Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The neuropathogenesis of AIDS

Key Points

  • The incidence of HIV-associated dementia has decreased since patients have been treated with highly active antiretroviral therapy (HAART); however, the prevalence of cognitive disorders remains high, owing to the longer lifespan (and concomitantly greater average age) of patients who are infected with HIV and to the appearance of less-severe disorders of cognition in treated patients.

  • Most of the HIV entering the brain does so within infected monocytes that cross the blood–brain barrier to replenish the population of perivascular macrophages. HIV might reside in the brain for long periods, forming a separate genetic subgroup in an infected patient.

  • Most, if not all, of the virus being produced in the brain is from macrophages and microglia, because infection of astrocytes, although it occurs, does not lead to high levels of virus production. Multinucleated giant cells, the hallmark neuropathology of HIV infection, are formed by the fusion of infected and uninfected macrophages and microglia.

  • Neuronal apoptosis is a key neuropathological consequence of HIV infection; it might be mediated by the effects of infected, activated macrophages and microglia, possibly with a direct contribution from viral proteins that interact with cell-surface receptors on macrophages, or even more directly, on neurons.

  • The brains of individuals who are infected with HIV have altered expression of both chemokines and chemokine receptors. The balance between the roles of chemokines as potentially neurotoxic and neuroprotective has not yet been fully elucidated.

  • Potential neuroprotective therapies, other than treatment with antiretroviral drugs, are targeted to interrupt direct damage to neurons by blunting the effects of macrophage activation and infection.

Abstract

HIV-associated dementia (HAD) is an important complication of the central nervous system in patients who are infected with HIV-1. Although the incidence of HAD has markedly decreased since it has become possible to effectively control viral replication in the blood by administering highly active antiretroviral therapy, a less severe form of HAD, comprising a milder cognitive and motor disorder, is now potentially a serious problem. Brain macrophages and microglia are the key cell types that are infected by HIV-1 in the central nervous system, and they are likely to mediate the neurodegeneration seen in patients with HAD; however, the precise pathogenesis of this neurodegeneration is still unclear. Here, we discuss the studies that are being carried out to determine the respective contributions of infection, and monocyte and macrophage activation, to disease progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The location of different cell types in the brain.
Figure 2: HIV neuroinvasion and multinucleated giant-cell formation.
Figure 3: Mechanisms of neurodegeneration and neuroprotection in AIDS.

Similar content being viewed by others

References

  1. Childs, E. A. et al. Plasma viral load and CD4 lymphocytes predict HIV-associated dementia and sensory neuropathy. Neurology 52, 607–613 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. McArthur, J. C. et al. Human immunodeficiency virus-associated dementia: an evolving disease. J. Neurovirol. 9, 205–221 (2003). Excellent review of the changing patterns of neurological manifestations of AIDS in the era of HAART, including comments about neuropathy.

    Article  CAS  PubMed  Google Scholar 

  3. Cherner, M. et al. Neurocognitive dysfunction predicts postmortem findings of HIV encephalitis. Neurology 59, 1563–1567 (2002). Describes the importance of MCMD in the spectrum of neuropathogenesis of AIDS.

    Article  CAS  PubMed  Google Scholar 

  4. Sacktor, N. et al. HIV-associated cognitive impairment before and after the advent of combination therapy. J. Neurovirol. 8, 136–142 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Neuenburg, J. K. et al. HIV-related neuropathology, 1985 to 1999: rising prevalence of HIV encephalopathy in the era of highly active antiretroviral therapy. J. Acquir. Immune Defic. Syndr. 31, 171–177 (2002).

    Article  PubMed  Google Scholar 

  6. Letendre, S. L, et al. Enhancing antiretroviral therapy for HIV cognitive disorders. Ann. Neurol. 56, 416–423 (2004).

    Article  PubMed  Google Scholar 

  7. Clements, J. E. & Zink, M. C. Molecular biology and pathogenesis of animal lentivirus infections. Clin. Microbiol. Rev. 9, 100–117 (1996). Excellent review of the spectrum of diseases caused by lentiviruses. Also provides a historical perspective not present in more recent reviews.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. An, S. F., Groves, M., Gray, F. & Scaravilli, F. Early entry and widespread cellular involvement of HIV-1 DNA in brains of HIV-1 positive asymptomatic individuals. J. Neuropathol. Exp. Neurol. 58, 1156–1162 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Davis, L. E. et al. Early viral brain invasion in iatrogenic human immunodeficiency virus infection. Neurology 42, 1736–1739 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Hickey, W. F. Leukocyte traffic in the central nervous system: the participants and their roles. Semin. Immunol. 11, 125–137 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Haase, A. T. Pathogenesis of lentivirus infections. Nature 322, 130–136 (1986).

    Article  CAS  PubMed  Google Scholar 

  12. Peluso, R., Haase, A., Stowring, L., Edwards, M. & Ventura, P. A Trojan Horse mechanism for the spread of visna virus in monocytes. Virology 147, 231–236 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Wiley, C. A., Schrier, R. D., Nelson, J. A., Lampert, P. W. & Oldstone, M. B. Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc. Natl Acad. Sci. USA 83, 7089–7093 (1986). Reference 13, together with references 15–17, provides the currently accepted evidence for infection of CNS cells. These references emphasize the role of perivascular macrophages, and reference 16 also provides an alternative point of view regarding the involvement of microglia.

    Article  CAS  PubMed  Google Scholar 

  14. Takahashi, K. et al. Localization of HIV-1 in human brain using polymerase chain reaction/in situ hybridization and immunocytochemistry. Ann. Neurol. 39, 705–711 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Fischer-Smith, T. et al. Macrophage/microglial accumulation and proliferating cell nuclear antigen expression in the central nervous system in human immunodeficiency virus encephalopathy. Am. J. Pathol. 164, 2089–2099 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cosenza, M. A., Zhao, M. L., Si, Q. & Lee, S. C. Human brain parenchymal microglia express CD14 and CD45 and are productively infected by HIV-1 in HIV-1 encephalitis. Brain Pathol. 12, 442–455 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Williams, K. C. et al. Perivascular macrophages are the primary cell type productively infected by simian immunodeficiency virus in the brains of macaques: implications for the neuropathogenesis of AIDS. J. Exp. Med. 193, 905–915 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pumarola-Sune, T., Navia, B. A., Cordon-Cardo, C., Cho, E. S. & Price, R. W. HIV antigen in the brains of patients with the AIDS dementia complex. Ann. Neurol. 21, 490–496 (1987).

    Article  CAS  PubMed  Google Scholar 

  19. Petito, C. K. & Cash, K. S. Blood–brain barrier abnormalities in the acquired immunodeficiency syndrome: immunohistochemical localization of serum proteins in postmortem brain. Ann. Neurol. 32, 658–666 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Williams, K. C. & Hickey, W. F. Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS. Annu. Rev. Neurosci. 25, 537–562 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Gartner, S. HIV infection and dementia. Science 287, 602–604 (2000). References 20 and 21 are good reviews that discuss the contribution of infection and cellular activation to neuropathogenesis caused by HIV.

    Article  CAS  PubMed  Google Scholar 

  22. Bomsel, M. Transcytosis of infectious human immunodeficiency virus across a tight human epithelial cell line barrier. Nature Med. 3, 42–47 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Banks, W. A. et al. Transport of human immunodeficiency virus type 1 pseudoviruses across the blood–brain barrier: role of envelope proteins and adsorptive endocytosis. J. Virol. 75, 4681–4691 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, N. Q. et al. Human immunodeficiency virus type 1 enters brain microvascular endothelia by macropinocytosis dependent on lipid rafts and the mitogen-activated protein kinase signaling pathway. J. Virol. 76, 6689–6700 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Argyris, E. G. et al. Human immunodeficiency virus type 1 enters primary human brain microvascular endothelial cells by a mechanism involving cell surface proteoglycans independent of lipid rafts. J. Virol. 77, 12140–12151 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bobardt, M. D. et al. Contribution of proteoglycans to human immunodeficiency virus type 1 brain invasion. J. Virol. 78, 6567–6584 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Edinger, A. L. et al. CD4-independent, CCR5-dependent infection of brain capillary endothelial cells by a neurovirulent simian immunodeficiency virus strain. Proc. Natl Acad. Sci. USA 94, 14742–14747 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Gehrmann, J., Matsumoto, Y. & Kreutzberg, G. W. Microglia: intrinsic immuneffector cell of the brain. Brain Res. Brain Res. Rev. 20, 269–287 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Carson, M. J., Reilly, C. R., Sutcliffe, J. G. & Lo, D. Mature microglia resemble immature antigen-presenting cells. Glia 22, 72–85 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Shaked, I., Porat, Z., Gersner, R., Kipnis, J. & Schwartz, M. Early activation of microglia as antigen-presenting cells correlates with T cell-mediated protection and repair of the injured central nervous system. J. Neuroimmunol. 146, 84–93 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Kipnis, J., Avidan, H., Caspi, R. R. & Schwartz, M. Dual effect of CD4+CD25+ regulatory T cells in neurodegeneration: a dialogue with microglia. Proc. Natl Acad. Sci. USA 101 (Suppl. 2), 14663–14669 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Del Rio-Hortega, P. in Cytology and Cellular Pathology of the Nervous System (ed. Penfield, W.) 483–534 (Hoeber, New York, 1932).

    Google Scholar 

  33. Guillemin, G. J. & Brew, B. J. Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J. Leukoc. Biol. 75, 388–397 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Ulvestad, E. et al. Human microglial cells have phenotypic and functional characteristics in common with both macrophages and dendritic antigen-presenting cells. J. Leukoc. Biol. 56, 732–740 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Ulvestad, E., Williams, K., Mork, S., Antel, J. & Nyland, H. Phenotypic differences between human monocytes/macrophages and microglial cells studied in situ and in vitro. J. Neuropathol. Exp. Neurol. 53, 492–501 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Lassmann, H., Schmied, M., Vass, K. & Hickey, W. F. Bone marrow derived elements and resident microglia in brain inflammation. Glia 7, 19–24 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Hickey, W. F., Vass, K. & Lassmann, H. Bone marrow-derived elements in the central nervous system: an immunohistochemical and ultrastructural survey of rat chimeras. J. Neuropathol. Exp. Neurol. 51, 246–256 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Krall, W. J., Challita, P. M., Perlmutter, L. S., Skelton, D. C. & Kohn, D. B. Cells expressing human glucocerebrosidase from a retroviral vector repopulate macrophages and central nervous system microglia after murine bone marrow transplantation. Blood 83, 2737–2748 (1994).

    CAS  PubMed  Google Scholar 

  39. Unger, E. R. et al. Male donor-derived cells in the brains of female sex-mismatched bone marrow transplant recipients: a Y-chromosome specific in situ hybridization study. J. Neuropathol. Exp. Neurol. 52, 460–470 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Fischer-Smith, T. et al. CNS invasion by CD14+/CD16+ peripheral blood-derived monocytes in HIV dementia: perivascular accumulation and reservoir of HIV infection. J. Neurovirol. 7, 528–541 (2001). Shows that the CD14+CD16+ monocyte subpopulation accumulates in the CNS and potentially has a role in HAD.

    Article  CAS  PubMed  Google Scholar 

  41. Shieh, J. T. et al. Chemokine receptor utilization by human immunodeficiency virus type 1 isolates that replicate in microglia. J. Virol. 72, 4243–4249 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Strizki, J. M. et al. Infection of primary human microglia and monocyte-derived macrophages with human immunodeficiency virus type 1 isolates: evidence of differential tropism. J. Virol. 70, 7654–7662 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Watkins, B. A. et al. Specific tropism of HIV-1 for microglial cells in primary human brain cultures. Science 249, 549–553 (1990).

    Article  CAS  PubMed  Google Scholar 

  44. Rottman, J. B. et al. Cellular localization of the chemokine receptor CCR5. Correlation to cellular targets of HIV-1 infection. Am. J. Pathol. 151, 1341–1351 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Albright, A. V. et al. Microglia express CCR5, CXCR4, and CCR3, but of these, CCR5 is the principal coreceptor for human immunodeficiency virus type 1 dementia isolates. J. Virol. 73, 205–213 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. van der Meer, P., Ulrich, A. M., González-Scarano, F. & Lavi, E. Immunohistochemical analysis of CCR2, CCR3, CCR5, and CXCR4 in the human brain: potential mechanisms for HIV dementia. Exp. Mol. Pathol. 69, 192–201 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Sharer, L. R. et al. Pathologic features of AIDS encephalopathy in children: evidence for LAV/HTLV-III infection of brain. Hum. Pathol. 17, 271–284 (1986).

    Article  CAS  PubMed  Google Scholar 

  48. Sharer, L. R., Cho, E. S. & Epstein, L. G. Multinucleated giant cells and HTLV-III in AIDS encephalopathy. Hum. Pathol. 16, 760 (1985).

    Article  CAS  PubMed  Google Scholar 

  49. Dick, A. D., Pell, M., Brew, B. J., Foulcher, E. & Sedgwick, J. D. Direct ex vivo flow cytometric analysis of human microglial cell CD4 expression: examination of central nervous system biopsy specimens from HIV-seropositive patients and patients with other neurological disease. AIDS 11, 1699–1708 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Peudenier, S., Hery, C., Montagnier, L. & Tardieu, M. Human microglial cells: characterization in cerebral tissue and in primary culture, and study of their susceptibility to HIV-1 infection. Ann. Neurol. 29, 152–161 (1991).

    Article  CAS  PubMed  Google Scholar 

  51. Peudenier, S., Hery, C., Ng, K. H. & Tardieu, M. HIV receptors within the brain: a study of CD4 and MHC-II on human neurons, astrocytes and microglial cells. Res. Virol. 142, 145–149 (1991).

    Article  CAS  PubMed  Google Scholar 

  52. Jordan, C. A., Watkins, B. A., Kufta, C. & Dubois-Dalcq, M. Infection of brain microglial cells by human immunodeficiency virus type 1 is CD4 dependent. J. Virol. 65, 736–742 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hickey, W. F., Hsu, B. L. & Kimura, H. T-lymphocyte entry into the central nervous system. J. Neurosci. Res. 28, 254–260 (1991).

    Article  CAS  PubMed  Google Scholar 

  54. Shapshak, P. et al. Independent evolution of HIV type 1 in different brain regions. AIDS Res. Hum. Retroviruses 15, 811–820 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Epstein, L. G. et al. HIV-1 V3 domain variation in brain and spleen of children with AIDS: tissue-specific evolution within host-determined quasispecies. Virology 180, 583–590 (1991).

    Article  CAS  PubMed  Google Scholar 

  56. Kodama, T., Mori, K., Kawahara, T., Ringler, D. J. & Desrosiers, R. C. Analysis of simian immunodeficiency virus sequence variation in tissues of rhesus macaques with simian AIDS. J. Virol. 67, 6522–6534 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Korber, B. T. et al. Genetic differences between blood- and brain-derived viral sequences from human immunodeficiency virus type 1-infected patients: evidence of conserved elements in the V3 region of the envelope protein of brain-derived sequences. J. Virol. 68, 7467–7481 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Reddy, R. T. et al. Sequence analysis of the V3 loop in brain and spleen of patients with HIV encephalitis. AIDS Res. Hum. Retroviruses 12, 477–482 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Wong, J. K. et al. In vivo compartmentalization of human immunodeficiency virus: evidence from the examination of pol sequences from autopsy tissues. J. Virol. 71, 2059–2071 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ryzhova, E. V. et al. Simian immunodeficiency virus encephalitis: analysis of envelope sequences from individual brain multinucleated giant cells and tissue samples. Virology 297, 57–67 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Miyake, A. et al. The quantity and diversity of infectious viruses in various tissues of SHIV-infected monkeys at the early and AIDS stages. Arch. Virol. 149, 943–955 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Gorry, P. R. et al. Increased CCR5 affinity and reduced CCR5/CD4 dependence of a neurovirulent primary human immunodeficiency virus type 1 isolate. J. Virol. 76, 6277–6292 (2002). Indicates that increased neurovirulence might be associated with a higher efficiency in the interaction of the HIV envelope and the viral co-receptor CCR5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Martín, J., LaBranche, C. C. & González-Scarano, F. Differential CD4/CCR5 utilization, gp120 conformation, and neutralization sensitivity between envelopes from a microglia-adapted human immunodeficiency virus type 1 and its parental isolate. J. Virol. 75, 3568–3580 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Watry, D., Lane, T. E., Streb, M. & Fox, H. S. Transfer of neuropathogenic simian immunodeficiency virus with naturally infected microglia. Am. J. Pathol. 146, 914–923 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Peters, P. J. et al. Biological analysis of human immunodeficiency virus type 1 R5 envelopes amplified from brain and lymph node tissues of AIDS patients with neuropathology reveals two distinct tropism phenotypes and identifies envelopes in the brain that confer an enhanced tropism and fusigenicity for macrophages. J. Virol. 78, 6915–6926 (2004). First study that shows a reduced CD4 dependence of viral envelopes from primary brain-derived HIV isolates compared with peripheral isolates, in HIV-infected individuals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Martín-García, J., Kolson, D. L. & González-Scarano, F. Chemokine receptors in the brain: their role in HIV infection and pathogenesis. AIDS 16, 1709–1730 (2002).

    Article  PubMed  Google Scholar 

  67. Horuk, R. et al. Expression of chemokine receptors by subsets of neurons in the central nervous system. J. Immunol. 158, 2882–2890 (1997).

    CAS  PubMed  Google Scholar 

  68. Coughlan, C. M. et al. Expression of multiple functional chemokine receptors and monocyte chemoattractant protein-1 in human neurons. Neuroscience 97, 591–600 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Meucci, O. et al. Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc. Natl Acad. Sci. USA 95, 14500–14505 (1998). Indicates a role for certain chemokine–chemokine receptor interactions in neuroprotection, in addition to their proposed role in neurotoxicity.

    Article  CAS  PubMed  Google Scholar 

  70. Xia, M. Q., Bacskai, B. J., Knowles, R. B., Qin, S. X. & Hyman, B. T. Expression of the chemokine receptor CXCR3 on neurons and the elevated expression of its ligand IP-10 in reactive astrocytes: in vitro ERK1/2 activation and role in Alzheimer's disease. J. Neuroimmunol. 108, 227–235 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Tanabe, S. et al. Functional expression of the CXC-chemokine receptor-4/fusin on mouse microglial cells and astrocytes. J. Immunol. 159, 905–911 (1997).

    CAS  PubMed  Google Scholar 

  72. Bajetto, A. et al. Glial and neuronal cells express functional chemokine receptor CXCR4 and its natural ligand stromal cell-derived factor 1. J. Neurochem. 73, 2348–2357 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Lavi, E., Kolson, D. L., Ulrich, A. M., Fu, L. & González-Scarano, F. Chemokine receptors in the human brain and their relationship to HIV infection. J. Neurovirol. 4, 301–311 (1998). Reviews the expression of chemokine receptors in the brain and their relevance to neuropathogenesis caused by HIV.

    Article  CAS  PubMed  Google Scholar 

  74. Dorf, M. E., Berman, M. A., Tanabe, S., Heesen, M. & Luo, Y. Astrocytes express functional chemokine receptors. J. Neuroimmunol. 111, 109–121 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Westmoreland, S. V., Rottman, J. B., Williams, K. C., Lackner, A. A. & Sasseville, V. G. Chemokine receptor expression on resident and inflammatory cells in the brain of macaques with simian immunodeficiency virus encephalitis. Am. J. Pathol. 152, 659–665 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Vallat, A. V. et al. Localization of HIV-1 co-receptors CCR5 and CXCR4 in the brain of children with AIDS. Am. J. Pathol. 152, 167–178 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Xia, M. Q., Qin, S. X., Wu, L. J., Mackay, C. R. & Hyman, B. T. Immunohistochemical study of the β-chemokine receptors CCR3 and CCR5 and their ligands in normal and Alzheimer's disease brains. Am. J. Pathol. 153, 31–37 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Klein, R. S. et al. Chemokine receptor expression and signaling in macaque and human fetal neurons and astrocytes: implications for the neuropathogenesis of AIDS. J. Immunol. 163, 1636–1646 (1999).

    CAS  PubMed  Google Scholar 

  79. Tanabe, S. et al. Murine astrocytes express a functional chemokine receptor. J. Neurosci. 17, 6522–6528 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Harrison, J. K. et al. Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc. Natl Acad. Sci. USA 95, 10896–10901 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Maciejewski-Lenoir, D., Chen, S., Feng, L., Maki, R. & Bacon, K. B. Characterization of fractalkine in rat brain cells: migratory and activation signals for CX3CR-1-expressing microglia. J. Immunol. 163, 1628–1635 (1999).

    CAS  PubMed  Google Scholar 

  82. Schwaeble, W. J. et al. Neuronal expression of fractalkine in the presence and absence of inflammation. FEBS Lett. 439, 203–207 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Meucci, O., Fatatis, A., Simen, A. A. & Miller, R. J. Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival. Proc. Natl Acad. Sci. USA 97, 8075–8080 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Ancuta, P. et al. Fractalkine preferentially mediates arrest and migration of CD16+ monocytes. J. Exp. Med. 197, 1701–1707 (2003). Highlights the potential role of CX 3 CL1 in the interaction between different brain cell types and the response to insults in the CNS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zheng, J. et al. Intracellular CXCR4 signaling, neuronal apoptosis and neuropathogenic mechanisms of HIV-1-associated dementia. J. Neuroimmunol. 98, 185–200 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Schmidtmayerova, H. et al. Human immunodeficiency virus type 1 infection alters chemokine β peptide expression in human monocytes: implications for recruitment of leukocytes into brain and lymph nodes. Proc. Natl Acad. Sci. USA 93, 700–704 (1996).

    Article  CAS  PubMed  Google Scholar 

  87. Sasseville, V. G. et al. Chemokine expression in simian immunodeficiency virus-induced AIDS encephalitis. Am. J. Pathol. 149, 1459–1467 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Zink, M. C. et al. Increased macrophage chemoattractant protein-1 in cerebrospinal fluid precedes and predicts simian immunodeficiency virus encephalitis. J. Infect. Dis. 184, 1015–1021 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Conant, K. et al. Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc. Natl Acad. Sci. USA 95, 3117–3121 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Kelder, W., McArthur, J. C., Nance-Sproson, T., McClernon, D. & Griffin, D. E. β-chemokines MCP-1 and RANTES are selectively increased in cerebrospinal fluid of patients with human immunodeficiency virus-associated dementia. Ann. Neurol. 44, 831–835 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Kaul, M. & Lipton, S. A. Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis. Proc. Natl Acad. Sci. USA 96, 8212–8216 (1999). Indicates a role for the HIV envelope glycoprotein in directly inducing apoptosis of neurons.

    Article  CAS  PubMed  Google Scholar 

  92. Hesselgesser, J. et al. Neuronal apoptosis induced by HIV-1 gp120 and the chemokine SDF-1α is mediated by the chemokine receptor CXCR4. Curr. Biol. 8, 595–598 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Lazarini, F. et al. Differential signalling of the chemokine receptor CXCR4 by stromal cell-derived factor 1 and the HIV glycoprotein in rat neurons and astrocytes. Eur. J. Neurosci. 12, 117–125 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Sanders, V. J., Everall, I. P., Johnson, R. W. & Masliah, E. Fibroblast growth factor modulates HIV coreceptor CXCR4 expression by neural cells. J. Neurosci. Res. 59, 671–679 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Zheng, J. et al. Lymphotropic virions affect chemokine receptor-mediated neural signaling and apoptosis: implications for human immunodeficiency virus type 1-associated dementia. J. Virol. 73, 8256–8267 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Pandey, V. & Bolsover, S. R. Immediate and neurotoxic effects of HIV protein gp120 act through CXCR4 receptor. Biochem. Biophys. Res. Commun. 274, 212–215 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Ohagen, A. et al. Apoptosis induced by infection of primary brain cultures with diverse human immunodeficiency virus type 1 isolates: evidence for a role of the envelope. J. Virol. 73, 897–906 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Barks, J. D., Liu, X. H., Sun, R. & Silverstein, F. S. gp120, a human immunodeficiency virus-1 coat protein, augments excitotoxic hippocampal injury in perinatal rats. Neuroscience 76, 397–409 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Xin, K. Q. et al. Evidence of HIV type 1 glycoprotein 120 binding to recombinant N-methyl-D-aspartate receptor subunits expressed in a baculovirus system. AIDS Res. Hum. Retroviruses 15, 1461–1467 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Corasaniti, M. T. et al. Apoptosis induced by gp120 in the neocortex of rat involves enhanced expression of cyclooxygenase type 2 and is prevented by NMDA receptor antagonists and by the 21-aminosteroid U-74389G. Biochem. Biophys. Res. Commun. 274, 664–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Meucci, O. & Miller, R. J. gp120-induced neurotoxicity in hippocampal pyramidal neuron cultures: protective action of TGF-β1. J. Neurosci. 16, 4080–4088 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bezzi, P. et al. CXCR4-activated astrocyte glutamate release via TNFα: amplification by microglia triggers neurotoxicity. Nature Neurosci. 4, 702–710 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Garden, G. A. et al. Caspase cascades in human immunodeficiency virus-associated neurodegeneration. J. Neurosci. 22, 4015–4024 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Klasse, P. J. & Moore, J. P. Is there enough gp120 in the body fluids of HIV-1-infected individuals to have biologically significant effects? Virology 323, 1–8 (2004). Recent paper that sheds light and perspective on the conflicting issue of the relevance of many in vitro studies to the biological effects of viral proteins.

    Article  CAS  PubMed  Google Scholar 

  105. Chang, H. C., Samaniego, F., Nair, B. C., Buonaguro, L. & Ensoli, B. HIV-1 Tat protein exits from cells via a leaderless secretory pathway and binds to extracellular matrix-associated heparan sulfate proteoglycans through its basic region. AIDS 11, 1421–1431 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Andras, I. E. et al. HIV-1 Tat protein alters tight junction protein expression and distribution in cultured brain endothelial cells. J. Neurosci. Res. 74, 255–265 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. McManus, C. M. et al. Chemokine and chemokine-receptor expression in human glial elements: induction by the HIV protein, Tat, and chemokine autoregulation. Am. J. Pathol. 156, 1441–1453 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Park, I. W., Wang, J. F. & Groopman, J. E. HIV-1 Tat promotes monocyte chemoattractant protein-1 secretion followed by transmigration of monocytes. Blood 97, 352–358 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Song, L., Nath, A., Geiger, J. D., Moore, A. & Hochman, S. Human immunodeficiency virus type 1 Tat protein directly activates neuronal N-methyl-D-aspartate receptors at an allosteric zinc-sensitive site. J. Neurovirol. 9, 399–403 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Sherman, M. P., De Noronha, C. M., Williams, S. A. & Greene, W. C. Insights into the biology of HIV-1 viral protein R. DNA Cell Biol. 21, 679–688 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Patel, C. A., Mukhtar, M., Harley, S., Kulkosky, J. & Pomerantz, R. J. Lentiviral expression of HIV-1 Vpr induces apoptosis in human neurons. J. Neurovirol. 8, 86–99 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Patel, C. A., Mukhtar, M. & Pomerantz, R. J. Human immunodeficiency virus type 1 Vpr induces apoptosis in human neuronal cells. J. Virol. 74, 9717–9726 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Levy, D. N., Refaeli, Y. & Weiner, D. B. Extracellular Vpr protein increases cellular permissiveness to human immunodeficiency virus replication and reactivates virus from latency. J. Virol. 69, 1243–1252 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Marcondes, M. C. et al. Highly activated CD8+ T cells in the brain correlate with early central nervous system dysfunction in simian immunodeficiency virus infection. J. Immunol. 167, 5429–5438 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Kim, W. K. et al. Identification of T lymphocytes in simian immunodeficiency virus encephalitis: distribution of CD8+ T cells in association with central nervous system vessels and virus. J. Neurovirol. 10, 315–325 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Glass, J. D., Fedor, H., Wesselingh, S. L. & McArthur, J. C. Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann. Neurol. 38, 755–762 (1995).

    Article  CAS  PubMed  Google Scholar 

  117. Achim, C. L., Heyes, M. P. & Wiley, C. A. Quantitation of human immunodeficiency virus, immune activation factors, and quinolinic acid in AIDS brains. J. Clin. Invest. 91, 2769–2775 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wesselingh, S. L. et al. Intracerebral cytokine messenger RNA expression in acquired immunodeficiency syndrome dementia. Ann. Neurol. 33, 576–582 (1993).

    Article  CAS  PubMed  Google Scholar 

  119. Adamson, D. C., McArthur, J. C., Dawson, T. M. & Dawson, V. L. Rate and severity of HIV-associated dementia (HAD): correlations with gp41 and iNOS. Mol. Med. 5, 98–109 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bukrinsky, M. I. et al. Regulation of nitric oxide synthase activity in human immunodeficiency virus type 1 (HIV-1)-infected monocytes: implications for HIV-associated neurological disease. J. Exp. Med. 181, 735–745 (1995).

    Article  CAS  PubMed  Google Scholar 

  121. Blond, D. et al. Nitric oxide synthesis during acute SIVMAC251 infection of macaques. Res. Virol. 149, 75–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  122. Blond, D., Raoul, H., Le Grand, R. & Dormont, D. Nitric oxide synthesis enhances human immunodeficiency virus replication in primary human macrophages. J. Virol. 74, 8904–8912 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Thompson, K. A., McArthur, J. C. & Wesselingh, S. L. Correlation between neurological progression and astrocyte apoptosis in HIV-associated dementia. Ann. Neurol. 49, 745–752 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Conant, K. et al. Cerebrospinal fluid levels of MMP-2, 7, and 9 are elevated in association with human immunodeficiency virus dementia. Ann. Neurol. 46, 391–398 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Johnston, J. B. et al. Lentivirus infection in the brain induces matrix metalloproteinase expression: role of envelope diversity. J. Virol. 74, 7211–7220 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Persidsky, Y. et al. Reduction in glial immunity and neuropathology by a PAF antagonist and an MMP and TNFa inhibitor in SCID mice with HIV-1 encephalitis. J. Neuroimmunol. 114, 57–68 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Stins, M. F. et al. Induction of intercellular adhesion molecule-1 on human brain endothelial cells by HIV-1 gp120: role of CD4 and chemokine coreceptors. Lab. Invest. 83, 1787–1798 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Sasseville, V. G. et al. Elevated vascular cell adhesion molecule-1 in AIDS encephalitis induced by simian immunodeficiency virus. Am. J. Pathol. 141, 1021–1030 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Shrikant, P., Benos, D. J., Tang, L. P. & Benveniste, E. N. HIV glycoprotein 120 enhances intercellular adhesion molecule-1 gene expression in glial cells. Involvement of Janus kinase/signal transducer and activator of transcription and protein kinase C signaling pathways. J. Immunol. 156, 1307–1314 (1996).

    CAS  PubMed  Google Scholar 

  130. Grimaldi, L. M. et al. Elevated α-tumor necrosis factor levels in spinal fluid from HIV-1-infected patients with central nervous system involvement. Ann. Neurol. 29, 21–25 (1991).

    Article  CAS  PubMed  Google Scholar 

  131. Wahl, S. M. et al. Macrophage- and astrocyte-derived transforming growth factor-β as a mediator of central nervous system dysfunction in acquired immune deficiency syndrome. J. Exp. Med. 173, 981–991 (1991).

    Article  CAS  PubMed  Google Scholar 

  132. Tyor, W. R. et al. Cytokine expression in the brain during the acquired immunodeficiency syndrome. Ann. Neurol. 31, 349–360 (1992).

    Article  CAS  PubMed  Google Scholar 

  133. Nottet, H. S. et al. A regulatory role for astrocytes in HIV-1 encephalitis. An overexpression of eicosanoids, platelet-activating factor, and tumor necrosis factor-α by activated HIV-1-infected monocytes is attenuated by primary human astrocytes. J. Immunol. 154, 3567–3581 (1995).

    CAS  PubMed  Google Scholar 

  134. Wilt, S. G. et al. In vitro evidence for a dual role of tumor necrosis factor-α in human immunodeficiency virus type 1 encephalopathy. Ann. Neurol. 37, 381–394 (1995).

    Article  CAS  PubMed  Google Scholar 

  135. Stoll, G., Jander, S. & Schroeter, M. Cytokines in CNS disorders: neurotoxicity versus neuroprotection. J. Neural Transm. Suppl. 59, 81–89 (2000).

    CAS  PubMed  Google Scholar 

  136. Bhat, N. R., Zhang, P., Lee, J. C. & Hogan, E. L. Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-α gene expression in endotoxin-stimulated primary glial cultures. J. Neurosci. 18, 1633–1641 (1998).

    Article  CAS  PubMed  Google Scholar 

  137. Wang, C. X. & Shuaib, A. Involvement of inflammatory cytokines in central nervous system injury. Prog. Neurobiol. 67, 161–172 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Foos, T. M. & Wu, J. Y. The role of taurine in the central nervous system and the modulation of intracellular calcium homeostasis. Neurochem. Res. 27, 21–26 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Zhang, K. et al. HIV-induced metalloproteinase processing of the chemokine stromal cell derived factor-1 causes neurodegeneration. Nature Neurosci. 6, 1064–1071 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Cheng, B., Christakos, S. & Mattson, M. P. Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis. Neuron 12, 139–153 (1994).

    Article  CAS  PubMed  Google Scholar 

  141. Barger, S. W. et al. Tumor necrosis factors-α and-β protect neurons against amyloid β-peptide toxicity: evidence for involvement of a κB-binding factor and attenuation of peroxide and Ca2+ accumulation. Proc. Natl Acad. Sci. USA 92, 9328–9332 (1995). Describes a neuroprotective role for TNF through activation of anti-oxidant pathways and maintenance of calcium homeostasis.

    Article  CAS  PubMed  Google Scholar 

  142. Tamatani, M. et al. Tumor necrosis factor induces Bcl-2 and Bcl-x expression through NFκB activation in primary hippocampal neurons. J. Biol. Chem. 274, 8531–8538 (1999).

    Article  CAS  PubMed  Google Scholar 

  143. Fontaine, V. et al. Neurodegenerative and neuroprotective effects of tumor necrosis factor (TNF) in retinal ischemia: opposite roles of TNF receptor 1 and TNF receptor 2. J. Neurosci. 22, RC216 (2002).

    Article  PubMed  Google Scholar 

  144. Marchetti, L., Klein, M., Schlett, K., Pfizenmaier, K. & Eisel, U. L. Tumor necrosis factor (TNF)-mediated neuroprotection against glutamate-induced excitotoxicity is enhanced by N-Methyl-D-aspartate receptor activation: essential role of a TNF receptor 2-mediated phosphatidylinositol 3-kinase-dependent NF-κB pathway. J. Biol. Chem. 279, 32869–32881 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Diem, R., Meyer, R., Weishaupt, J. H. & Bahr, M. Reduction of potassium currents and phosphatidylinositol 3-kinase-dependent AKT phosphorylation by tumor necrosis factor-α rescues axotomized retinal ganglion cells from retrograde cell death in vivo. J. Neurosci. 21, 2058–2066 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. Mattson, M. P. & Camandola, S. NF-κB in neuronal plasticity and neurodegenerative disorders. J. Clin. Invest. 107, 247–254 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Guo, H. et al. Regulation of β-chemokine mRNA expression in adult rat astrocytes by lipopolysaccharide, proinflammatory and immunoregulatory cytokines. Scand. J. Immunol. 48, 502–508 (1998).

    Article  CAS  PubMed  Google Scholar 

  148. Yoshida, H. et al. Synergistic stimulation, by tumor necrosis factor-α and interferon-γ, of fractalkine expression in human astrocytes. Neurosci. Lett. 303, 132–136 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Medvedev, A. E., Espevik, T., Ranges, G. & Sundan, A. Distinct roles of the two tumor necrosis factor (TNF) receptors in modulating TNF and lymphotoxin-α effects. J. Biol. Chem. 271, 9778–9784 (1996).

    Article  CAS  PubMed  Google Scholar 

  150. Scorziello, A., Florio, T., Bajetto, A., Thellung, S. & Schettini, G. TGF-β1 prevents gp120-induced impairment of Ca2+ homeostasis and rescues cortical neurons from apoptotic death. J. Neurosci. Res. 49, 600–607 (1997).

    Article  CAS  PubMed  Google Scholar 

  151. da Cunha, A., Jefferson, J. A., Jackson, R. W. & Vitkovic, L. Glial cell-specific mechanisms of TGF-β 1 induction by IL-1 in cerebral cortex. J. Neuroimmunol. 42, 71–85 (1993).

    Article  CAS  PubMed  Google Scholar 

  152. Dragic, T. et al. A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR5. Proc. Natl Acad. Sci. USA 97, 5639–5644 (2000).

    Article  CAS  PubMed  Google Scholar 

  153. Reeves, J. D. et al. Sensitivity of HIV-1 to entry inhibitors correlates with envelope/coreceptor affinity, receptor density, and fusion kinetics. Proc. Natl Acad. Sci. USA 99, 16249–16254 (2002).

    Article  CAS  PubMed  Google Scholar 

  154. Hazuda, D. J. et al. Integrase inhibitors and cellular immunity suppress retroviral replication in rhesus macaques. Science 305, 528–532 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Toggas, S. M., Masliah, E. & Mucke, L. Prevention of HIV-1 gp120-induced neuronal damage in the central nervous system of transgenic mice by the NMDA receptor antagonist memantine. Brain Res. 706, 303–307 (1996).

    Article  CAS  PubMed  Google Scholar 

  156. Lipton, S. A. & Chen, H. S. Paradigm shift in neuroprotective drug development: clinically tolerated NMDA receptor inhibition by memantine. Cell Death Differ. 11, 18–20 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Chen, H. S. et al. Neuroprotective concentrations of the N-methyl-D-aspartate open-channel blocker memantine are effective without cytoplasmic vacuolation following post-ischemic administration and do not block maze learning or long-term potentiation. Neuroscience 86, 1121–1132 (1998).

    Article  CAS  PubMed  Google Scholar 

  158. Tariot, P. N. et al. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA 291, 317–324 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Miguel-Hidalgo, J. J., Alvarez, X. A., Cacabelos, R. & Quack, G. Neuroprotection by memantine against neurodegeneration induced by β-amyloid(1–40). Brain Res. 958, 210–221 (2002).

    Article  CAS  PubMed  Google Scholar 

  160. Ganju, R. K. et al. The α-chemokine, stromal cell-derived factor-1α, binds to the transmembrane G protein-coupled CXCR-4 receptor and activates multiple signal transduction pathways. J. Biol. Chem. 273, 23169–23175 (1998).

    Article  CAS  PubMed  Google Scholar 

  161. Misse, D. et al. HIV-1 glycoprotein 120 induces the MMP-9 cytopathogenic factor production that is abolished by inhibition of the p38 mitogen-activated protein kinase signaling pathway. Blood 98, 541–547 (2001).

    Article  CAS  PubMed  Google Scholar 

  162. Martin, D. S. et al. Apoptotic changes in the aged brain are triggered by interleukin-1β-induced activation of p38 and reversed by treatment with eicosapentaenoic acid. J. Biol. Chem. 277, 34239–34246 (2002).

    Article  CAS  PubMed  Google Scholar 

  163. Choi, W. S. et al. Phosphorylation of p38 MAPK induced by oxidative stress is linked to activation of both caspase-8- and -9-mediated apoptotic pathways in dopaminergic neurons. J. Biol. Chem. 279, 20451–20460 (2004).

    Article  CAS  PubMed  Google Scholar 

  164. Song, Y. S. et al. Protective role of Bcl-2 on β-amyloid-induced cell death of differentiated PC12 cells: reduction of NF-κB and p38 MAP kinase activation. Neurosci. Res. 49, 69–80 (2004).

    Article  CAS  PubMed  Google Scholar 

  165. Chen, W. et al. Development of a human neuronal cell model for human immunodeficiency virus (HIV)-infected macrophage-induced neurotoxicity: apoptosis induced by HIV type 1 primary isolates and evidence for involvement of the Bcl-2/Bcl-xL-sensitive intrinsic apoptosis pathway. J. Virol. 76, 9407–9419 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Dong, Y. & Benveniste, E. N. Immune function of astrocytes. Glia 36, 180–190 (2001).

    Article  CAS  PubMed  Google Scholar 

  167. Brack-Werner, R. Astrocytes: HIV cellular reservoirs and important participants in neuropathogenesis. AIDS 13, 1–22 (1999).

    Article  CAS  PubMed  Google Scholar 

  168. Sabri, F. et al. Nonproductive human immunodeficiency virus type 1 infection of human fetal astrocytes: independence from CD4 and major chemokine receptors. Virology 264, 370–384 (1999).

    Article  CAS  PubMed  Google Scholar 

  169. Ranki, A. et al. Abundant expression of HIV Nef and Rev proteins in brain astrocytes in vivo is associated with dementia. AIDS 9, 1001–1008 (1995).

    Article  CAS  PubMed  Google Scholar 

  170. Codazzi, F. et al. HIV-1 gp120 glycoprotein induces [Ca2+]i responses not only in type-2 but also type-1 astrocytes and oligodendrocytes of the rat cerebellum. Eur. J. Neurosci. 7, 1333–1341 (1995).

    Article  CAS  PubMed  Google Scholar 

  171. Adle-Biassette, H. et al. Neuronal apoptosis in HIV infection in adults. Neuropathol. Appl. Neurobiol. 21, 218–227 (1995).

    Article  CAS  PubMed  Google Scholar 

  172. Gelbard, H. A. et al. Apoptotic neurons in brains from paediatric patients with HIV-1 encephalitis and progressive encephalopathy. Neuropathol. Appl. Neurobiol. 21, 208–217 (1995).

    Article  CAS  PubMed  Google Scholar 

  173. Petito, C. K. & Roberts, B. Evidence of apoptotic cell death in HIV encephalitis. Am. J. Pathol. 146, 1121–1130 (1995). Presents evidence that neuronal apoptosis occurs in the brain in association with HIV infection.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are supported by grants from the National Institute of Neurological Disorders and Stroke (United States) and the National Institute of Mental Health (United States). We regret that space constraints prevented the inclusion of important findings by many of our colleagues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco González-Scarano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

CCR5

CD4

CX3CL1

CXCL12

CXCR4

gp120

Tat

TNF

Vpr

Infectious Disease Information

AIDS

Glossary

HIGHLY ACTIVE ANTIRETROVIRAL THERAPY

(HAART). Aggressive anti-HIV combination therapy that includes three or more protease and reverse-transcriptase inhibitors.

INCIDENCE

Number of new cases of a particular disease per year per group of population.

PREVALENCE

Percentage or proportion of a population that is affected by a particular disease at a given time.

MULTIPLE SCLEROSIS

Neurodegenerative disorder that is characterized by demyelination of bundles of nerve fibres in the central nervous system. Symptoms depend on the site of the lesion but include sensory loss, weakness in leg muscles, speech difficulties, loss of coordination and dizziness.

ALZHEIMER'S DISEASE

Degenerative mental disease that is characterized by progressive brain deterioration and dementia, and by the presence of senile plaques, neurofibrillary tangles and neuropil threads. Disease onset can occur at any age, and women seem to be affected more frequently than men.

BLOOD–BRAIN BARRIER

Selectively permeable cellular layer formed by brain microvascular endothelial cells, which are linked by tight junctions. It is crucial for the maintenance of homeostasis in the brain environment.

CHOROID PLEXUS

Site of production of cerebrospinal fluid in the adult brain. It is formed by invagination of ependymal cells into the ventricles, which become highly vascularized.

TRANSCYTOSIS

Process of transport of material across an epithelial layer by uptake on one side of the epithelial cell into a coated vesicle that might then be sorted through the trans-Golgi network and transported to the opposite side of the cell.

MESODERM

Middle of the three germ layers of the embryo. It gives rise to the blood, to the musculoskeletal, circulatory and urogenital systems, and to the connective tissue (including that of dermis), and it contributes to some glands.

ECTODERM

Outer of the three germ layers of the embryo. It gives rise to the epidermis and most of the neural tissue.

MONONUCLEAR PHAGOCYTIC SYSTEM

Group of bone-marrow-derived cells with different morphologies (monocytes, macrophages and dendritic cells), which are mainly responsible for phagocytosis, cytokine secretion and antigen presentation.

MENINGES

Surrounding membranes of the brain and spinal cord. There are three layers of meninges: the dura mater (outer), the arachnoid membrane (middle) and the pia mater (inner).

MULTINUCLEATED GIANT CELLS

(MNGCs). Conglomerates of cells that form through the fusion of infected and uninfected macrophages and microglia. The fusion is mediated by HIV-envelope glycoproteins present at the surface of infected cells and CD4 and chemokine receptors at the surface of uninfected cells. MNGCs are the pathological hallmark of HIV neuropathology.

N-METHYL-D-ASPARTATE

(NMDA). Amino-acid derivative that functions as a specific agonist of the NMDA receptor and therefore mimics the action of the neurotransmitter glutamate on that receptor. In contrast to glutamate, it binds and opens only the NMDA receptor and not other glutamate receptors.

PRE-INTEGRATION COMPLEX

Ensemble of the viral RNA genome that is present in the virion (which consists of the nucleocapsid protein, the structural protein p6, the accessory protein Vpr, the integrase protein and several copies of the matrix protein), where the synthesis of viral DNA occurs. By engaging cellular proteins, the viral DNA can then be transported to the nucleus, where it can be integrated into the genome of the host cell.

MATRIX METALLOPROTEINASES

Peptide hydrolases that use a metal for their catalytic mechanism and degrade the extracellular matrix. They have an important role in several neurodegenerative processes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Scarano, F., Martín-García, J. The neuropathogenesis of AIDS. Nat Rev Immunol 5, 69–81 (2005). https://doi.org/10.1038/nri1527

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1527

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing