Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Blocking NO synthesis: how, where and why?

Key Points

  • Nitric oxide (NO) is an intracellular and intercellular messenger molecule that has been implicated in a wide range of physiological processes.

  • Overproduction of NO can cause tissue damage and dysregulated cellular signalling, and seems to be a key feature of pathogenesis in several inflammatory and degenerative disorders.

  • Three isoforms of nitric oxide synthase (NOS) have been identified: endothelial (eNOS), neuronal (nNOS) and inducible (iNOS). Although all three have important physiological roles, it is overproduction of NO from iNOS and nNOS that is important in certain disease states. These isoforms are therefore potential targets for new treatments. NO donation or boosting NO effects is also a target for treatments, but this article focuses solely on inhibition.

  • Studies with pharmacological inhibitors of NOS isozymes, and NOS-isoform knockout mice, indicate that blockade of individual NOS isozymes might produce therapeutic benefit, but will also be associated with harmful effects. For long-term treatment, a drug must not inhibit eNOS, as this would cause atherosclerosis and have significant adverse cardiovascular effects.

  • The active site of NOS isozymes is significantly conserved, so that isoform selectivity has not been easy to achieve. Nonetheless, compounds are now available that show specificity for inhibition of iNOS or nNOS over eNOS. Furthermore, compounds have been identified that inhibit activity through inhibition of dimerization or inhibition of cofactor binding. Compounds that block NO generation have therapeutic potential, and some are close to entering clinical trials. Potential targets include asthma, arthritis, neurodegenerative disorders, cancer, gastrointestinal inflammation and pain.

  • Even isoform-selective inhibition of NOS is likely to be associated with significant unwanted side effects. Partial inhibition of NOS isozymes might be a better option than complete or near complete inhibition. Even then, it seems that the role of NO might change from harmful to helpful during the course of a single process. For example, iNOS activity can be involved in tissue destruction, and in wound repair and resolution of inflammation.

  • Alternative approaches to decreasing harmful generation of NO while leaving physiological NO unaffected include inhibition of enzymes that regulate cofactors for NOS, manipulation of substrate levels or inhibition of enzymes that metabolize endogenous inhibitors of NOS.

  • Drugs that affect the activity of specific NOS isoforms are soon to enter clinical trials. Earlier experimental studies in humans with isoform non-selective inhibitors indicate that major biological effects can be expected, and not all of them will be beneficial. Nonetheless, the potential for therapeutic benefit makes it important that such drugs enter trials and are evaluated in clinical disease.

Abstract

Nitric oxide (NO) is a key physiological mediator, and the association of disordered NO generation with many pathological conditions has led to much interest in pharmacologically modulating NO levels. However, the wide range of processes in which NO has been implicated, and the fact that increases or decreases in NO levels might be therapeutically desirable depending on the condition or even at different stages of the same condition, pose considerable challenges for drug development. Here, we focus on the rationale and potential for approaches that reduce NO synthesis, which have led to the development of several compounds that will shortly be entering clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The NOS pathway.
Figure 2: Loss of eNOS causes vascular disease.
Figure 3: Effects of L-NMMA in a patient with severe septic shock.
Figure 4: Inhibitors of NOS.
Figure 5: The DDAH/NOS pathway.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hanafy, K. A., Krumenacker, J. S. & Murad, F. NO, nitrotyrosine, and cyclic GMP in signal transduction. Med. Sci. Monit. 7, 801–819 (2001).

    CAS  PubMed  Google Scholar 

  2. Ignarro, L. J., Napoli, C. & Loscalzo, J. Nitric oxide donors and cardiovascular agents modulating the bioactivity of nitric oxide. Circ. Res. 90, 21–28 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Alderton, W. K., Cooper, C. E. & Knowles, R. G. Nitric oxide synthases: structure, function and inhibition. Biochem. J. 357, 593–615 (2001). A comprehensive review of the biochemistry and some structural aspects of NOSs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cabe, T. J., Fulton, D., Roman, L. J. & Sessa, W. C. Enhanced electron flux and reduced calmodulin dissociation may explain 'calcium-independent' eNOS activation by phosphorylation. J. Biol. Chem. 275, 6123–6128 (2000).

    Article  Google Scholar 

  5. Lowenstein, C. J. Purification and assessment of proteins associated with nitric oxide synthase. Methods Enzymol. 353, 233–240 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Ignarro, L. J., Cirino, G., Casini, A. & Napoli, C. Nitric oxide as a signaling molecule in the vascular system: an overview. J. Cardiovasc. Pharmacol. 34, 879–886 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Davis, K. L., Martin, E., Turko, I. V. & Murad, F. Novel effects of nitric oxide. Annu. Rev. Pharmacol. Toxicol. 41, 203–236 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Ischiropoulos, H. & Gow, A. J. Nitric oxide chemistry and cellular signaling. J. Cell. Physiol. 187, 277–282 (2001).

    Article  PubMed  Google Scholar 

  9. O'Donnell, V. B. et al. Nitration of unsaturated fatty acids by nitric oxide-derived reactive species. Methods Enzymol. 301, 454–470 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Stamler, J. S., Lamas, S. & Fang, F. C. Nitrosylation, the prototypic redox-based signaling mechanism. Cell 106, 675–683 (2001). The recognition that NO might affect many proteins through nitrosation reactions increases the range of effects of NO and the possibility that these will vary with the redox state of the cell. This clearly has implications for understanding the long-term effects of inhibitors.

    Article  CAS  PubMed  Google Scholar 

  11. Brown, G. C. Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome coxidase. Biochim. Biophys. Acta 1504, 46–57 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Napoli, C. & Ignarro, L. J. Nitric oxide and atherosclerosis. Nitric Oxide 5, 88–97 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Cayatte, A. J., Palacino, J. J., Horten, K. & Cohen, R. A. Chronic inhibition of nitric oxide production accelerates neointima formation and impairs endothelial function in hypercholesterolemic rabbits. Arterioscler. Thromb. 14, 753–759 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Kuhlencordt, P. J. et al. Accelerated atherosclerosis, aortic aneurysm formation, and ischaemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice. Circulation 104, 448–454 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Rand, M. J. Nitrergic transmission: nitric oxide as a mediator of non-adrenergic, non-cholinergic neuro-effector transmission. Clin. Exp. Pharmacol. Physiol. 19, 147–169 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Baranano, D. E. & Snyder, S. H. Neural roles for heme oxygenase: contrasts to nitric oxide synthase. Proc. Natl Acad. Sci. USA 98, 10996–11002 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Burnett, A. L. et al. Urinary bladder-urethral sphincter dysfunction in mice with targeted disruption of neuronal nitric oxide synthase models idiopathic voiding disorders in humans. Nature Med. 3, 571–574 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Burnett, A. L. et al. Nitric oxide-dependent penile erection in mice lacking neuronal nitric oxide synthase. Mol. Med. 2, 288–296 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gyurko, R., Leupen, S. & Huang, P. L. Deletion of exon 6 of the neuronal nitric oxide synthase gene in mice results in hypogonadism and infertility. Endocrinology 143, 2767–2774 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Kobzik, L., Reid, M. B., Bredt, D. S. & Stamler, J. S. Nitric oxide in skeletal muscle. Nature 8, 546–548 (1994).

    Article  Google Scholar 

  21. Brenman, J. E., Chao, D. S., Xia, H., Aldape, K. & Bredt, D. S. Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 8, 743–752 (1995).

    Article  Google Scholar 

  22. Barouch, L. A. et al. Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 416, 337–339 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. De Sanctis, G. T. et al. Contribution of nitric oxide synthases 1, 2, and 3 to airway hyperresponsiveness and inflammation in a murine model of asthma. J. Exp. Med. 189, 1621–1629 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moroi, M. et al. Interaction of genetic deficiency of endothelial nitric oxide, gender, and pregnancy in vascular response to injury in mice. J. Clin. Invest. 101, 1225–1232 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hibbs, J. B. Jr, Taintor, R. R., Vavrin, Z. & Rachlin, E. M. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem. Biophys. Res. Commun. 157, 87–94 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. Marletta, M. A. Nitric oxide synthase: aspects concerning structure and catalysis. Cell 78, 927–930 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Vallance, P. & Charles, I. Nitric oxide in sepsis: of mice and men. Sepsis 1, 93–100 (1998).

    Article  Google Scholar 

  28. Bogdan, C. Nitric oxide and the immune response. Nature Immunol. 2, 907–916 (2001). The pleiotropic effects of NO are nowhere more evident than in the immune system. This review outlines these effects (some of which seem to oppose each other), describes some of the controversy about iNOS in humans and discusses the problems that face NOS inhibitors.

    Article  CAS  Google Scholar 

  29. Niedbala, W., Wei, X. Q., Piedrafita, D., Xu, D. & Liew, F. Y. Effects of nitric oxide on the induction and differentiation of TH1 cells. Eur. J. Immunol. 29, 2498–2505 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. van't Hof, R. J. et al. Requirement of the inducible nitric oxide synthase pathway for IL-1-induced osteoclastic bone resorption. Proc. Natl Acad. Sci. USA 97, 7993–7998 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kenyon, N. J. et al. Susceptibility to ozone-induced acute lung injury in iNOS-deficient mice. Am. J. Physiol. 282, L540–L545 (2002).

    CAS  Google Scholar 

  32. Arnett, H. A. et al. The protective role of nitric oxide in a neurotoxicant-induced demyelinating model. J. Immunol. 168, 427–433 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Kane, A. J. et al. Inducible nitric oxide synthase (iNOS) activity promotes ischaemic skin flap survival. Br. J. Pharmacol. 132, 1631–1638 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nandagopal, K., Dawson, T. M. & Dawson, V. L. Critical role for nitric oxide signaling in cardiac and neuronal ischaemic preconditioning and tolerance. J. Pharmacol. Exp Ther. 297, 474–478 (2002).

    Google Scholar 

  35. Luo, Z. D. & Cizkova, D. The role of nitric oxide in nociception. Curr. Rev. Pain 4, 459–466 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Saban, M. R., Nguyen, N. B., Hammond, T. G. & Saban, R. Gene expression profiling of mouse bladder inflammatory responses to LPS, substance P, and antigen-stimulation. Am. J. Pathol. 160, 2095–2110 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. van't Hof, R. J. & Ralston, S. H. Nitric oxide and bone. Immunology 103, 255–261 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kubes, P. & McCafferty, D. M. Nitric oxide and intestinal inflammation. Am. J. Med. 109, 150–158 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Sanders, S. P. Nitric oxide in asthma: pathogenic, therapeutic or diagnostic? Am. J. Respir. Cell Mol. Biol. 21, 147–149 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Silkoff, P. E., Robbins, R. A., Gaston, B., Lundberg, J. O. & Townley, R. G. Endogenous nitric oxide in allergic airway disease. J. Allergy Clin. Immunol. 105, 438–448 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Iravani, M. M., Kashefi, K., Mander, P., Rose, S. & Jenner, P. Involvement of inducible nitric oxide synthase in inflammation-induced dopaminergic neurodegeneration. Neuroscience 110, 49–58 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Wada, K., Chatzipanteli, K., Kraydieh, S., Bustol, R. & Dietrich, W. D. Inducible nitric oxide synthase expression after traumatic brain injury and neuroprotection with aminoguanidine treatment in rats. Neurosurgery 43, 1427–1436 (1998).

    CAS  PubMed  Google Scholar 

  43. Heneka, M. T. & Feinstein, D. L. Expression and function of inducible nitric oxide synthase in neurons. J. Neuroimmunol. 114, 8–18 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Izumi, Y., Benz, A. M., Clifford, D. B. & Zorumski, C. F. Nitric oxide inhibitors attenuate N-methyl-D-aspartate excitotoxicity in rat hippocampal slices. Neurosci. Lett. 135, 227–230 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Huang, Z. et al. Effects of cerebral ischaemia in mice deficient in neuronal nitric oxide synthase. Science 265, 1883–1885 (1994). The original paper that identified the neurotoxic effects of nNOS and proposed a protective role for eNOS in stroke.

    Article  CAS  PubMed  Google Scholar 

  46. Ando, A. et al. Nitric oxide is proangiogenic in the retina and choroid. J. Cell. Physiol. 191, 116–124 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Bhagat, K., Hingorani, A. D., Palacios, M., Charles, I. G. & Vallance P. Cytokine-induced venodilatation in humans in vivo: eNOS masquerading as iNOS. Cardiovasc. Res. 41, 754–764 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Haendeler, J. et al. Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69. Nature Cell Biol. 4, 743–749 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Moncada, S. & Erusalimsky, J. D. Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nature Rev. Mol. Cell Biol. 3, 214–220 (2002).

    Article  CAS  Google Scholar 

  50. Lala, P. K. & Chakraborty, C. Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol. 2, 149–156 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Huang, P. L. Mouse models of nitric oxide synthase deficiency. J. Am. Soc. Nephrol. 11, S120–S123 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Dawson, V. L. & Dawson, T. M. Nitric oxide in neurodegeneration. Prog. Brain Res. 118, 215–229 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Dawn, B. & Bolli, R. Role of nitric oxide in myocardial preconditioning. Ann. NY Acad. Sci. 962, 18–41 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Kim, P. K., Kwon, Y. G., Chung, H. T. & Kim, Y. M. Ann. NY Acad. Sci. 962, 42–52 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Kubes, P. Inducible nitric oxide synthase: a little bit of good in all of us. Gut 47, 6–9 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Corbett, J. A. & McDaniel, M. L. The use of aminoguanidine, a selective iNOS inhibitor, to evaluate the role of nitric oxide in the development of autoimmune diabetes. Methods 10, 21–30 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Stamler, J. S., Loh, E., Roddy, M. A., Currie, K. E. & Creager, M. A. Nitric oxide regulates basal systemic and pulmonary vascular resistance in healthy humans. Circulation 89, 2035–2040 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Petros, A., Bennett, D. & Vallance, P. Effects of nitric oxide synthase inhibitors on hypotension in patients with septic shock. Lancet 338, 1557–1558 (1991). The first administration of an NOS inhibitor to patients. This paper shows that the haemodynamic effects of septic shock can be reversed by blocking NOS.

    Article  CAS  PubMed  Google Scholar 

  59. Petros, A. et al. Effects of a nitric oxide synthase inhibitor in humans with septic shock. Cardiovasc. Res. 28, 34–39 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Ashina, M., Lassen, L. H., Bendtsen, L., Jensen, R. & Olesen, J. Effect of inhibition of nitric oxide synthase on chronic tension-type headache: a randomised crossover trial. Lancet 353, 287–289 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Warren, J. B. Nitric oxide and human skin blood flow responses to acetylcholine and ultraviolet light. FASEB J. 8, 247–251 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Rees, D. D., Palmer, R. M., Schulz, R., Hodson, H. F. & Moncada, S. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br. J. Pharmacol. 101, 746–752 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Garvey, E. P. et al. Potent and selective inhibition of human nitric oxide synthases. Inhibition of non-amino acid isothioureas. J. Biol. Chem. 269, 26669–26676 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Raman, C. S. et al. Implications for isoform-selective inhibitor design derived from the binding mode of bulky isothioureas to the heme domain of endothelial nitric oxide synthase. J. Biol. Chem. 276, 26486–26491 (2001). A structural analysis of the binding of NOS inhibitors. This paper begins to define some of the potential structural requirements for isoform-selective inhibition of NOS.

    Article  CAS  PubMed  Google Scholar 

  65. Li, H. et al. Crystal structures of zinc-free and bound heme domain of human inducible nitric oxide synthase: implications for dimer stability and comparison with endothelial nitric oxide synthase. J. Biol. Chem. 274, 21276–21284 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Garvey, E. P. et al. 1400W is a slow, tight binding, and highly selective inhibitor of inducible nitric oxide synthase in vitro and in vivo. J. Biol. Chem. 272, 4959–4963 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Evans, S. M. & Whittle, B. J. Interactive roles of superoxide and inducible nitric oxide synthase in rat intestinal injury provoked by non-steroidal anti-inflammatory drugs. Eur. J. Pharmacol. 429, 287–296 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Beaton, H., Hamley, P., Nicholls, D. J., Tinker, A. C. & Wallace, A. V. 3,4-Dihydro-1-isoquinolinamines: a novel class of nitric oxide synthase inhibitors with a range of isoform selectivity and potency. Biorganic Med. Chem. Lett. 11, 1023–1026 (2001). This paper describes a new class of selective iNOS inhibitors. A member of this class is apparently close to entering clinical trials.

    Article  CAS  Google Scholar 

  69. Moore, W. M. et al. L-N6-(1-iminoethyl)lysine: a selective inhibitor of inducible nitric oxide synthase. J. Med. Chem. 37, 3886–3888 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Moore, W. M. et al. Synthesis and biological characterization of L-N6-(1-iminoethyl)lysine 5-tetrazole-amide, a prodrug of a selective iNOS inhibitor. J. Med. Chem. 45, 1686–1689 (2002).

    Article  PubMed  CAS  Google Scholar 

  71. McMillan, K. et al. Allosteric inhibitors of inducible nitric oxide synthase dimerization discovered via combinatorial chemistry. Proc. Natl Acad. Sci. USA 97, 1506–1511 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Blasko, E. et al. Mechanistic studies with potent and selective inducible nitric oxide synthase dimerization inhibitors. J. Biol. Chem. 277, 295–302 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Wolff, D. J., Datto, G. A. & Samatovicz, R. A. The dual mode of inhibition of calmodulin-dependent nitric oxide synthase by antifungal imidazole agents. J. Biol. Chem. 268, 9430–9436 (1993).

    Article  CAS  PubMed  Google Scholar 

  74. Bogle, R. G. & Vallance, P. Functional effects of econazole on inducible nitric oxide synthase: production of a calmodulin-dependent enzyme. Br. J. Pharmacol. 117, 1053–1058 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Matter, H. et al. Structural requirements for inhibition of the neuronal nitric oxide synthase (NOS-1): 3D-QSAR analysis of 4-oxo and 4-amino-pteridine-based inhibitors. J. Med. Chem. 45, 2923–2941 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Jaffrey, S. R. & Snyder, S. H. PIN: an associated protein inhibitor of neuronal nitric oxide synthase. Science 274, 774–777 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Huang, H., Martasek, P., Roman, L. J. & Silverman, R. B. Synthesis and evaluation of peptidomimetics as selective inhibitors and active site probes of nitric oxide synthases. J. Med. Chem. 43, 2938–2945 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. O'Neill, M. J. et al. ARL 17477, a selective nitric oxide synthase inhibitor, with neuroprotective effects in animal models of global and focal cerebral ischaemia. Brain Res. 871, 234–244 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Babu, B. R. & Griffith, O. W. N5-(1-imino-3-butenyl)-L-ornithine, a neuronal isoform selective mechanism-based inactivator of nitric oxide synthase. J. Biol. Chem. 273, 8882–8889 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Radomski, M. W., Palmer, R. M. & Moncada, S. Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc. Natl Acad. Sci. USA 87, 10043–10047 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Vallance, P., Leone, A., Calver, A., Collier, J. & Moncada, S. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339, 572–575 (1992).

    Article  CAS  PubMed  Google Scholar 

  82. Leiper, J. & Vallance, P. Biological significance of endogenous methylarginines that inhibit nitric oxide synthases. Cardiovasc. Res. 43, 542–548 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Ogawa, T., Kimoto, M. & Sasaoka, K. Purification and properties of a new enzyme, NG,NG-dimethylarginine dimethylaminohydrolase, from rat kidney. J. Biol. Chem. 264, 10205–10209 (1989).

    Article  CAS  PubMed  Google Scholar 

  84. Leiper, J. M. et al. Identification of two human dimethylarginine dimethylaminohydrolases with distinct tissue distributions and homology with microbial arginine deiminases. Biochem. J. 343, 209–214 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. MacAllister, R. J. et al. Regulation of nitric oxide synthesis by dimethylarginine dimethylaminohydrolase. Br. J. Pharmacol. 119, 1533–1540 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nakagomi, S., Kiryu-Seo, S., Kimoto, M., Emson, P. C. & Kiyama, H. Dimethylarginine dimethylaminohydrolase (DDAH) as a nerve-injury-associated molecule: mRNA localization in the rat brain and its coincident up-regulation with neuronal NO synthase (nNOS) in axotomized motoneurons. Eur. J. Neurosci. 11, 2160–2166 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Abe, T., Toghi, H., Murata, T., Isobe, C. & Sato, C. Reduction is asymmetrical dimethylarginine, an endogenous nitric oxide synthase inhibitor, in the cerebrospinal fluid during aging and in patients with Alzheimer's disease. Neurosci. Lett. 312, 177–179 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Murray-Rust, J. et al. Structural insights into the hydrolysis of cellular nitric oxide synthase inhibitors by dimethylarginine dimethylaminohydrolase. Nature Struct. Biol. 8, 679–683 (2001). Blocking DDAH leads to an accumulation of naturally occurring NOS inhibitors. This paper provides structural insight into enzyme function and possibilities for inhibition of DDAH as a route to affect NO generation.

    Article  CAS  PubMed  Google Scholar 

  89. Xie, L., Hattori, Y., Tume, N. & Gross, S. S. The preferred source of arginine for high-output nitric oxide synthesis in blood vessels. Semin. Perinatol. 24, 42–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Iwata, S. et al. Endothelial nitric oxide synthase expression in tumor vasculature is correlated with malignancy in human supratentorial astrocytic tumors. Neurosurgery 45, 24–28 (1999).

    CAS  PubMed  Google Scholar 

  91. Leiper, J., Murray-Rust, J., MacDonald, N. & Vallance, P. S-nitrosylation of dimethylarginine dimethylaminohydrolase regulates enzyme activity: further interactions between nitric oxide synthase and ADMA pathways. Proc. Natl Acad. Sci. USA 99, 13527–13532 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Drapier, J. C. & Hibbs, J. B. Jr. Aconitases: a class of metalloproteins highly sensitive to nitric oxide synthesis. Methods Enzymol. 269, 26–36 (1996).

    Article  CAS  PubMed  Google Scholar 

  93. Sun, J., Xin, C., Eu, J. P., Stamler, J. S. & Meissner, G. Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO. Proc. Natl Acad. Sci. USA 98, 11158–11162 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Guittet, O. et al. Differential sensitivity of the tyrosyl radical of mouse ribonucleotide reductase to nitric oxide and peroxynitrite. J. Biol. Chem. 273, 22136–22144 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Goodwin, D. C. et al. Nitric oxide trapping of tyrosyl radicals generated during prostaglandin endoperoxide synthase turnover. Detection of the radical derivative of tyrosine 385. J. Biol. Chem. 273, 8903–8909 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Huang, P. L. et al. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377, 239–242 (1995).

    Article  CAS  PubMed  Google Scholar 

  97. Lefer, D. J. et al. Leukocyte–endothelial cell interactions in nitric oxide synthase-deficient mice. Am. J. Physiol. 276, 1943–1950 (1999).

    Google Scholar 

  98. Gyurko, R., Kuhlencordt, P., Fishman, M. C. & Huang, P. L. Modulation of mouse cardiac function in vivo by eNOS and ANP. Am. J. Physiol. 278, H971–H981 (2000).

    CAS  Google Scholar 

  99. Huang, Z. et al. Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-L-arginine. J. Cereb. Blood Flow Metab. 16, 981–987 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Lo, E. H. et al. Temporal correlation mapping analysis of the hemodynamic penumbra in mutant mice deficient in endothelial nitric oxide synthase gene expression. Stroke 27, 1381–1385 (1996).

    Article  CAS  PubMed  Google Scholar 

  101. Kano, T., Shimizu-Sasamata, M., Huang, P. L., Moskowitz, M. A. & Lo, E. H. Effects of nitric oxide synthase gene knockout on neurotransmitter release in vivo. Neuroscience 86, 695–699 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Panahian, N. et al. Attenuated hippocampal damage after global cerebral ischemia in mice mutant in neuronal nitric oxide synthase. Neuroscience 72, 343–354 (1996).

    Article  CAS  PubMed  Google Scholar 

  103. Kakuyama, M., Ahluwalia, A., Rodrigo, J. & Vallance, P. Cholinergic contraction is altered in nNOS knockouts: co-operative modulation of neural bronchoconstriction by nNOS and COX. Am. J. Respir. Crit. Care Med. 160, 2072–2078 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Huang, P. L., Dawson, T. M., Bredt, D. S., Snyder, S. H. & Fishman, M. C. Targeted disruption of the neuronal nitric oxide synthase gene. Cell 75, 1273–1286 (1993). The original paper that describes the striking gastrointestinal phenotype of nNos knockout mice.

    Article  CAS  PubMed  Google Scholar 

  105. Mashimoto, H., He, X. D., Huang, P. L., Fishman, M. C. & Goyal, R. K. Neuronal constitutive nitric oxide synthase is involved in murine enteric inhibitory neurotransmission. J. Clin. Invest. 98, 8–13 (1996).

    Article  Google Scholar 

  106. MacMicking, J. D. et al. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81, 541–650 (1995).

    Article  Google Scholar 

  107. Wei, X. Q. et al. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 375, 408–411 (1995). References 106 and 107 describe the effects of loss of iNOS. There are some interesting differences between the phenotypes described.

    Article  CAS  PubMed  Google Scholar 

  108. Gross, S. S., Kilbourn, R. G. & Griffith, O. W. NO in septic shock: good, bad or ugly? Learning from iNOS knockouts. Trends Microbiol. 4, 47–49 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. Scott, D. J. et al. Lack of inducible nitric oxide synthase promotes intestinal tumorigenesis in the Apc(Min/+) mouse. Gastroenterology 121, 889–899 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Yamasaki, K. et al. Reversal of impaired wound repair in iNOS-deficient mice by topical adenoviral-mediated iNOS gene transfer. J. Clin. Invest. 101, 967–971 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Heneka, M. T. et al. Neuronal and glial coexpression of argininosuccinate synthetase and inducible nitric oxide synthase in Alzheimer disease. J. Neuropathol. Exp. Neurol. 60, 906–916 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Easki, T. et al. Expression of inducible nitric oxide synthase and Fas/Fas ligand correlates with the incidence of apoptotic cell death in atheromatous plaques of human coronary arteries. Nitric Oxide 4, 561–571 (2000).

    Article  CAS  Google Scholar 

  113. Behr-Roussel, D., Rupin, A., Sansilvestri-Morel, P., Fabiani, J. N. & Verbeuren, T. J. Histochemical evidence for inducible nitric oxide synthase in advanced but non-ruptured human atherosclerotic carotid arteries. Histochem. J. 32, 41–51 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Murray, I. A., Daniels, I., Coupland, K., Smith, J. A. & Long, R. G. Increased activity and expression of iNOS in human duodenal enterocytes from patients with celiac disease. Am. J. Physiol. Gastrointest. Liver. Physiol. 283, 19–26 (2002).

    Article  Google Scholar 

  115. Dijkstra, G. et al. Increased expression of inducible nitric oxide synthase in circulating monocytes from patients with active inflammatory bowel disease. Scand. J. Gastroenterol. 37, 546–554 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Perner, A. et al. Expression of nitric oxide synthases and effects of L-arginine and L-NMMA on nitric oxide production and fluid transport in collagenous colitis. Gut 49, 387–394 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Liu, J. S., Zhao, M. L., Brosnan, C. F. & Lee, S. C. Expression of inducible nitric oxide synthase and nitrotyrosine in multiple sclerosis lesions. Am. J. Pathol. 158, 2057–2066 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Vuolteenaho, K., Moilanen, T., Al-Saffar, N., Knowles, R. G. & Moilanen, E. Regulation of the nitric oxide production resulting from the glucocorticoid-insensitive expression of iNOS in human osteoarthritic cartilage. Osteoarthritis Cartilage 9, 597–605 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Borderie, D. et al. Nitric oxide synthase is expressed in the lymphomononuclear cells of synovial fluid in patients with rheumatoid arthritis. J. Rheumatol. 26, 2083–2088 (1999).

    CAS  PubMed  Google Scholar 

  120. Knott, C., Stern, G. & Wilkin, G. P. Inflammatory regulators in Parkinson's disease: iNOS, lipocortin-1, and cyclooxygenases-1 and-2. Mol. Cell. Neurosci. 16, 724–39 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Annane, D. et al. Compartmentalised inducible nitric-oxide synthase activity in septic shock. Lancet 355, 1143–1148 (2001).

    Article  Google Scholar 

  122. Forster, C., Clark, H. B., Ross, M. E. & Iadecola, C. Inducible nitric oxide synthase expression in human cerebral infarcts. Acta. Neuropathol. 97, 215–220 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Suda, O. et al. Long-term treatment with Nω-nitro-L-arginine methyl ester (L-NAME) causes arteriosclerotic coronary lesions in endothelial nitric oxide synthase-deficient mice. Circulation 106, 1729–1735 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the laboratory of P. V. is generously supported by grants from the British Heart Foundation, the Wellcome Trust and the Medical Research Council. The authors are grateful to R. Knowles, N. Boughton-Smith, and C. S. Raman for information provided, and to A. Hobbs for critical reading of the manuscript. Figure 3 was prepared by S. Rossiter. From the work of the authors, University College London (UCL) holds patents in relation to DDAH as a target for drug action.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Vallance.

Related links

Related links

DATABASES

LocusLink

aconitase

ApoE

arginase

arginine deiminases

arginine glycine amidinotransferase

argininosuccinate synthase

calmodulin

caveolin-1

DDAH

diamine oxidase

dystrophin

eNOS

eNos

iNOS

iNos

nNOS

nNos

PIN

soluble guanylyl cyclase

thioredoxin

TP53

VEGF

OMIM

Alzheimer's disease

Celiac disease

multiple sclerosis

Parkinson's disease

FURTHER INFORMATION

Encyclopedia of Life Sciences

nitric oxide: role in human disease

nitric oxide: synthesis and action

Protein Data Bank

Glossary

APOPTOSIS

Programmed cell death.

CASPASES

A family of intracellular cysteine proteases that are responsible for apoptosis.

PRODRUG

A pharmacologically inactive compound that is converted to the active form of the drug by endogenous enzymes or metabolism. It is generally designed to overcome problems associated with stability, toxicity, lack of specificity or limited (oral) bioavailability.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vallance, P., Leiper, J. Blocking NO synthesis: how, where and why?. Nat Rev Drug Discov 1, 939–950 (2002). https://doi.org/10.1038/nrd960

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd960

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing