, T. R. & Prescott, D. M. Inhibition of telomerase by G-quartet DNA structures. Nature 350, 718–720 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Sun, D. et al. Inhibition of human telomerase by a G-quadruplex-interactive compound. J. Med. Chem. 40, 2113–2116 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Neidle, S. Human telomeric G-quadruplex: the current status of telomeric G-quadruplexes as therapeutic targets in human cancer. FEBS J. 277, 1118–1125 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Siddiqui-Jain, A., Grand, C. L., Bearss, D. J. & Hurley, L. H. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl Acad. Sci. USA 99, 11593–11598 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kumari, S., Bugaut, A., Huppert, J. L. & Balasubramanian, S. An RNA G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation. Nature Chem. Biol. 3, 218–221 (2007).

    Article  CAS  Google Scholar 

  10. Bugaut, A., Rodriguez, R., Kumari, S., Hsu, S.-T. D. & Balasubramanian, S. Small molecule-mediated inhibition of translation by targeting a native RNA G-quadruplex. Org. Biomol. Chem. 8, 2771–2776 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brooks, T. A. & Hurley, L. H. The role of supercoiling in transcriptional control of MYC and its importance in molecular therapeutics. Nature Rev. Cancer 9, 849–861 (2009).

    Article  CAS  Google Scholar 

  12. Gregory, M. A. & Hann, S. R. c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt's lymphoma cells. Mol. Cell. Biol. 20, 2423–2435 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Heinrich, M. C. et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J. Clin. Oncol. 21, 4342–4349 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Neidle, S. The structures of quadruplex nucleic acids and their drug complexes. Curr. Opin. Struct. Biol. 19, 239–250 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Shklover, J., Weisman-Shomer, P., Yafe, A. & Fry, M. Quadruplex structures of muscle gene promoter sequences enhance in vivo MyoD-dependent gene expression. Nucleic Acids Res. 38, 2369–2377 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dailey, M. M., Miller, M. C., Bates, P. J., Lane, A. N. & Trent, J. O. Resolution and characterization of the structural polymorphism of a single quadruplex-forming sequence. Nucleic Acids Res. 38, 4877–4888 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ambrus, A., Chen, D., Dai, J., Jones, R. A. & Yang, D. Z. Solution structure of the biologically relevant G-quadruplex element in the human c-MYC promoter. Implications for G-quadruplex stabilization. Biochemistry 44, 2048–2058 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Fernando, H. et al. A conserved quadruplex motif located in a transcription activation site of the human c-kit oncogene. Biochemistry 45, 7854–7860 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Hsu, S. T. et al. A G-rich sequence within the c-kit oncogene promoter forms a parallel G-quadruplex having asymmetric G-tetrad dynamics. J. Am. Chem. Soc. 131, 13399–13409 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Matsugami, A. et al. An intramolecular quadruplex of (GGA)4 triplet repeat DNA with a G:G:G:G tetrad and a G(:A):G(:A):G(:A):G heptad, and its dimeric interaction. J. Mol. Biol. 313, 255–269 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Phan, A. T., Kuryavyi, V., Burge, S., Neidle, S. & Patel, D. J. Structure of an unprecedented G-quadruplex scaffold in the human c-kit promoter. J. Am. Chem. Soc. 129, 4386–4392 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Phan, A. T., Kuryavyi, V., Gaw, H. Y. & Patel, D. J. Small-molecule interaction with a five-guanine-tract G-quadruplex structure from the human MYC promoter. Nature Chem. Biol. 1, 167–173 (2005).

    Article  CAS  Google Scholar 

  23. Phan, A. T., Modi, Y. S. & Patel, D. J. Propeller-type parallel-stranded G-quadruplexes in the human c-myc promoter. J. Am. Chem. Soc. 126, 8710–8716 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Qin, Y. & Hurley, L. H. Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions. Biochimie 90, 1149–1171 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Seenisamy, J. et al. The dynamic character of the G-quadruplex element in the c-MYC promoter and modification by TMPyP4. J. Am. Chem. Soc. 126, 8702–8709 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Dexheimer, T. S., Sun, D. & Hurley, L. H. Deconvoluting the structural and drug-recognition complexity of the G-quadruplex-forming region upstream of the bcl-2 P1 promoter. J. Am. Chem. Soc. 128, 5404–5415 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun, D., Guo, K., Rusche, J. J. & Hurley, L. H. Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents. Nucleic Acids Res. 33, 6070–6080 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. De Armond, R., Wood, S., Sun, D., Hurley, L. H. & Ebbinghaus, S. W. Evidence for the presence of a guanine quadruplex forming region within a polypurine tract of the hypoxia inducible factor 1α promoter. Biochemistry 44, 16341–16350 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Palumbo, S. L. et al. A novel G-quadruplex-forming GGA repeat region in the c-myb promoter is a critical regulator of promoter activity. Nucleic Acids Res. 36, 1755–1769 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qin, Y., Rezler, E. M., Gokhale, V., Sun, D. & Hurley, L. H. Characterization of the G-quadruplexes in the duplex nuclease hypersensitive element of the PDGF-A promoter and modulation of PDGF-A promoter activity by TMPyP4. Nucleic Acids Res. 35, 7698–7713 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qin, Y. et al. Molecular cloning of the human platelet-derived growth factor receptor β (PDGFR-β) promoter and drug targeting of the G-quadruplex-forming region to repress PDGFR-β expression. Biochemistry 49, 4208–4219 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Cogoi, S., Paramasivam, M., Spolaore, B. & Xodo, L. E. Structural polymorphism within a regulatory element of the human KRAS promoter: formation of G4-DNA recognized by nuclear proteins. Nucleic Acids Res. 36, 3765–3780 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cogoi, S. & Xodo, L. E. G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription. Nucleic Acids Res. 34, 2536–2549 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Paramasivam, M. et al. Protein hnRNP A1 and its derivative Up1 unfold quadruplex DNA in the human KRAS promoter: implications for transcription. Nucleic Acids Res. 37, 2841–2853 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu, Y. & Sugiyama, H. Structural and functional characterizations of the G-quartet and i-motif elements in retinoblastoma susceptibility genes (Rb). Nucleic Acids Symp. Ser. (Oxf.) 49, 177–178 (2005).

    Article  Google Scholar 

  36. Xu, Y. & Sugiyama, H. Formation of the G-quadruplex and i-motif structures in retinoblastoma susceptibility genes (Rb). Nucleic Acids Res. 34, 949–954 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Palumbo, S. L., Ebbinghaus, S. W. & Hurley, L. H. Formation of a unique end-to-end stacked pair of G-quadruplexes in the hTERT core promoter with implications for inhibition of telomerase by G-quadruplex-interactive ligands. J. Am. Chem. Soc. 131, 10878–10891 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schaffitzel, C. et al. In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. Proc. Natl Acad. Sci. USA 98, 8572–8577 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dexheimer, T. S. et al. NM23-H2 may play an indirect role in transcriptional activation of c-myc gene expression but does not cleave the nuclease hypersensitive element III1 . Mol. Cancer Ther. 8, 1363–1377 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. González, V., Guo, K., Hurley, L. H. & Sun, D. Identification and characterization of nucleolin as a c-myc G-quadruplex-binding protein. J. Biol. Chem. 284, 23622–23635 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Postel, E. H., Berberich, S. J., Flint, S. J. & Ferrone, C. A. Human c-myc transcription factor PuF identified as nm23-H2 nucleoside diphosphate kinase, a candidate suppressor of tumor metastasis. Science 261, 478–480 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Berberich, S. J. & Postel, E. H. PuF/NM23-H2/NDPK-B transactivates a human c-myc promoter-CAT gene via a functional nuclease hypersensitive element. Oncogene 10, 2343–2347 (1995).

    CAS  PubMed  Google Scholar 

  43. Lascu, L. The nucleoside diphosphate kinases 1973–2000. J. Bioenerg. Biomembr. 32, 213–214 (2000).

    CAS  PubMed  Google Scholar 

  44. Postel, E. H. & Ferrone, C. A. Nucleoside diphosphate kinase enzyme activity of NM23-H2/PuF is not required for its DNA binding and in vitro transcriptional functions. J. Biol. Chem. 269, 8627–8630 (1994).

    CAS  PubMed  Google Scholar 

  45. Ji, L., Arcinas, M. & Boxer, L. M. The transcription factor, Nm23H2, binds to and activates the translocated c-myc allele in Burkitt's lymphoma. J. Biol. Chem. 270, 13392–13398 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Sun, D. & Hurley, L. H. The importance of negative superhelicity in inducing the formation of G-quadruplex and i-motif structures in the c-Myc promoter: implications for drug targeting and control of gene expression. J. Med. Chem. 52, 2863–2874 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thakur, R. K. et al. Metastases suppressor NM23-H2 interaction with G-quadruplex DNA within c-MYC promoter nuclease hypersensitive element induces c-MYC expression. Nucleic Acids Res. 37, 172–183 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Borgognone, M., Armas, P. & Calcaterra, N. B. Cellular nucleic-acid-binding protein, a transcriptional enhancer of c-Myc, promotes the formation of parallel G-quadruplexes. Biochem. J. 428, 491–498 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Sun, D., Guo, K. & Shin, Y.-J. Evidence of the formation of G-quadruplex structures in the promoter region of the human vascular endothelial growth factor gene. Nucleic Acids Res. 39, 1256–1265 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Huppert, J. L. & Balasubramanian, S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 33, 2908–2916 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kikin, O., D'Antonio, L. & Bagga, P. S. QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res. 34, W676–W682 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Todd, A. K., Johnston, M. & Neidle, S. Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res. 33, 2901–2907 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huppert, J. L. & Balasubramanian, S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 35, 406–413 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Hershman, S. G. et al. Genomic distribution and functional analyses of potential G-quadruplex-forming sequences in Saccharomyces cerevisiae. Nucleic Acids Res. 36, 144–156 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Eddy, J. & Maizels, N. Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res. 34, 3887–3896 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rawal, P. et al. Genome-wide prediction of G4 DNA as regulatory motifs: role in Escherichia coli global regulation. Genome Res. 16, 644–655 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Verma, A. et al. Genome-wide computational and expression analyses reveal G-quadruplex DNA motifs as conserved cis-regulatory elements in human and related species. J. Med. Chem. 51, 5641–5649 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Huppert, J. L., Bugaut, A., Kumari, S. & Balasubramanian, S. G-quadruplexes: the beginning and end of UTRs. Nucleic Acids Res. 36, 6260–6268 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xie, X. et al. Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434, 338–345 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yadav, V. K., Abraham, J. K., Mani, P., Kulshrestha, R. & Chowdhury, S. QuadBase: genome-wide database of G4 DNA — occurrence and conservation in human, chimpanzee, mouse and rat promoters and 146 microbes. Nucleic Acids Res. 36, D381–D385 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Zhang, R., Lin, Y. & Zhang, C. T. Greglist: a database listing potential G-quadruplex regulated genes. Nucleic Acids Res. 36, D372–D376 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Eddy, J. & Maizels, N. Conserved elements with potential to form polymorphic G-quadruplex structures in the first intron of human genes. Nucleic Acids Res. 36, 1321–1333 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Halder, K., Halder, R. & Chowdhury, S. Genome-wide analysis predicts DNA structural motifs as nucleosome exclusion signals. Mol. Biosyst. 5, 1703–1712 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Wong, H. M. & Huppert, J. L. Stable G-quadruplexes are found outside nucleosome-bound regions. Mol. Biosyst. 5, 1713–1719 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Todd, A. K. & Neidle, S. The relationship of potential G-quadruplex sequences in cis-upstream regions of the human genome to SP1-binding elements. Nucleic Acids Res. 36, 2700–2704 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Du, Z., Zhao, Y. & Li, N. Genome-wide analysis reveals regulatory role of G4 DNA in gene transcription. Genome Res. 18, 233–241 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fernando, H. et al. Genome-wide analysis of a G-quadruplex-specific single-chain antibody that regulates gene expression. Nucleic Acids Res. 37, 6716–6722 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Marcu, K. B., Bossone, S. A. & Patel, A. J. myc Function and regulation. Annu. Rev. Biochem. 61, 809–860 (1992).

    Article  CAS  PubMed  Google Scholar 

  69. Spencer, C. A. & Groudine, M. Control of c-myc regulation in normal and neoplastic cells. Adv. Cancer Res. 56, 1–48 (1991).

    Article  CAS  PubMed  Google Scholar 

  70. Eilers, M. & Eisenman, R. N. Myc's broad reach. Genes Dev. 22, 2755–2766 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lutz, W., Leon, J. & Eilers, M. Contributions of Myc to tumorigenesis. Biochim. Biophys. Acta 1602, 61–71 (2002).

    CAS  PubMed  Google Scholar 

  72. Meyer, N. & Penn, L. Z. Reflecting on 25 years with MYC. Nature Rev. Cancer 8, 976–990 (2008).

    Article  CAS  Google Scholar 

  73. Pelengaris, S., Khan, M. & Evan, G. c-MYC: more than just a matter of life and death. Nature Rev. Cancer 2, 764–776 (2002).

    Article  CAS  Google Scholar 

  74. Wierstra, I. & Alves, J. The c-myc promoter: still MysterY and Challenge. Adv. Cancer Res. 99, 113–333 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Musgrove, E. A. et al. Identification of functional networks of estrogen- and c-Myc-responsive genes and their relationship to response to tamoxifen therapy in breast cancer. PLoS ONE 3, e2987 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Brooks, T. A. & Hurley, L. H. Targeting MYC expression through G-quadruplexes. Genes Cancer 1, 641–649 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kettani, A. et al. A dimeric DNA interface stabilized by stacked A.(G.G.G.G.).A hexads and coordinated monovalent cations. J. Mol. Biol. 31, 627–644 (2000).

    Article  CAS  Google Scholar 

  78. Kang, H. J. & Park, H. J. Novel molecular mechanism for actinomycin D activity as an oncogenic promoter G-quadruplex binder. Biochemistry 48, 7392–7398 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Ou, T. M. et al. Stabilization of G-quadruplex DNA and down-regulation of oncogene c-myc by quindoline derivatives. J. Med. Chem. 50, 1465–1474 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Yarden, Y. et al. Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J. 6, 3341–3351 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sakurai, S., Fukasawa, T., Chong, J. M., Tanaka, A. & Fukayama, M. C-kit gene abnormalities in gastrointestinal stromal tumors (tumors of interstitial cells of Cajal). Jpn J. Cancer Res. 90, 1321–1328 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tuveson, D. A. et al. STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: biological and clinical implications. Oncogene 20, 5054–5058 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Rankin, S. et al. Putative DNA quadruplex formation within the human c-kit oncogene. J. Am. Chem. Soc. 127, 10584–10589 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Park, G. H., Plummer, H. K. & Krystal, G. W. Selective Sp1 binding is critical for maximal activity of the human c-kit promoter. Blood 92, 4138–4149 (1998).

    CAS  PubMed  Google Scholar 

  85. Kuryavyi, V., Phan, A. T. & Patel, D. J. Solution structures of all parallel-stranded monomeric and dimeric G-quadruplex scaffolds of the human c-kit2 promoter. Nucleic Acids Res. 38, 6757–6773 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Todd, A. K., Haider, S. M., Parkinson, G. N. & Neidle, S. Sequence occurrence and structural uniqueness of a G-quadruplex in the human c-kit promoter. Nucleic Acids Res. 35, 5799–5808 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shirude, P. S., Okumus, B., Ying, L., Ha, T. & Balasubramanian, S. Single-molecule conformational analysis of G-quadruplex formation in the promoter DNA duplex of the proto-oncogene c-kit. J. Am. Chem. Soc. 129, 7484–7485 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Soldatenkov, V. A., Vetcher, A. A., Duka, T. & Ladame, S. First evidence of a functional interaction between DNA quadruplexes and poly(ADP-ribose) polymerase-1. ACS Chem. Biol. 3, 214–219 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Cogoi, S., Paramasivam, M., Membrino, A., Yokoyama, K. K. & Xodo, L. E. The KRAS promoter responds to MYC-associated zinc finger and poly[ADP-ribose]polymerase 1 proteins which recognize a critical quadruplex-forming GA-element. J. Biol. Chem. 285, 22003–22016 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cogoi, S. et al. Identification of a new G-quadruplex motif in the KRAS promoter and design of pyrene-modified G4-decoys with antiproliferative activity in pancreatic cancer cells. J. Med. Chem. 52, 564–568 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Kumar, R. et al. Myelosuppression and kinase selectivity of multikinase angiogenesis inhibitors. Br. J. Cancer 101, 1717–1723 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lusvarghi, S. et al. Loop and backbone modifications of peptide nucleic acid improve G-quadruplex binding selectivity. J. Am. Chem. Soc. 131, 18415–18424 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Caprio, V. et al. A novel inhibitor of human telomerase derived from 10H-indolo[3,2-b]quinoline. Bioorg. Med. Chem. Lett. 10, 2063–2066 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Guyen, B., Schultes, C. M., Hazel, P., Mann, J. & Neidle, S. Synthesis and evaluation of analogues of 10H-indolo[3,2-b]quinoline as G-quadruplex stabilising ligands and potential inhibitors of the enzyme telomerase. Org. Biomol. Chem. 2, 981–988 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Liu, J.-N. et al. Inhibition of myc promoter and telomerase activity and induction of delayed apoptosis by SYUIQ-5, a novel G-quadruplex interactive agent in leukemia cells. Leukemia 21, 1300–1302 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Zhou, W.-J. et al. G-quadruplex ligand SYUIQ-5 induces autophagy by telomere damage and TRF2 delocalization in cancer cells. Mol. Cancer Ther. 8, 3203–3213 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Wang, P., Leung, C.-H., Ma, D.-L., Yan, S.-C. & Che, C.-M. Structure-based design of platinum(II) complexes as c-myc oncogene down-regulators and luminescent probes for G-quadruplex DNA. Chem. Eur. J. 16, 6900–6911 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Shalaby, T. et al. Disabling c-Myc in childhood medulloblastoma and atypical teratoid/rhabdoid tumor cells by the potent G-quadruplex interactive agent S2T1-6OTD. Mol. Cancer Ther. 9, 167–179 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Bejugam, M. et al. Trisubstituted isoalloxazines as a new class of G-quadruplex binding ligands: small molecule regulation of c-kit oncogene expression. J. Am. Chem. Soc. 129, 12926–12927 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gunaratnam, M. et al. Targeting human gastrointestinal stromal tumor cells with a quadruplex-binding small molecule. J. Med. Chem. 52, 3774–3783 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. McLuckie, K. I. et al. G.quadruplex-binding benzo[a]phenoxazines down-regulate c-KIT expression in human gastric carcinoma cells. J. Am. Chem. Soc. 133, 2658–2663 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Drygin, D. et al. Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis. Cancer Res. 69, 7653–7661 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Duan, W. et al. Design and synthesis of fluoroquinophenoxazines that interact with human telomeric G-quadruplexes and their biological effects. Mol. Cancer Ther. 1, 103–120 (2001).

    CAS  PubMed  Google Scholar 

  104. Jin, C. H. et al. In vivo efficacy of CX-3543, a novel c-Myc oncogene inhibitor, in 95th Annual Meeting, Orlando, Florida. Proc. Am. Assoc. Cancer Res. 2004, Abstr. LB-243 (2004).

  105. Daniely, Y. & Borowiec, J. A. Formation of a complex between nucleolin and replication protein A after cell stress prevents initiation of DNA replication. J. Cell Biol. 149, 799–810 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Daniely, Y., Dimitrova, D. D. & Borowiec, J. A. Stress-dependent nucleolin mobilization mediated by p53-nucleolin complex formation. Mol. Cell. Biol. 22, 6014–6022 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kim, K. et al. Novel checkpoint response to genotoxic stress mediated by nucleolin-replication protein A complex formation. Mol. Cell. Biol. 25, 2463–2474 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kito, S., Morimoto, Y., Tanaka, T., Haneji, T. & Ohba, T. Cleavage of nucleolin and AgNOR proteins during apoptosis induced by anticancer drugs in human salivary gland cells. J. Oral Pathol. Med. 34, 478–485 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Saxena, A., Rorie, C. J., Dimitrova, D., Daniely, Y. & Borowiec, J. A. Nucleolin inhibits Hdm2 by multiple pathways leading to p53 stabilization. Oncogene 25, 7274–7288 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Storck, S., Shukla, M., Dimitrov, S. & Bouvet, P. Functions of the histone chaperone nucleolin in diseases. Subcell. Biochem. 41, 125–144 (2007).

    Article  PubMed  Google Scholar 

  111. Wang, Y. et al. Regulation of DNA replication after heat shock by replication protein A-nucleolin interactions. J. Biol. Chem. 276, 20579–20588 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Campbell, N. H., Parkinson, G. N., Reszka, A. P. & Neidle, S. Structural basis of DNA quadruplex recognition by an acridine drug. J. Am. Chem. Soc. 130, 6722–6724 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Parkinson, G. N., Cuenca, F. & Neidle, S. Topology conservation and loop flexibility in quadruplex–drug recognition: crystal structures of inter- and intramolecular telomeric DNA quadruplex–drug complexes. J. Mol. Biol. 381, 1145–1156 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Collie, G. W. et al. Electrospray mass spectrometry of telomeric RNA (TERRA) reveals the formation of stable multimeric G-quadruplex structures. J. Am. Chem. Soc. 132, 9328–9334 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. New Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Flaherty, K. T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. New Engl. J. Med. 363, 809–819 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Dai, J. X., Chen, D., Jones, R. A., Hurley, L. H. & Yang, D. Z. NMR solution structure of the major G-quadruplex structure formed in the human BCL2 promoter region. Nucleic Acids Res. 34, 5133–5144 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Marian, C. O. et al. The telomerase antagonist, imetelstat, efficiently targets glioblastoma tumor-initiating cells leading to decreased proliferation and tumor growth. Clin. Cancer. Res. 16, 154–163 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ambrus, A. et al. Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res. 34, 2723–2735 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Parkinson, G. N., Lee, M. P. & Neidle, S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417, 876–880 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Wang, Y. & Patel, D. J. Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure 1, 263–282 (1993).

    Article  CAS  PubMed  Google Scholar 

  123. Xu, Y., Noguchi, Y. & Sugiyama, H. The new models of the human telomere d[AGGG(TTAGGG)3] in K+ solution. Bioorg. Med. Chem. 14, 5584–5591 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Luu, K. N. et al. Structure of the human telomere in K+ solution: an intramolecular (3 + 1) G-quadruplex scaffold. J. Am. Chem. Soc. 128, 9963–9970 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Monchaud, D. & Teulade-Fichou, M. P. A hitchhiker's guide to G-quadruplex ligands. Org. Biomol. Chem. 6, 627–636 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Yang, D. & Okamoto, K. Structural insights into G-quadruplexes: towards new anticancer drugs. Future Med. Chem. 2, 619–646 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Tauchi, T. et al. Telomerase inhibition with a novel G-quadruplex-interactive agent, telomestatin: in vitro and in vivo studies in acute leukemia. Oncogene 25, 5719–5725 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Burger, A. M. et al. The G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function. Cancer Res. 65, 1489–1496 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Gunaratnam, M. et al. Mechanism of acridine-based telomerase inhibition and telomere shortening. Biochem. Pharmacol. 74, 679–689 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Cookson, J. C. et al. Pharmacodynamics of the G-quadruplex-stabilizing telomerase inhibitor 3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosulfate (RHPS4) in vitro: activity in human tumor cells correlates with telomere length and can be enhanced, or antagonized, with cytotoxic agents. Mol. Pharmacol. 68, 1551–1558 (2005).

    CAS  PubMed  Google Scholar 

  131. Salvati, E. et al. Telomere damage induced by the G-quadruplex ligand RHPS4 has an antitumor effect. J. Clin. Invest. 117, 3236–3247 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rodriguez, R. et al. A novel small molecule that alters shelterin integrity and triggers a DNA-damage response at telomeres. J. Am. Chem. Soc. 130, 15758–15759 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Salvati, E. et al. PARP1 is activated at telomeres upon G4 stabilization: possible target for telomere-based therapy. Oncogene 29, 6280–6293 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Pennarun, G. et al. Role of ATM in the telomere response to the G-quadruplex ligand 360A. Nucleic Acids Res. 36, 1741–1754 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rizzo, A. et al. Stabilization of quadruplex DNA perturbs telomere replication leading to the activation of an ATR-dependent ATM signaling pathway. Nucleic Acids Res. 37, 5353–5364 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Rahman, K. M. et al. Biaryl polyamides as a new class of DNA quadruplex-binding ligands. Chem. Commun. 2009, 4097–4099 (2009).

    Article  CAS  Google Scholar 

  137. Lane, A. N., Chaires, J. B., Gray, R. D. & Trent, J. O. Stability and kinetics of G-quadruplex structures. Nucleic Acids Res. 36, 5482–5515 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kouzine, F., Sanford, S., Elisha-Feil, Z. & Levens, D. The functional response of upstream DNA to dynamic supercoiling in vivo. Nature Struct. Mol. Biol. 15, 146–154 (2008).

    Article  CAS  Google Scholar 

  139. Simonsson, T., Pribylova, M. & Vorlickova, M. A nuclease hypersensitive element in the human c-myc promoter adopts several distinct i-tetraplex structures. Biochem. Biophys. Res. Commun. 278, 158–166 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Sinden, R. R. DNA Structure and Function 259–286 (Academic Press, San Diego, 1994).

    Book  Google Scholar 

  141. Kendrick, S. & Hurley, L. H. Asserting the role of G-quadruplex/i-motif secondary structures as cis-acting regulatory elements. Pure Appl. Chem. 82, 1609–1621 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. González, V. & Hurley, L. H. The c-MYC NHE III1: function and regulation. Annu. Rev. Pharmacol. Toxicol. 50, 111–129 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Lim, J. K. et al. Quarfloxin phase I clinical data and scientific findings supporting the selection of carcinoid/neuroendocrine tumors as the phase II indication. In: 100th AACR Annual Meeting 2009 Proceedings, Denver, USA. Abstr. 3599, 868–869 (2009).

    Google Scholar 

Download references

Acknowledgements

Research in the Hurley laboratory has been supported by grants from the US National Institutes of Health (CA95060, GM085585 and CA122952), the National Foundation for Cancer Research (VONHOFF0601) and the Leukemia & Lymphoma Society (6225-08). Research in the Balasubramanian laboratory has been supported by project grants from the Biotechnology and Biological Sciences Research Council of the UK and programme funding from Cancer Research UK. Research in the Neidle laboratory has been supported by programme funding from Cancer Research UK, and an FP6 grant from the European Union on molecular cancer medicine. We are grateful to T. Brooks for her careful reading of the manuscript and D. Bishop for preparing, proofreading and editing the final version of the text and figures.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Laurence H. Hurley is a stockholder in Cylene Pharmaceuticals.

All other authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

ClinicalTrials.gov

RCSB Protein Data Bank (PDB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balasubramanian, S., Hurley, L. & Neidle, S. Targeting G-quadruplexes in gene promoters: a novel anticancer strategy?. Nat Rev Drug Discov 10, 261–275 (2011). https://doi.org/10.1038/nrd3428

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3428

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer