Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The spliceosome as a target of novel antitumour drugs

Key Points

  • Bacterial fermentation products with cytostatic and antitumour activity target components of the basal precursor mRNA (pre-mRNA) splicing machinery.

  • At least some of these drugs achieve their effects by interfering with mechanisms that ensure proper recognition of 3′ splice site sequences by spliceosomal U2 small nuclear ribonucleoprotein (snRNP) particles.

  • Rather than global inhibition of the splicing process, cytostatic drug concentrations induce changes in alternative pre-mRNA splicing and downregulation of genes important for cell cycle and tumour progression.

  • The drugs display significantly more potent effects on cancer cells than on normal cells and retain their activity on multidrug-resistant cells.

  • The drug target splicing factor 3B subunit 1 (SF3B1) is a protein component of U2 snRNP that is frequently mutated in myelodysplasias with ring sideroblasts and in chronic lymphocytic leukaemia.

Abstract

Several bacterial fermentation products and their synthetic derivatives display antitumour activities and bind tightly to components of the spliceosome, which is the complex molecular machinery involved in the removal of introns from mRNA precursors in eukaryotic cells. The drugs alter gene expression, including alternative splicing, of genes that are important for cancer progression. A flurry of recent reports has revealed that genes encoding splicing factors, including the drug target splicing factor 3B subunit 1 (SF3B1), are among the most highly mutated in various haematological malignancies such as chronic lymphocytic leukaemia and myelodysplastic syndromes. These observations highlight the role of splicing factors in cancer and suggest that an understanding of the molecular effects of drugs targeting these proteins could open new perspectives for studies of the spliceosome and its role in cancer progression, and for the development of novel antitumour therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spliceosome assembly and catalysis of intron removal.
Figure 2: Examples of regulated alternative splicing events relevant for cancer progression.
Figure 3: Natural antitumour compounds targeting SF3B and their synthetic derivatives.
Figure 4: Molecular effects of the drugs on 3′ splice site recognition and other steps of gene expression.
Figure 5: Recurrent mutations in the drug protein target SF3B1.

Similar content being viewed by others

References

  1. Moore, M. J. & Proudfoot, N. J. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136, 688–700 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Wahl, M. C., Will, C. L. & Luhrmann, R. The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701–718 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Will, C. L. & Luhrmann, R. Spliceosome structure and function. Cold Spring. Harb. Perspect. Biol. 3, a003707 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Blencowe, B. J. Alternative splicing: new insights from global analyses. Cell 126, 37–47 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Nilsen, T. W. & Graveley, B. R. Expansion of the eukaryotic proteome by alternative splicing. Nature 463, 457–463 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cooper, T. A., Wan, L. & Dreyfuss, G. RNA and disease. Cell 136, 777–793 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kalsotra, A. & Cooper, T. A. Functional consequences of developmentally regulated alternative splicing. Nature Rev. Genet. 12, 715–729 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. David, C. J. & Manley, J. L. Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev. 24, 2343–2364 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kaida, D., Schneider-Poetsch, T. & Yoshida, M. Splicing in oncogenesis and tumor suppression. Cancer Sci. 103, 1611–1616 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pio, R. & Montuenga, L. M. Alternative splicing in lung cancer. J. Thorac. Oncol. 4, 674–678 (2009).

    Article  PubMed  Google Scholar 

  11. Harper, S. J. & Bates, D. O. VEGF-A splicing: the key to anti-angiogenic therapeutics? Nature Rev. Cancer 8, 880–887 (2008).

    Article  CAS  Google Scholar 

  12. Cheng, J. et al. Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. Science 263, 1759–1762 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Christofk, H. R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Jeyaraj, S., O'Brien, D. M. & Chandler, D. S. MDM2 and MDM4 splicing: an integral part of the cancer spliceome. Front. Biosci. 14, 2647–2656 (2009).

    Article  CAS  Google Scholar 

  15. Kole, R., Krainer, A. R. & Altman, S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nature Rev. Drug Discov. 11, 125–140 (2012).

    Article  CAS  Google Scholar 

  16. Hua, Y. et al. Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev. 24, 1634–1644 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hua, Y. et al. Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature 478, 123–126 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nakajima, H. et al. New antitumor substances, FR901463, FR901464 and FR901465. II. Activities against experimental tumors in mice and mechanism of action. J. Antibiot. (Tokyo) 49, 1204–1211 (1996).

    Article  CAS  Google Scholar 

  19. Nakajima, H. et al. New antitumor substances, FR901463, FR901464 and FR901465. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. J. Antibiot. (Tokyo) 49, 1196–1203 (1996).

    Article  CAS  Google Scholar 

  20. Nakajima, H., Takase, S., Terano, H. & Tanaka, H. New antitumor substances, FR901463, FR901464 and FR901465. III. Structures of FR901463, FR901464 and FR901465. J. Antibiot. (Tokyo) 50, 96–99 (1997).

    Article  CAS  Google Scholar 

  21. Mizui, Y. et al. Pladienolides, new substances from culture of Streptomyces platensis Mer-11107. III. In vitro and in vivo antitumor activities. J. Antibiot. (Tokyo) 57, 188–196 (2004).

    Article  CAS  Google Scholar 

  22. Sakai, T., Asai, N., Okuda, A., Kawamura, N. & Mizui, Y. Pladienolides, new substances from culture of Streptomyces platensis Mer-11107. II. Physico-chemical properties and structure elucidation. J. Antibiot. (Tokyo) 57, 180–187 (2004).

    Article  CAS  Google Scholar 

  23. Sakai, T. et al. Pladienolides, new substances from culture of Streptomyces platensis Mer-11107. I. Taxonomy, fermentation, isolation and screening. J. Antibiot. (Tokyo) 57, 173–179 (2004).

    Article  CAS  Google Scholar 

  24. Sakai, Y. et al. GEX1 compounds, novel antitumor antibiotics related to herboxidiene, produced by Streptomyces sp. II. The effects on cell cycle progression and gene expression. J. Antibiot. (Tokyo) 55, 863–872 (2002).

    Article  CAS  Google Scholar 

  25. Sakai, Y. et al. GEX1 compounds, novel antitumor antibiotics related to herboxidiene, produced by Streptomyces sp. I. Taxonomy, production, isolation, physicochemical properties and biological activities. J. Antibiot. (Tokyo) 55, 855–862 (2002).

    Article  CAS  Google Scholar 

  26. Albert, B. J. et al. Meayamycin inhibits pre-messenger RNA splicing and exhibits picomolar activity against multidrug-resistant cells. Mol. Cancer Ther. 8, 2308–2318 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kaida, D. et al. Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nature Chem. Biol. 3, 576–583 (2007).

    Article  CAS  Google Scholar 

  28. Kotake, Y. et al. Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nature Chem. Biol. 3, 570–575 (2007). References 27 and 28 describe the discovery of two families of drugs identified by their cytostatic effects (causing arrest in G1 and G2/M phases of the cell cycle) as well as their antitumour properties in animal models. Biochemical experiments identified SF3B, a subcomplex of spliceosomal U2 snRNP particles, as a target of the drugs. Biochemical assays and experiments in cell lines demonstrate inhibition of pre-mRNA splicing by these compounds.

    Article  CAS  Google Scholar 

  29. Fan, L., Lagisetti, C., Edwards, C. C., Webb, T. R. & Potter, P. M. Sudemycins, novel small molecule analogues of FR901464, induce alternative gene splicing. ACS Chem. Biol. 6, 582–589 (2011). This paper describes the total synthesis, in gram quantities, of sudemycins, which are drug analogues that possess the putative common pharmacophore between the SSA-related compound FR901464 and pladienolide B. Sudemycins are potent regulators of alternative splicing. They are significantly more active on tumour cells than on normal cells, enhancing their therapeutic potential in oncology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lagisetti, C. et al. Synthetic mRNA splicing modulator compounds with in vivo antitumor activity. J. Med. Chem. 52, 6979–6990 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lagisetti, C. et al. Antitumor compounds based on a natural product consensus pharmacophore. J. Med. Chem. 51, 6220–6224 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Webb, T. R., Joyner, A. S. & Potter, P. M. The development and application of small molecule modulators of SF3b as therapeutic agents for cancer. Drug Discov. Today 3 Aug 2012 (doi:10.1016/j.drudis.2012.07.013).

    Article  CAS  PubMed  Google Scholar 

  33. Hasegawa, M. et al. Identification of SAP155 as the target of GEX1A (Herboxidiene), an antitumor natural product. ACS Chem. Biol. 6, 229–233 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Yokoi, A. et al. Biological validation that SF3b is a target of the antitumor macrolide pladienolide. FEBS J. 278, 4870–4880 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Corrionero, A., Minana, B. & Valcarcel, J. Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev. 25, 445–459 (2011). Biochemical experiments show that SSA destabilizes 3′ splice site recognition by U2 snRNP, preventing interactions of its target SF3B1 with the pre-mRNA and allowing base pairing of U2 snRNA to decoy, unproductive sites. Alternative 3′ splice sites can be differentially sensitive to the drug depending on the presence of such decoy sites, which leads to changes in alternative splicing in genes important for cell cycle progression, thus providing a potential molecular mechanism for the antitumour effects of the drug.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Roybal, G. A. & Jurica, M. S. Spliceostatin A inhibits spliceosome assembly subsequent to prespliceosome formation. Nucleic Acids Res. 38, 6664–6672 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schmidt, U. et al. Real-time imaging of cotranscriptional splicing reveals a kinetic model that reduces noise: implications for alternative splicing regulation. J. Cell Biol. 193, 819–829 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Abu Dayyeh, B. K., Quan, T. K., Castro, M. & Ruby, S. W. Probing interactions between the U2 small nuclear ribonucleoprotein and the DEAD-box protein, Prp5. J. Biol. Chem. 277, 20221–20233 (2002).

    Article  PubMed  CAS  Google Scholar 

  39. Perriman, R. & Ares, M. Jr. Invariant U2 snRNA nucleotides form a stem loop to recognize the intron early in splicing. Mol. Cell 38, 416–427 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Folco, E. G., Coil, K. E. & Reed, R. The anti-tumor drug E7107 reveals an essential role for SF3b in remodeling U2 snRNP to expose the branch point-binding region. Genes Dev. 25, 440–444 (2011). Biochemical experiments demonstrate that E7107, a pladienolide antitumour drug, modulates the equilibrium between two alternative conformations of U2 snRNA, which results in defective 3′ splice site recognition by U2 snRNP. The results provide a novel mechanism for splicing modulation by small molecules.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. An, M. & Henion, P. D. The zebrafish sf3b1b460 mutant reveals differential requirements for the sf3b1 pre-mRNA processing gene during neural crest development. Int. J. Dev. Biol. 56, 223–237 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Martins, S. B. et al. Spliceosome assembly is coupled to RNA polymerase II dynamics at the 3′ end of human genes. Nature Struct. Mol. Biol. 18, 1115–1123 (2011).

    Article  CAS  Google Scholar 

  43. Brody, Y. et al. The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing. PLoS Biol. 9, e1000573 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Furumai, R. et al. Spliceostatin A blocks angiogenesis by inhibiting global gene expression including VEGF. Cancer Sci. 101, 2483–2489 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Allende-Vega, N. et al. p53 is activated in response to disruption of the pre-mRNA splicing machinery. Oncogene 20 Feb 2012 (doi:10.1038/onc.2012.38).

    Article  PubMed  CAS  Google Scholar 

  46. Hahn, C. N. & Scott, H. S. Spliceosome mutations in hematopoietic malignancies. Nature Genet. 44, 9–10 (2012).

    Article  CAS  Google Scholar 

  47. Edery, P. et al. Association of TALS developmental disorder with defect in minor splicing component U4atac snRNA. Science 332, 240–243 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. He, H. et al. Mutations in U4atac snRNA, a component of the minor spliceosome, in the developmental disorder MOPD I. Science 332, 238–240 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Golas, M. M., Sander, B., Will, C. L., Luhrmann, R. & Stark, H. Major conformational change in the complex SF3b upon integration into the spliceosomal U11/U12 di-snRNP as revealed by electron cryomicroscopy. Mol. Cell 17, 869–883 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Massiello, A., Roesser, J. R. & Chalfant, C. E. SAP155 binds to ceramide-responsive RNA cis-element 1 and regulates the alternative 5′ splice site selection of Bcl-x pre-mRNA. FASEB J. 20, 1680–1682 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Friend, K., Lovejoy, A. F. & Steitz, J. A. U2 snRNP binds intronless histone pre-mRNAs to facilitate U7-snRNP-dependent 3′ end formation. Mol. Cell 28, 240–252 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kyburz, A., Friedlein, A., Langen, H. & Keller, W. Direct interactions between subunits of CPSF and the U2 snRNP contribute to the coupling of pre-mRNA 3′ end processing and splicing. Mol. Cell 23, 195–205 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Di Giammartino, D. C., Nishida, K. & Manley, J. L. Mechanisms and consequences of alternative polyadenylation. Mol. Cell 43, 853–866 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Neilson, J. R. & Sandberg, R. Heterogeneity in mammalian RNA 3′ end formation. Exp. Cell Res. 316, 1357–1364 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Isono, K., Mizutani-Koseki, Y., Komori, T., Schmidt-Zachmann, M. S. & Koseki, H. Mammalian polycomb-mediated repression of Hox genes requires the essential spliceosomal protein Sf3b1. Genes Dev. 19, 536–541 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Abdel-Wahab, O. & Levine, R. The spliceosome as an indicted conspirator in myeloid malignancies. Cancer Cell 20, 420–423 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Damm, F. et al. Mutations affecting mRNA splicing define distinct clinical phenotypes and correlate with patient outcome in myelodysplastic syndromes. Blood 119, 3211–3218 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Visconte, V., Makishima, H., Maciejewski, J. P. & Tiu, R. V. Emerging roles of the spliceosomal machinery in myelodysplastic syndromes and other hematological disorders. Leukemia 15 May 2012 (doi:10.1038/leu.2012.130).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lindsley, R. C. & Ebert, B. L. Molecular pathophysiology of myelodysplastic syndromes. Annu. Rev. Pathol. 28 Aug 2012 (doi:10.1146/annurev-pathol-011811-132436).

    Article  CAS  Google Scholar 

  60. Murati, A. et al. Myeloid malignancies: mutations, models and management. BMC Cancer 12, 304 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Damm, F., Nguyen-Khac, F., Fontenay, M. & Bernard, O. A. Spliceosome and other novel mutations in chronic lymphocytic leukemia and myeloid malignancies. Leukemia 26, 2027–2031 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Makishima, H. et al. Mutations in the spliceosome machinery, a novel and ubiquitous pathway in leukemogenesis. Blood 119, 3203–3210 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011). Whole-exome sequencing of samples from MDSs reveal frequent mutations in genes encoding splicing factors, particularly proteins involved in 3′ splice site recognition, such as U2AF35 and SF3B1. The mutations are mutually exclusive and correlate with abnormal RNA splicing. The results represent a compelling argument for splicing alterations as contributors to the pathogenesis of myeloid neoplasms.

    Article  CAS  PubMed  Google Scholar 

  64. Papaemmanuil, E. et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N. Engl. J. Med. 365, 1384–1395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hirabayashi, S. et al. Spliceosomal gene aberrations are rare, coexist with oncogenic mutations, and are unlikely to exert a driver effect in childhood MDS and JMML. Blood 119, e96–e99 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Matsuda, K. et al. Long-term haematological improvement after non-intensive or no chemotherapy in juvenile myelomonocytic leukaemia and poor correlation with adult myelodysplasia spliceosome-related mutations. Br. J. Haematol. 157, 647–650 (2012).

    Article  PubMed  Google Scholar 

  67. Lasho, T. L. et al. SF3B1 mutations in primary myelofibrosis: clinical, histopathology and genetic correlates among 155 patients. Leukemia 26, 1135–1137 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Visconte, V. et al. SF3B1, a splicing factor is frequently mutated in refractory anemia with ring sideroblasts. Leukemia 26, 542–545 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Malcovati, L. et al. Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood 118, 6239–6246 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cui, R. et al. Clinical importance of SF3B1 mutations in Chinese with myelodysplastic syndromes with ring sideroblasts. Leuk. Res. 36, 1428–1433 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Patnaik, M. M. et al. SF3B1 mutations are prevalent in myelodysplastic syndromes with ring sideroblasts but do not hold independent prognostic value. Blood 119, 569–572 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jeromin, S. et al. High frequencies of SF3B1 and JAK2 mutations in refractory anemia with ring sideroblasts associated with marked thrombocytosis strengthen the assignment to the category of myelodysplastic/myeloproliferative neoplasms. Haematologica 28 Aug 2012 (doi:10.3324/haematol.2012.072538).

    Article  PubMed  Google Scholar 

  73. Visconte, V. et al. SF3B1 haploinsufficiency leads to formation of ring sideroblasts in myelodysplastic syndromes. Blood 23 Jul 2012 (doi:10.1182/blood-2012-05-430876). RSs are the most conspicuous pathological feature correlating with mutations in SF3B1 in myelodysplasias. The authors show that pharmacological inhibition of SF3B1 induces RSs in healthy bone marrow cells, and that bone marrow aspirates from SF3B1 heterozygous knockout mice also contain RSs. These results demonstrate that the RS phenotype is caused by loss of function of SF3B1, possibly associated with splicing defects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Thol, F. et al. Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood 119, 3578–3584 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Quesada, V. et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nature Genet. 44, 47–52 (2012).

    Article  CAS  Google Scholar 

  76. Wang, L. et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N. Engl. J. Med. 365, 2497–2506 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rossi, D. et al. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness. Blood 118, 6904–6908 (2011). References 75–77 describe the results of whole-exome sequencing of CLL samples, revealing frequent mutations in the gene encoding the splicing factor SF3B1 that correlate with faster disease progression, resistance to fludarabine and poor overall survival. A striking pattern of recurrent amino acid changes was observed, clustering in the HEAT repeats domain. Alterations in RNA processing associated with the presence of the mutations were found, offering a potential mechanism to understand the contribution of RNA processing to CLL progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Quesada, V., Ramsay, A. J. & Lopez-Otin, C. Chronic lymphocytic leukemia with SF3B1 mutation. N. Engl. J. Med. 366, 2530 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Pleasance, E. D. et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463, 191–196 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Wood, L. D. et al. The genomic landscapes of human breast and colorectal cancers. Science 318, 1108–1113 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Ellis, M. J. et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486, 353–360 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Groves, M. R. & Barford, D. Topological characteristics of helical repeat proteins. Curr. Opin. Struct. Biol. 9, 383–389 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Xing, Y. et al. Structure of protein phosphatase 2A core enzyme bound to tumor-inducing toxins. Cell 127, 341–353 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Golas, M. M., Sander, B., Will, C. L., Luhrmann, R. & Stark, H. Molecular architecture of the multiprotein splicing factor SF3b. Science 300, 980–984 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Graubert, T. A. et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nature Genet. 44, 53–57 (2012).

    Article  CAS  Google Scholar 

  86. Wu, S. J. et al. The clinical implication of SRSF2 mutation in patients with myelodysplastic syndrome and its stability during disease evolution. Blood 29 Aug 2012 (doi:10.1182/blood-2012-02-412296).

    Article  CAS  PubMed  Google Scholar 

  87. Ogle, J. M. & Ramakrishnan, V. Structural insights into translational fidelity. Annu. Rev. Biochem. 74, 129–177 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Berg, M. G. et al. A quantitative high throughput in vitro splicing assay identifies inhibitors of spliceosome catalysis. Mol. Cell. Biol. 32, 1271–1283 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. O'Brien, K., Matlin, A. J., Lowell, A. M. & Moore, M. J. The biflavonoid isoginkgetin is a general inhibitor of pre-mRNA splicing. J. Biol. Chem. 283, 33147–33154 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shkreta, L. et al. Anticancer drugs affect the alternative splicing of Bcl-x and other human apoptotic genes. Mol. Cancer Ther. 7, 1398–1409 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Roca, X. et al. Widespread recognition of 5′ splice sites by noncanonical base-pairing to U1 snRNA involving bulged nucleotides. Genes Dev. 26, 1098–1109 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Smith, D. J., Konarska, M. M. & Query, C. C. Insights into branch nucleophile positioning and activation from an orthogonal pre-mRNA splicing system in yeast. Mol. Cell 34, 333–343 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gozani, O., Potashkin, J. & Reed, R. A potential role for U2AF-SAP 155 interactions in recruiting U2 snRNP to the branch site. Mol. Cell. Biol. 18, 4752–4760 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Warkocki, Z. et al. Reconstitution of both steps of Saccharomyces cerevisiae splicing with purified spliceosomal components. Nature Struct. Mol. Biol. 16, 1237–1243 (2009).

    Article  CAS  Google Scholar 

  95. Lardelli, R. M., Thompson, J. X., Yates, J. R. & Stevens, S. W. Release of SF3 from the intron branchpoint activates the first step of pre-mRNA splicing. RNA 16, 516–528 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wang, C. et al. Phosphorylation of spliceosomal protein SAP 155 coupled with splicing catalysis. Genes Dev. 12, 1409–1414 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Egecioglu, D. E. & Chanfreau, G. Proofreading and spellchecking: a two-tier strategy for pre-mRNA splicing quality control. RNA 17, 383–389 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang, Z. & Burge, C. B. Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 14, 802–813 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen, M. & Manley, J. L. Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nature Rev. Mol. Cell Biol. 10, 741–754 (2009).

    Article  CAS  Google Scholar 

  100. Witten, J. T. & Ule, J. Understanding splicing regulation through RNA splicing maps. Trends Genet. 27, 89–97 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Barash, Y. et al. Deciphering the splicing code. Nature 465, 53–59 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Heyd, F. & Lynch, K. W. Degrade, move, regroup: signaling control of splicing proteins. Trends Biochem. Sci. 36, 397–404 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kornblihtt, A. R. Coupling transcription and alternative splicing. Adv. Exp. Med. Biol. 623, 175–189 (2007).

    Article  PubMed  Google Scholar 

  104. Luco, R. F., Allo, M., Schor, I. E., Kornblihtt, A. R. & Misteli, T. Epigenetics in alternative pre-mRNA splicing. Cell 144, 16–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zaharieva, E., Chipman, K. & Soller, M. Alternative splicing interference by xenobiotics. Toxicology 296, 1–12 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Yoon, S. O., Shin, S., Lee, H. J., Chun, H. K. & Chung, A. S. Isoginkgetin inhibits tumor cell invasion by regulating phosphatidylinositol 3-kinase/Akt-dependent matrix metalloproteinase-9 expression. Mol. Cancer Ther. 5, 2666–2675 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Stoilov, P., Lin, C. H., Damoiseaux, R., Nikolic, J. & Black, D. L. A high-throughput screening strategy identifies cardiotonic steroids as alternative splicing modulators. Proc. Natl Acad. Sci. USA 105, 11218–11223 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Anderson, E. S. et al. The cardiotonic steroid digitoxin regulates alternative splicing through depletion of the splicing factors SRSF3 and TRA2B. RNA 18, 1041–1049 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Soret, J. et al. Selective modification of alternative splicing by indole derivatives that target serine-arginine-rich protein splicing factors. Proc. Natl Acad. Sci. USA 102, 8764–8769 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ghigna, C. et al. Pro-metastatic splicing of Ron proto-oncogene mRNA can be reversed: therapeutic potential of bifunctional oligonucleotides and indole derivatives. RNA Biol. 7, 495–503 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Mermoud, J. E., Cohen, P. & Lamond, A. I. Ser/Thr-specific protein phosphatases are required for both catalytic steps of pre-mRNA splicing. Nucleic Acids Res. 20, 5263–5269 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang, M. L., Lorson, C. L., Androphy, E. J. & Zhou, J. An in vivo reporter system for measuring increased inclusion of exon 7 in SMN2 mRNA: potential therapy of SMA. Gene Ther. 8, 1532–1538 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Zhang, Z. et al. Synthesis and characterization of pseudocantharidins, novel phosphatase modulators that promote the inclusion of exon 7 into the SMN (survival of motoneuron) pre-mRNA. J. Biol. Chem. 286, 10126–10136 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pilch, B. et al. Specific inhibition of serine- and arginine-rich splicing factors phosphorylation, spliceosome assembly, and splicing by the antitumor drug NB-506. Cancer Res. 61, 6876–6884 (2001).

    CAS  PubMed  Google Scholar 

  115. Muraki, M. et al. Manipulation of alternative splicing by a newly developed inhibitor of Clks. J. Biol. Chem. 279, 24246–24254 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Nishida, A. et al. Chemical treatment enhances skipping of a mutated exon in the dystrophin gene. Nature Commun. 2, 308 (2011).

    Article  CAS  Google Scholar 

  117. Fukuhara, T. et al. Utilization of host SR protein kinases and RNA-splicing machinery during viral replication. Proc. Natl Acad. Sci. USA 103, 11329–11333 (2006).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  118. Chang, J. G. et al. Small molecule amiloride modulates oncogenic RNA alternative splicing to devitalize human cancer cells. PLoS ONE 6, e18643 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chang, W. H. et al. Amiloride modulates alternative splicing in leukemic cells and resensitizes Bcr-AblT315I mutant cells to imatinib. Cancer Res. 71, 383–392 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Younis, I. et al. Rapid-response splicing reporter screens identify differential regulators of constitutive and alternative splicing. Mol. Cell. Biol. 30, 1718–1728 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ghosh, A. K. & Anderson, D. D. Enantioselective total synthesis of pladienolide B: a potent spliceosome inhibitor. Org. Lett. 14, 4730–4733 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Osman, S. et al. Structural requirements for the antiproliferative activity of pre-mRNA splicing inhibitor FR901464. Chemistry 17, 895–904 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Cironi, C. López-Otín, P. Potter, V. Quesada, J. Vilardell, T. Webb and members of our laboratory for discussions and comments on the manuscript, and three anonymous reviewers for useful suggestions. Work in our group has been supported by Fundación Botín, Consolider RNAREG, Ministerio de Economía y Competitividad, AGAUR, AICR and EURASNET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Valcárcel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

ClinicalTrials.gov

FURTHER INFORMATION

Juan Valcárcel's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonnal, S., Vigevani, L. & Valcárcel, J. The spliceosome as a target of novel antitumour drugs. Nat Rev Drug Discov 11, 847–859 (2012). https://doi.org/10.1038/nrd3823

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3823

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer