Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structural biology of insulin and IGF1 receptors: implications for drug design

Key Points

  • The cloning of the complementary DNAs and genes for the insulin and insulin-like growth factor 1 (IGF1) receptors, as well as tertiary-structure predictions, have provided valuable insights into the overall domain organization of the receptors.

  • No crystal structure of the insulin- or IGF1-receptor complexes with their ligands is yet available, but crystal structures of the large domain 1 (L1)–Cys-rich (CR)–L2 amino-terminal fragment of the IGF1 receptor, and of the insulin- and IFG1-receptor tyrosine-kinase domains both in the inactive and activated conformation, are available.

  • Single-molecule electron-microscopic imaging of the insulin receptor has given some indications of the overall organization of the extracellular receptor domains, although there have been variable results and a tendency in some cases to over-interpret low-resolution data.

  • Knowledge of the structure of several receptor tyrosine-kinase domains has led to attempts to screen for, or design, mimetics or inhibitors, with some degree of success. Agonists or antagonists that target the ligand-binding sites might have a greater chance to be selective, hence the importance of understanding the nature of the ligand-binding mechanism.

  • Mapping the ligand-binding sites on the insulin and IGF1 receptors by receptor crosslinking with photoreactve ligands, by examining the binding selectivity of chimeric insulin–IGF1 receptors, by alanine-scanning mutagenesis of receptor domains and by reconstitution of minimized receptor constructs with low or high affinity, has provided a wealth of information on the binding epitopes.

  • Likewise, mapping of the residues on the insulin molecule that are involved in receptor binding has progressed, and has revealed the existence of a second binding surface in addition to the so-called 'classical' binding surface. The information on IGF1 and IGF2 is more fragmentary.

  • Alternative crosslinking models that explain the complex ligand-binding kinetics of the insulin and IGF1 receptors (including negative cooperativity) are discussed.

  • Various strategies for designing agonists or antagonists of a dimerizing receptor are discussed, building on the experience acquired with the erythropoietin receptor.

Abstract

Type 2 diabetes mellitus — in which the body produces insufficient amounts of insulin or the insulin that is produced does not function properly to control blood glucose — is an increasingly common disorder. Prospective clinical studies have proven the benefits of tighter glucose control in reducing the frequency and severity of complications of the disease, leading to the advocation of earlier and more aggressive use of insulin therapy. Given the reluctance of patients with type 2 diabetes to inject themselves with insulin, orally active insulin mimetics would be a major therapeutic advance. Here, we discuss recent progress in understanding the structure–function relationships of the insulin and insulin-like growth factor 1 (IGF1) receptors, their mechanism of activation and their implications for the design of insulin-receptor agonists for diabetes therapy and IGF1-receptor antagonists for cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of the insulin and IGF1 receptors and their ligands.
Figure 2: Structure of the tyrosine-kinase domain of the insulin receptor.
Figure 3: Summary of the various electron-microscopic studies of the insulin receptor.
Figure 4: Strategies for drug discovery with a dimeric or dimerizing receptor tyrosine kinase.
Figure 5: Ligand binding to the insulin and IGF1 receptors.

Similar content being viewed by others

References

  1. Amos, A. F., McCarty, D. J. & Zimmet, P. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabetic Med. 14 (Suppl. 5), S1–S85 (1997).

    PubMed  Google Scholar 

  2. Bilous, R. W. & Alberti, K. G. M. M. in New Antidiabetic Drugs (eds Bailey, C. J. & Flat, P. R.) 19–32 (Smith-Gordon and Nishimura, London, United Kingdom and Niigata–Shi, Japan, 1990).

    Google Scholar 

  3. Yudkin, J. S. Therapeutic targets for type 2 diabetes post-UKPDS. J. R. Coll. Phys. Lond. 34, 254–256 (2000).

    CAS  Google Scholar 

  4. Standl, E. Insulin analogues — state of the art. Horm. Res. 57 (Suppl. 1), 40–45 (2002).

    CAS  PubMed  Google Scholar 

  5. Owens, D. R. New horizons — alternative routes for insulin therapy. Nature Rev. Drug Discov. 1, 529–540 (2002).

    CAS  Google Scholar 

  6. De Meyts, P. Insulin and insulin-like growth factors: the paradox of signaling specificity. Growth Horm. IGF Res. 12, 81–83 (2002).

    CAS  PubMed  Google Scholar 

  7. Adams, T. E., Epa, V. C., Garrett, T. P. & Ward, C. W. Structure and function of the type 1 insulin-like growth factor receptor. Cel. Mol. Life Sci. 57, 1050–1093 (2000)A thorough review of the structure–function relationships of the IGF1 and insulin receptors.

    CAS  Google Scholar 

  8. Blume, A. J., Beasley, J. & Goldstein, N. I. The use of peptides in diogenesis: a novel approach to drug discovery and phenomics. Biopolymers 55, 347–356 (2000).

    CAS  PubMed  Google Scholar 

  9. Khandwala, H. M., McCutcheon, I. E., Flyvbjerg, A. & Friend, K. E. The effects of insulin-like growth factors on tumorigenesis and neoplastic growth. Endo. Rev. 21, 215–244 (2000).

    CAS  Google Scholar 

  10. Ebina, Y. et al. The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell 40, 747–758 (1985).

    CAS  PubMed  Google Scholar 

  11. Ullrich, A. et al. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313, 756–761 (1985).References 10 and 11 report the cloning of the insulin receptor cDNA (the two groups happened to clone one of the alternative isoforms; see reference 19).

    CAS  PubMed  Google Scholar 

  12. Whittaker, J. et al. High-level expression of human insulin receptor cDNA in mouse NIH 3T3 cells. Proc. Natl Acad. Sci. USA 84, 5237–5241 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ullrich, A. et al. Insulin-like growth factor-I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J. 5, 2503–2512 (1986).Cloning of the IGF1-receptor cDNA.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Seino, S., Seino, M., Nishi, S. & Bell, G. I. Structure of the human insulin receptor gene and characterization of its promoter. Proc. Natl Acad. Sci. USA 86, 114–118 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Abbott, A. M., Bueno, R., Pedrini, M. T., Murray, J. M. & Smith, R. J. Insulin-like growth factor I receptor gene structure. J. Biol. Chem. 267, 10759–10763 (1992).References 14 and 15 report the sequencing of the insulin- and IGF1-receptor genes and their relationship to the modular structure of the receptors.

    CAS  PubMed  Google Scholar 

  16. Hubbard, S. R. & Till, J. H. Protein tyrosine kinase structure and function. Ann. Rev. Biochem. 69, 373–398 (2000).

    CAS  PubMed  Google Scholar 

  17. Heldin, C. H. & Ostman, A. Ligand-induced dimerization of growth factor receptors: variations on the theme. Cytokine Growth Factor Rev. 7, 3–10 (1996).

    CAS  PubMed  Google Scholar 

  18. Bass, J., Chiu, G., Argon, Y. & Steiner, D. F. Folding of insulin receptor monomers is facilitated by the molecular chaperones calnexin and calreticulin and impaired by rapid dimerization. J. Cell Biol. 141, 637–646 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Seino, S. & Bell, G. I. Alternative splicing of human insulin receptor messenger RNA. Biochem. Biophys. Res. Comm. 159, 312–316 (1989).

    CAS  PubMed  Google Scholar 

  20. Soos, M., Field, C. E. & Siddle, K. Purified hybrid insulin/insulin-like growth factor-I receptors bind insulin-like growth factor-I, but not insulin, with high affinity. Biochem. J. 290, 419–426 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Pandini, G. et al. Insulin/IGF1 hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. J. Biol. Chem. 2002 Jul 22 (doi: 10.1074/jbc.M202766200).

  22. Bajaj, M., Waterfield, M. D., Schlessinger, J., Taylor, W. R. & Blundell, T. L. On the tertiary structure of the extracellular domains of the epidermal growth factor and insulin receptors. Biochim. Biophys. Acta 916, 220–226 (1987).An insightful attempt at predicting the tertiary structure of the amino-terminal domain of the insulin, IGF1 and EGF receptors that proved to be largely correct.

    CAS  PubMed  Google Scholar 

  23. Ward, C. W., Hoyne, P. A. & Flegg, R. H. Insulin and epidermal growth factor receptors contain the cysteine repeat motif found in the tumor necrosis factor receptor. Proteins 22, 141–153 (1995).

    CAS  PubMed  Google Scholar 

  24. Marino-Buslje, C., Mizuguchi, K., Siddle, K. & Blundell, T. L. A third fibronectin type III domain in the extracellular region of the insulin receptor family. FEBS Lett. 441, 331–336 (1998).

    CAS  PubMed  Google Scholar 

  25. Mulhern, T. D., Booker, G. W. & Cosgrove, L. A third fibronectin-type-III domain in the insulin-family receptors. Trends Biol. Sci. 23, 465–466 (1998).

    CAS  Google Scholar 

  26. Ward, C. W. Members of the insulin receptor family contain three fibronectin type III domains. Growth Factors 16, 315–322 (1999).

    CAS  PubMed  Google Scholar 

  27. Garrett, T. P. et al. Crystal structure of the first three domains of the type-1 insulin-like growth factor receptor. Nature 394, 395–399 (1998).This study determined the three-dimensional structure of the amino-terminal domain of the IGF1 receptor, and confirmed the predictions of references 22 and 23 . This fragment does not bind the ligand.

    CAS  PubMed  Google Scholar 

  28. Kristensen, C., Wiberg, F. C., Schäffer, L. & Andersen, A. S. Expression and characterization of a 70-kDa fragment of the insulin receptor that binds insulin. Minimizing ligand binding domain of the insulin receptor. J. Biol. Chem. 273, 17780–17786 (1998).The first demonstration that addition of a 12-residue carboxy-terminal peptide confers binding affinity to the domain that was crystallized in reference 27.

    CAS  PubMed  Google Scholar 

  29. Molina, L., Marino-Buslje, C., Quinn, D. R. & Siddle, K. Structural domains of the insulin receptor and IGF receptor required for dimerisation and ligand binding. FEBS Lett. 467, 226–230 (2000).

    CAS  PubMed  Google Scholar 

  30. Hubbard, S. R., Wei, L., Ellis, L. & Hendrickson, W. A. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372, 746–754 (1994).

    CAS  PubMed  Google Scholar 

  31. Hubbard, S. R. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 16, 5572–5581 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Favelyukis, S., Till, J. H., Hubbard, S. R. & Miller, W. T. Structure and autoregulation of the insulin-like growth factor 1 receptor kinase. Nature Struct. Biol. 8, 1058–1063 (2001).

    CAS  PubMed  Google Scholar 

  33. Pautsch, A. et al. Crystal structure of bisphosphorylated IGF-1 receptor kinase: insight into domain movements upon kinase activation. Structure 9, 955–965 (2001).References 30–33 report the three-dimensional structures of the inactive and activated insulin- and IGF1-receptor kinases.

    CAS  PubMed  Google Scholar 

  34. Schaefer, E. M., Erickson, H. P., Federwisch, M., Wollmer, A. & Ellis, L. Structural organization of the human insulin receptor ectodomain. J. Biol. Chem. 267, 23393–23402 (1992).

    CAS  PubMed  Google Scholar 

  35. Tulloch, P. A. et al. Single-molecule imaging of human insulin receptor ectodomain and its Fab complexes. J. Struct. Biol. 125, 11–18 (1999).An electron micrograph structure of the insulin-receptor ectodomain is validated by the use of monoclonal antibodies.

    CAS  PubMed  Google Scholar 

  36. Woldin, C. N., Hing, F. S., Lee, J., Pilch, P. F. & Shipley, G. G. Structural studies of the detergent-solubilized and vesicle-reconstituted insulin receptor. J. Biol. Chem. 274, 34981–34992 (1999).

    CAS  PubMed  Google Scholar 

  37. Christiansen, K., Tranum-Jensen, J., Carlsen, J. & Vinten, J. A model for the quaternary structure of human placental insulin receptor deduced from electron microscopy. Proc. Natl Acad. Sci. USA 88, 249–252 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tranum-Jensen, J., Christiansen, K., Carlsen, J., Brenzel, G. & Vinten, J. Membrane topology of insulin receptors reconstituted into lipid vesicles. J. Membr. Biol. 140, 215–223 (1994).

    CAS  PubMed  Google Scholar 

  39. Luo, R. Z., Beniac, D. R., Fernandes, A., Yip, C. C. & Ottensmeyer, F. P. Quaternary structure of the insulin–insulin receptor complex. Science 285, 1077–1080 (1999).

    CAS  PubMed  Google Scholar 

  40. Ottensmeyer, F. P., Beniac, D. R., Luo, R. Z. & Yip, C. C. Mechanism of transmembrane signaling: insulin binding and the insulin receptor. Biochemistry 39, 12103–12112 (2000).References 39 and 40 are an attempt at fitting three-dimensional structures of insulin-receptor domains in cryoelectron microscopic images; details might have to be taken with a pinch of salt.

    CAS  PubMed  Google Scholar 

  41. Slade, A., Luh, J., Ho, S. & Yip, C. M. Single molecule imaging of supported planar lipid bilayer-reconstituted human insulin receptors by in situ scanning probe microscopy. J. Struct. Biol. 137, 283–291 (2002).

    CAS  PubMed  Google Scholar 

  42. Saltiel, A. R. New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell 104, 517–529 (2001).

    CAS  PubMed  Google Scholar 

  43. Frick, W., Bauer, A., Bauer, J., Wied, S. & Muller, G. Structure–activity relationship of synthetic phosphoinositolglycans mimicking metabolic insulin action. Biochemistry 37, 13421–13436 (1998).

    CAS  PubMed  Google Scholar 

  44. Elchebly, M. et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283, 1544–1548 (1999).

    CAS  PubMed  Google Scholar 

  45. Clement, S. et al. The lipid phosphatase SHIP2 controls insulin sensitivity. Nature 409, 92–97 (2001).

    CAS  PubMed  Google Scholar 

  46. Zhang, B. et al. Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. Science 284, 974–977 (1999).Not likely to end up in clinical trials, but establishes the proof-of-concept for direct insulin-receptor-kinase activation.

    CAS  PubMed  Google Scholar 

  47. Air, E. L. et al. Small molecule insulin mimetics reduce food intake and body weight and prevent development of obesity. Nature Med. 8, 179–183 (2002).

    CAS  PubMed  Google Scholar 

  48. Manchem, V. P. et al. A novel small molecule that directly sensitizes the insulin receptor in vitro and in vivo. Diabetes 50, 824–830 (2001).

    CAS  PubMed  Google Scholar 

  49. Levitzki, A. & Gazit, A. Tyrosine kinase inhibition: an approach to drug development. Science 267, 1782–1788 (1995).

    CAS  PubMed  Google Scholar 

  50. Mendel, D. B. et al. Development of SU5416, a selective small molecule inhibitor of VEGF receptor tyrosine kinase activity, as an anti-angiogenesis agent. Anticancer Drug Des. 15, 29–41 (2000).

    CAS  PubMed  Google Scholar 

  51. Rewcastle, G. W. et al. Tyrosine kinase inhibitors. 14. Structure–activity relationships for methylamino-substituted derivatives of 4-[(3-bromophenyl)amino]-6-(methylamino)-pyrido[3,4-d]pyrimidine (PD 158780), a potent and specific inhibitor of the tyrosine kinase activity of receptors for the EGF family of growth factors. J. Med. Chem. 41, 742–751 (1998).

    CAS  PubMed  Google Scholar 

  52. Mohammadi, M. et al. Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. EMBO J. 17, 5896–5904 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bilder, G. et al. Restenosis following angioplasty in the swine coronary artery is inhibited by an orally active PDGF-receptor tyrosine kinase inhibitor, RPR101511A. Circulation 99, 3292–3299 (1999).

    CAS  PubMed  Google Scholar 

  54. Parang, K. et al. Mechanism-based design of a protein kinase inhibitor. Nature Struct. Biol. 8, 37–41 (2001).

    CAS  PubMed  Google Scholar 

  55. De Meyts, P., Roth, J., Neville, J., Gavin, J. R. & Lesniak, M. A. Insulin interactions with its receptors: experimental evidence for negative cooperativity. Biochem. Biophys. Res. Comm. 55, 154–161 (1973).

    CAS  PubMed  Google Scholar 

  56. De Meyts, P., Van Obberghen, E., Roth, J., Brandenburg, D. & Wollmer, A. Mapping of the residues of the receptor binding region of insulin responsible for the negative cooperativity. Nature 273, 504–509 (1978).

    CAS  PubMed  Google Scholar 

  57. De Meyts, P. The structural basis of insulin and insulin-like growth factor-I (IGF1) receptor binding and negative cooperativity, and its relevance to mitogenic versus metabolic signaling. Diabetologia 37 (Suppl. 2), S135–S148 (1994).References 55–57 retrace the history of the concept of negative cooperativity at the insulin receptor from initial discovery, to description of the cooperative site, to discussion of plausible models that integrate known kinetic data.

    CAS  PubMed  Google Scholar 

  58. Christoffersen, C. T. et al. Negative cooperativity in the insulin-like growth factor-I (IGF1) receptor and a chimeric IGF1/insulin receptor. Endocrinology 135, 472–475 (1994).

    CAS  PubMed  Google Scholar 

  59. Zhang, B. & Roth, R. A. A region of the insulin receptor important for ligand binding (residues 450–601) is recognized by patients autoimmune antibodies and inhibitory monoclonal antibodies. Proc. Natl Acad. Sci. USA 88, 9858–9862 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kadowaki, H. et al. Mutagenesis of lysine 460 in the human insulin receptor. Effects upon receptor recycling and cooperative interactions among binding sites. J. Biol. Chem. 265, 21285–21296 (1990).

    CAS  PubMed  Google Scholar 

  61. Kjeldsen, T. et al. The ligand specificities of the insulin receptor and the insulin-like growth factor-I receptor reside in different regions of a common binding site. Proc. Natl Acad. Sci. USA 88, 4404–4408 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Andersen, A. S. et al. Identification of determinants that confer ligand specificity on the insulin receptor. J. Biol. Chem. 267, 13681–13686 (1992).

    CAS  PubMed  Google Scholar 

  63. Schumacher, R., Mosthaf, L., Schlessinger, J., Brandenburg, D. & Ullrich, A. Insulin and insulin-like growth factor-I binding specificity is determined by distinct regions of their cognate receptors. J. Biol. Chem. 266, 19288–19295 (1991).References 54–56 provide clues to the structural basis for ligand selectivity of the insulin and IGF1 receptors.

    CAS  PubMed  Google Scholar 

  64. Tavare, J. M. & Siddle, K. Mutational analysis of insulin receptor function: consensus and controversy. Biochim. Biophys. Acta 1178, 21–39 (1993).

    CAS  PubMed  Google Scholar 

  65. Hoyne, P. A., Elleman, T. C., Adams, T. E., Richards, K. M. & Ward, C. W. Properties of an insulin receptor with an IGF-1 receptor loop exchange in the cysteine-rich region. FEBS Lett. 469, 57–60 (2000).

    CAS  PubMed  Google Scholar 

  66. Williams, P. F., Mynarcik, D. C., Qin, Y. G. & Whittaker, J. Mapping of an NH2-terminal ligand binding site of the insulin receptor by alanine scanning mutagenesis. J. Biol. Chem 270, 1–5 (1995).The first alanine-scanning mutagenesis of the insulin receptor.

    Google Scholar 

  67. De Meyts, P. et al. Identification of a ligand-binding region of the human insulin receptor encoded by the second exon of the gene. Molecular Endocrinology 4, 409–416 (1990).

    CAS  PubMed  Google Scholar 

  68. Mynarcik, D. C., Yu, G. Q. & Whittaker, J. Alanine-scanning mutagenesis of a C-terminal ligand binding domain of the insulin receptor α subunit. J. Biol. Chem. 271, 2439–2442 (1996).

    CAS  PubMed  Google Scholar 

  69. Mynarcik, D. C., Williams, P. F., Schffer, L., Yu, G. Q. & Whittaker, J. Analog binding properties of insulin receptor mutants. Identification of amino acids interacting with the COOH terminus of the B chain of the insulin molecule. J. Biol. Chem 272, 2077–2081 (1997).

    CAS  PubMed  Google Scholar 

  70. Taylor, S. I. et al. Mutations in the insulin receptor gene. Endocr. Rev. 13, 566–595 (1992).

    CAS  PubMed  Google Scholar 

  71. Kadowaki, T., Kadowaki, H., Accili, D. & Taylor, S. I. Substitution of lysine for asparagine at position 15 in the α-subunit of the human insulin receptor. A mutation that impairs transport of receptors to the cell surface and decreases the affinity of insulin binding. J. Biol. Chem. 265, 19143–19150 (1990).

    CAS  PubMed  Google Scholar 

  72. Rouard, M. et al. Congenital insulin resistance associated with a conformational alteration in a conserved beta-sheet in the insulin receptor L1 domain. J. Biol. Chem. 274, 18487–18491 (1999).

    CAS  PubMed  Google Scholar 

  73. Longo, N., Langley, S. D., Griffin, L. D. & Elsas, L. J. Activation of glucose transport by a natural mutation in the human insulin receptor. Proc. Natl Acad. Sci. USA 90, 60–64 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Grønskov, K., Vissing, H., Shymko, R. M., Tornqvist, H. & De Meyts, P. Mutation of arginine 86 to proline in the insulin receptor alpha subunit causes lack of transport of the receptor to the plasma membrane, loss of binding affinity and a constitutively activated tyrosine kinase in transfected cells. Biochem. Biophys. Res. Comm. 192, 905–911 (1993).

    PubMed  Google Scholar 

  75. Nakae, J., Morioka, H., Ohtsuka, E. & Fujieda, K. Replacements of leucine 87 in human insulin receptor alter affinity for insulin. J. Biol. Chem. 270, 22017–22022 (1995).

    CAS  PubMed  Google Scholar 

  76. Liu, R. et al. Deletion of lysine 121 creates a temperature-sensitive alteration in insulin binding by the insulin receptor. J. Biol. Chem. 270, 476–482 (1995).

    CAS  PubMed  Google Scholar 

  77. Hamer, I. et al. An arginine to cysteine 252 mutation in insulin receptors from a patient with severe insulin resistance inhibits receptor internalisation but preserves signalling events. Diabetologia 45, 657–667 (2002).

    CAS  PubMed  Google Scholar 

  78. Roach, P. et al. A novel human insulin receptor gene mutation uniquely inhibits insulin binding without impairing posttranslational processing. Diabetes 43, 1096–1102 (1994).

    CAS  PubMed  Google Scholar 

  79. Whittaker, J. & Mynarcik, D. C. Phenotype of the Ser-323 to Leu mutation of the insulin receptor is isoform dependent. Diabetes 47 (Suppl. 1), 264 (1998).

    Google Scholar 

  80. Whittaker, J. et al. Alanine scanning mutagenesis of a type 1 insulin-like growth factor receptor ligand binding site. J. Biol. Chem. 276, 43980–43986 (2001).

    CAS  PubMed  Google Scholar 

  81. Schäffer, L. A model for insulin binding to the insulin receptor. Eur. J. Biochem. 221, 1127–1132 (1994).The first plausible model of the insulin-receptor binding mechanism that integrates and explains all known kinetic parameters.

    PubMed  Google Scholar 

  82. Shoelson, S. E., Lee, J., Lynch, C. S., Backer, J. M. & Pilch, P. F. BpaB25 insulins. Photoactivatable analogues that quantitatively crosslink, radiolabel, and activate the insulin receptor. J. Biol. Chem. 268, 4085–4091 (1993).

    CAS  PubMed  Google Scholar 

  83. Wang, C. C. et al. Negative and positive site–site interactions, and their modulation by pH, insulin analogs and monoclonal antibodies, are preserved in the purified insulin receptor. Proc. Natl Acad. Sci. USA 85, 8400–8404 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Markussen, J. M., Halstrom, J., Wiberg, F. & Schffer, L. Immobilized insulin for high capacity affinity chromatography of insulin receptors. J. Biol. Chem. 266, 18814–18818 (1991).

    CAS  PubMed  Google Scholar 

  85. Yip, C. C. & Jack, E. Insulin receptors are bivalent as demonstrated by photoaffinity labeling. J. Biol. Chem. 267, 13131–13134 (1992).

    CAS  PubMed  Google Scholar 

  86. Sweet, L. J., Morrison, B. D. & Pessin, J. Isolation of functional a-b heterodimers from the purified human placental α2–β2 heterotetrameric insulin receptor concept. Structural basis for high affinity ligand binding. J. Biol. Chem. 262, 6939–6942 (1987).

    CAS  PubMed  Google Scholar 

  87. Boni-Schnetzler, M., Scott, W., Waugh, S. M., Di Bella, E. & Pilch, P. The insulin receptor. Structural basis for high affinity ligand binding. J. Biol. Chem. 262, 8395–8401 (1987).

    CAS  PubMed  Google Scholar 

  88. Bass, J., Kurose, T., Pashmforoush, M. & Steiner, D. F. Fusion of insulin receptor ectodomains to immunoglobulin constant domains reproduces high-affinity insulin binding in vitro. J. Biol. Chem. 271, 19367–19375 (1996).

    CAS  PubMed  Google Scholar 

  89. Hoyne, P. A. et al. High affinity insulin binding by soluble insulin receptor extracellular domain fused to a leucine zipper. FEBS Lett. 479, 15–18 (2000).

    CAS  PubMed  Google Scholar 

  90. Whittaker, J., Garcia, P., Yu, G. Q. & Mynarcik, D. C. Transmembrane domain interactions are necessary for negative cooperativity of the insulin receptor. Mol. Endocrinol. 8, 1521–1527 (1994).

    CAS  PubMed  Google Scholar 

  91. Florke, R. R. et al. Hormone-triggered conformational changes within the insulin-receptor ectodomain: requirement for transmembrane anchors. Biochem. J. 360, 189–198 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Baker, E. et al. The structure of 2Zn pig insulin at 1. 5 Å resolution. Phil. Trans. R. Soc. Lond. B 19, 369–456 (1988).The 'bible' of insulin structure.

    Google Scholar 

  93. Blundell. T. L., Dodson, G. G., Hodgkin, D. C. & Mercola, D. A. Insulin: the structure in the crystal and its reflection in chemistry and biology. Adv. Prot. Chem. 26, 279–402 (1972).The old testament.

    CAS  Google Scholar 

  94. Pullen, R. A. et al. Receptor-binding region of insulin. Nature 259, 369–373 (1976).The first description of the 'classical' insulin-binding surface.

    CAS  PubMed  Google Scholar 

  95. Hua, X. H., Shoelson, S. E., Kochoyan, M. & Weiss, M. Receptor binding redefined by a structural switch in a mutant human insulin. Nature 354, 238–241 (1991).

    CAS  PubMed  Google Scholar 

  96. Ludvigsen, S., Olsen, H. B. & Kaarsholm, N. C. A structural switch in a mutant insulin exposes key residues for receptor binding. J. Mol. Biol. 279, 1–7 (1998).References 95 and 96 describe a structural switch whereby the carboxy terminus of the B-chain of insulin moves away on receptor binding to uncover underlying A2–A3 residues, but disagrees on the extent of switching. Stay tuned.

    CAS  PubMed  Google Scholar 

  97. Kristensen, C. et al. Alanine scanning mutagenesis of insulin. J. Biol. Chem. 272, 12978–12983 (1997).

    CAS  PubMed  Google Scholar 

  98. Nakagawa, S. H. & Tager, H. S. Importance of aliphatic side-chain structure at positions 2 and 3 of the insulin A chain in insulin-receptor interactions. Biochemistry 31, 3204–3214 (1992).

    CAS  PubMed  Google Scholar 

  99. Nakagawa, S. H., Tager, H. S. & Steiner, D. F. Mutational analysis of invariant valine B12 in insulin: implications for receptor binding. Biochemistry 39, 15826–15835 (2000).

    CAS  PubMed  Google Scholar 

  100. van den Brande, J. L. in The Insulin-Like Growth Factors. Structure And Biological Functions (Oxford Univ. Press, Oxford, New York and Tokyo, 1992).

    Google Scholar 

  101. Brzozowski, A. M. et al. Structural origins of the functional divergence of human insulin-like growth factor-I and insulin. Biochemistry 41, 9389–9397 (2002).

    CAS  PubMed  Google Scholar 

  102. Vajdos, F. F. et al. Crystal structure of human insulin-like growth factor-1: detergent binding inhibits binding protein interactions. Biochemistry 40, 11022–11029 (2001).References 101 and 102 provide crystal structures of IGF1, for which previously only NMR structures existed. There is a better definition of the carboxy-terminal peptide in reference 101.

    CAS  PubMed  Google Scholar 

  103. Bayne, M. L. et al. The C region of human insulin-like growth factor (IGF) I is required for high affinity binding to the type I IGF receptor. J. Biol. Chem. 264, 11004–11008 (1988).

    Google Scholar 

  104. Gill, R. et al. Engineering the C-region of human insulin-like growth factor-1: implications for receptor binding. Protein Eng. 9, 1011–1019 (1996).

    CAS  PubMed  Google Scholar 

  105. Kristensen, C. et al. A single-chain insulin-like growth factor I/insulin hybrid binds with high affinity to the insulin receptor. Biochem. J. 305, 981–986 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Chen, L. M., Yang, X. W. & Tang, J. G. Acidic residues on the N-terminus of proinsulin C-peptide are important for the folding of insulin precursor. J. Biochem. 131, 855–859 (2002).

    CAS  PubMed  Google Scholar 

  107. de Vos, A. M., Ultsch, M. & Kossiakoff, A. A. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 255, 306–312 (1992).The first crystal structure of a ligand–receptor complex and a surprising stoichiometry.

    CAS  PubMed  Google Scholar 

  108. Raff, M. in Physical Chemical Aspects Of Cell Surface Events In Cellular Regulation (eds DeLisi, C. & Blumenthal, R.) 116 (Elsevier North Holland, New York, Amsterdam, Oxford, 1979).“I am not suggesting insulin is aggregating with insulin in crosslinking. I am suggesting that insulin has more than one binding site for the receptor”. He was right.

    Google Scholar 

  109. Lee, J., O'Hare, T., Pilch, P. & Shoelson, S. E. Insulin receptor autophosphorylation occurs asymmetrically. J. Biol. Chem. 268, 4092–4098 (1993).

    CAS  PubMed  Google Scholar 

  110. Yip, C. C. The insulin-binding domain of the insulin receptor is encoded by exons 2 and 3. J. Cell. Biochem. 48, 19–25 (1992).

    CAS  PubMed  Google Scholar 

  111. Hammond, B. J., Tikerpae, J. & Smith, G. D. An evaluation of the crosslinking model for the interaction of insulin with its receptor. Am. J. Physiol. 272, E1136–E1144 (1997).

    CAS  PubMed  Google Scholar 

  112. Yeh, J. I. et al. High-resolution structures of the ligand binding domain of the wild-type bacterial aspartate receptor. J. Mol. Biol. 262, 186–201 (1996).A nice crystal structure and a good model for negative cooperativity at the insulin receptor.

    CAS  PubMed  Google Scholar 

  113. Wedekind, F. et al. Hormone binding site of the insulin receptor: an analysis using photoaffinity-mediated avidin complexing. Biol. Chem. 370, 251–258 (1989).The first mapping of an insulin-receptor binding domain by photoaffinity crosslinking.

    CAS  Google Scholar 

  114. Kristensen, C., Andersen, A. S., Ostergaard, S., Hansen, P. H. & Brandt, J. Functional reconstitution of insulin receptor binding site from non-binding receptor fragments. J. Biol. Chem. 277, 18340–18345 (2002).

    CAS  PubMed  Google Scholar 

  115. Schumacher, R. et al. Signaling-competent chimeras allow mapping of major insulin receptor binding domains determinants. J. Biol. Chem. 268, 1087–1094 (1993).

    CAS  PubMed  Google Scholar 

  116. Fuh, G. et al. Rational design of potent antagonists to the human growth hormone receptor. Science 256, 1677–1680 (1992).A discussion of the important concept of antagonism at dimerizing receptors.

    CAS  PubMed  Google Scholar 

  117. Okada, S. & Kopchick, J. J. Biological effects of growth hormone and its antagonist. Trends Mol. Med. 7, 126–132 (2001).

    CAS  PubMed  Google Scholar 

  118. Boesen, T. P., Soni, B., Schwartz, T. & Halkier, T. Single-chain vascular endothelial growth factor variant with antagonist activity. J. Biol. Chem. 2002 Jul 31 (doi: 10.1074/jbc.M204107200).

  119. Schlein, M. et al. Properties of small molecules affecting insulin receptor function. Biochemistry 40, 13520–13528 (2001).

    CAS  PubMed  Google Scholar 

  120. Johnson, D. L. & Jolliffe, L. K. Erythropoietin mimetic peptides and the future. Nephrol. Dial. Transplant. 15, 1274–1277 (2000).

    CAS  PubMed  Google Scholar 

  121. Clackson, T. & Wells, J. A. A hot spot of binding energy in a hormone–receptor interface. Science 267, 383–386 (1995).This paper discusses the concept of the 'functional epitope', another important concept from the group at Genentech.

    CAS  PubMed  Google Scholar 

  122. Sidhu, S. S., Lowman, H. B., Cunningham, B. C. & Wells, J. A. Phage display for selection of novel binding peptides. Methods Enzymol. 328, 333–363 (2000).

    CAS  PubMed  Google Scholar 

  123. Livnah, O. et al. Functional mimicry of a protein hormone by a peptide agonist: the EPO receptor complex at 2. 8 Å Science 273, 464–471 (1996).

    CAS  PubMed  Google Scholar 

  124. Wrighton, N. C. et al. Increased potency of an erythropoietin peptide mimetic through covalent dimerization. Nature Biotechnol. 15, 1261–1265 (1997).

    CAS  Google Scholar 

  125. Johnson, D. L. et al. Amino-terminal dimerization of an erythropoietin mimetic peptide results in increased erythropoietic activity. Chem. Biol. 4, 939–950 (1997).

    CAS  PubMed  Google Scholar 

  126. Naranda, T. et al. Activation of erythropoietin receptor through a novel extracellular binding site. Endocrinology 143, 2293–2302 (2002).

    CAS  PubMed  Google Scholar 

  127. Christopoulos, A. Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nature Rev. Drug Discov. 1, 198–210 (2002).

    CAS  Google Scholar 

  128. Qureshi, S. A. et al. Mimicry of erythropoietin by a nonpeptide molecule. Proc. Natl Acad. Sci. USA 96, 12156–12161 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Erlanson, D. A. et al. Site-directed ligand discovery. Proc. Natl Acad. Sci. USA 97, 9367–9372 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Budin, N., Ahmed, S., Majeux, N. & Caflisch, A. An evolutionary approach for structure-based design of natural and non-natural peptidic ligands. Comb. Chem. High Throughput Screen. 4, 661–673 (2001).

    CAS  PubMed  Google Scholar 

  131. Fairbrother, W. J. et al. Novel peptides selected to bind vascular endothelial growth factor target the receptor-binding site. Biochemistry 37, 17754–17764 (1998).

    CAS  PubMed  Google Scholar 

  132. Pillutla, R. C. et al. Peptides identify the critical hotspots involved in the biological activation of the insulin receptor. J. Biol. Chem. 277, 22590–22594 (2002).

    CAS  PubMed  Google Scholar 

  133. Bursavich, M. G. & Rich, D. H. Designing non-peptide peptidomimetics in the 21st century: inhibitors targeting conformational ensembles. J. Med. Chem. 45, 541–558 (2002).

    CAS  PubMed  Google Scholar 

  134. Ward, C. W. & Garrett, T. P. The relationship between the L1 and L2 domains of the insulin and epidermal growth factor receptors and leucine-rich repeat modules. BMC Bioinformatics 2, 4 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Schäffer, L. & Ljungqvist, L. Identification of a disulfide bridge connecting the alpha-subunits of the extracellular domain of the insulin receptor. Biochem. Biophys. Res. Comm. 189, 650–653 (1992).

    PubMed  Google Scholar 

  136. Sparrow, L. G. et al. The disulfide bonds in the C-terminal domains of the human insulin receptor ectodomain. J. Biol. Chem. 272, 29460–29467 (1997).

    CAS  PubMed  Google Scholar 

  137. Lu, K. & Guidotti, G. Identification of the cysteine residues involved in the class I disulfide bonds of the human insulin receptor: properties of insulin receptor monomers. Mol. Biol. Cell 7, 679–691 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Cheatham, B. & Kahn, C. R. Cysteine 647 in the insulin receptor is required for normal covalent interaction between α- and β-subunits and signal transduction. J. Biol. Chem. 267, 7108–7115 (1992).

    CAS  PubMed  Google Scholar 

  139. Yamaguchi, Y. et al. Functional properties of two naturally occuring isoforms of the human insulin receptor in chinese hamster ovary cells. Endocrinology 129, 2058–2066 (1991).

    CAS  PubMed  Google Scholar 

  140. Gu, J. L. & De Meyts, P. in Retrospect and Prospect of Protein Research (eds Zai-Ping, L., Zi-Xian, L. & You-Shang, Z.) 120–125 (World Scientific Publishing, Singapore, 1991).

    Google Scholar 

  141. McClain, D. A. Different ligand affinities of the two human insulin receptor splice variants are reflected in parallel changes in sensitivity for insulin action. Mol. Endocrinol. 5, 734–739 (1991).

    CAS  PubMed  Google Scholar 

  142. Frasca, F. et al. Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol. Cell. Biol. 19, 3278–3288 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Pashmforoush, M., Yoshimasa, Y. & Steiner, D. F. Exon 11 enhances insulin binding affinity and tyrosine kinase activity of the human insulin proreceptor. J. Biol. Chem. 269, 32639–32648 (1994).

    CAS  PubMed  Google Scholar 

  144. Marino-Buslje, C., Martin-Martinez, M., Mizuguchi, K., Siddle, K. & Blundell, T. L. The insulin receptor: from protein sequence to structure. Biochem. Soc. Trans. 27, 715–726 (1999).

    CAS  PubMed  Google Scholar 

  145. Ward, C. W., Garrett, T. P., McKern, N. M. & Lawrence, L. J. Structure of the insulin receptor family: unexpected relationships with other proteins. Today. Life Sci. 11, 26–32 (1999).

    Google Scholar 

  146. Fabry, M. et al. Detection of a new hormone contact site within the insulin receptor ectodomain by the use of a novel photoreactive insulin. J. Biol. Chem. 267, 8950–8956 (1992).

    CAS  PubMed  Google Scholar 

  147. Kurose, T. et al. Crosslinking of a B25 azidophenylalanine insulin derivative to the carboxyl-terminal region of the α-subunit of the insulin receptor. J. Biol. Chem. 269, 29190–29197 (1994).A surprising crosslinking result that paved the way for interesting experiments (such as the ones in references 28, 29 and 114 ) that show the importance of a small carboxy-terminal domain for high-affinity binding.

    CAS  PubMed  Google Scholar 

  148. Brandt, J., Andersen, A. S. & Kristensen, C. Dimeric fragment of the insulin receptor α-subunit binds insulin with full holoreceptor affinity. J. Biol. Chem. 276, 12378–12384 (2001).

    CAS  PubMed  Google Scholar 

  149. Surinya, K. H. et al. Role of insulin receptor dimerization domains in ligand binding, cooperativity, and modulation by anti-receptor antibodies. J. Biol. Chem. 277, 16718–16725 (2002).References 148 and 149 provide an elegant deconvolution of the minimal-domain topography that is required for high-affinity insulin binding.

    CAS  PubMed  Google Scholar 

  150. Waugh, S. M., DiBella, E. E. & Pilch, P. F. Isolation of a proteolitically derived domain of the insulin receptor containing the major site of crosslinking/binding. Biochemistry 28, 3448–3455 (1989).

    CAS  PubMed  Google Scholar 

  151. Yip, C. C. et al. Localization of the insulin-binding site to the cysteine-rich region of the insulin receptor α-subunit. Biochem. Biophys. Res. Comm. 157, 321–329 (1988).

    CAS  PubMed  Google Scholar 

  152. Cho, H.-S. & Leahy, D. J. Structure of the extracellular region of HER3 reveals an interdomain tether. Science 297, 1330–1333 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Brandt and M. Krogsgaard Thomsen for critical review of the manuscript. The Receptor Biology Laboratory and the Hagedorn Research Institute are independent basic research components of Novo Nordisk A/S. The authors are also supported by grants from the Juvenile Diabetes Research Foundation International, the Danish Research Council through the Danish Center for Growth and Regeneration, and the Øresund region's Research and Development Committee (Øforsk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre De Meyts.

Supplementary information

Animated figure 1| Insulin-like growth factor 1 receptor. See legend below. (GIF 612 kb)

Animated figure 2| Insulin receptor See legend below. (GIF 474 kb)

Animated figure 3| Insulin See legend below. (GIF 384 kb)

Animated figure 4| Insulin-like growth factor See legend below.

a | The three-dimensional structure of the large domain 1 (L1)–Cys-rich (CR)–L2 domain of the insulin-like growth factor 1 (IGF1) receptor determined by X-ray crystallography 17. An extended bi-lobed structure (40 × 48 × 105 Å) comprises the two globular L-domains with a new type of right-handed β-helix fold that flank the CR domain. They seem to be part of the leucine-rich-repeat superfamily 134. Although L1 (residues 1–150; green) contacts the CR domain (blue) along its length, there is minimal contact with L2 (residues 300–460; orange). The CR domain comprises an array of disulphide-linked modules that resemble those in the tumour-necrosis factor (TNF) receptor and laminin23. The different orientations of L1 and L2 relative to the CR domain are probably an artefact of crystal packing, and the position of L2 is probably more parallel to L1 in the native structure. The flexibility between the CR domain and L2 might be important for ligand binding 16. A cavity of 30 Å diameter occupies the centre of the molecule and represents a potential binding pocket, although this construct does not bind IGF1.The amino acids that have been determined by alanine-scanning mutagenesis 80 to be important for ligand binding are shown in yellow as van der Waals spheres (see main text for details). The three-dimensional structure of the IGF1 molecule is shown, based on the X-ray coordinates of Brzozowski and colleagues101. The amino acids that have been determined by site-directed mutagenesis to be important for receptor binding are shown in yellow as van der Waals spheres (reviewed in Ref. 7). As Arg36 and Arg37 are lacking in the structure, residues 35 and 38 have been highlighted instead to show their approximate location in the middle of the C-peptide domain. The backbone is shown in blue. b | The insulin-receptor L1–CR–L2 domain has been modelled on the corresponding domain coordinates of the IGF1-receptor using the programme SwissModel. The amino acids that have been determined by site-directed mutagenesis to be important for receptor binding66 are shown in yellow as van der Waals spheres. The three-dimensional structure of the insulin molecule is shown, based on the X-ray coordinates of Baker and colleagues92. The classical binding surface is shown in yellow as van der Waals spheres; Leu A13 and Leu B17 are shown in red. The backbone is shown in blue. Modelling was carried out using the DS ViewerLite 5.0 (Accelrys). (GIF 321 kb)

Related links

Related links

DATABASES

LocusLink

calnexin

calreticulin

EGF receptor

EPO

EPO receptor

FGF receptor

fibronectin

HER3

hGH

hGH receptor

IGF1

IGF2

IGF1 receptor

insulin

insulin receptor

IRS1

IRS4

PDGF receptor

PTP1B

SHC

SHIP2

VEGF

Medscape DrugInfo

injectable insulin

OMIM

type 1 diabetes

type 2 diabetes

FURTHER INFORMATION

Protein Data Bank

Glossary

HYPOGLYCAEMIC AGENT

A drug that lowers blood glucose.

TRANS-PHOSPHORYLATION

An enzymatic mechanism whereby one receptor-tyrosine-kinase domain transfers the γ-phosphate group of ATP (adenosine trisphosphate) to tyrosyl side chains of the second tyrosine-kinase domain of the same receptor (as opposed to the tyrosine-kinase domain phosphorylating itself, which would be cis-phosphorylation).

SCATCHARD PLOT

A graphical method designed by George Scatchard in 1949 that consists of plotting the ratio of bound/free ligand against the concentration of bound ligand (as in figure 5a). In the case of simple (non-cooperative) binding, the graph is a straight line with a slope of −Ka, the affinity constant of the reaction.

NEGATIVE COOPERATIVITY

A property of a multi-site-binding protein (for example an enzyme or a receptor) whereby the binding of one ligand molecule decreases the binding affinity of other ligand molecules to neighbouring binding sites.

ALANINE SCANNING

The systematic replacement of the amino acids of a ligand or a binding protein by alanine (which just has a methyl group side chain) in order to evaluate the importance of the replaced side chains in the binding process.

HOLORECEPTOR

The full-length receptor, as opposed to various minimized constructs, such as those shown in Box 2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Meyts, P., Whittaker, J. Structural biology of insulin and IGF1 receptors: implications for drug design. Nat Rev Drug Discov 1, 769–783 (2002). https://doi.org/10.1038/nrd917

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd917

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing