Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Overcoming hurdles in developing successful drugs targeting chemokine receptors

Key Points

  • Chemokine receptors are attractive therapeutic targets for inflammatory and autoimmune diseases.

  • It is likely that chemokine receptors could be effectively targeted using small molecule inhibitors.

  • Drugs targeting various chemokine receptors have been approved for non-inflammatory conditions, but so far there are no such drugs for autoimmune or inflammatory disease.

  • The current lack of successful drugs targeting chemokine receptors in autoimmune and inflammatory diseases should not be attributed to the so-called 'redundancy' of the chemokine system.

  • Successful chemokine receptor-based drugs will be enabled by understanding that target selection and sufficient receptor coverage are crucial for therapeutic efficacy.

  • Clinical trials designed according to these principles will establish the validity of therapeutic interventions that inhibit this receptor class.

Abstract

Chemokines and their receptors are central to the inflammatory process and are attractive therapeutic targets. Drugs that inhibit chemokine receptors are approved for the treatment of HIV infection and for stem cell mobilization, but none have been approved yet for the treatment of inflammatory and/or autoimmune diseases. We analyse the challenges of developing chemokine receptor antagonists, and propose that inappropriate target selection and ineffective dosing, not the 'redundancy' of the chemokine system, are the main barriers to their use as anti-inflammatory therapies. We highlight evidence suggesting that chemokine receptor inhibition will prove to be an effective therapy in inflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemokine and chemokine receptor relationships.
Figure 2: A 'tube map' representation of potential therapeutic targets in the chemokine system.
Figure 3: Levels of pharmacological inhibition of CCR1 necessary for a therapeutic effect in experimental models of inflammation and clinical trials in rheumatoid arthritis.

Similar content being viewed by others

References

  1. Murphy, P. M. et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol. Rev. 52, 145–176 (2000).

    CAS  PubMed  Google Scholar 

  2. Zlotnik, A., Yoshie, O. & Nomiyama, H. The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol. 7, 243 (2006).

    Article  Google Scholar 

  3. Sallusto, F. & Baggiolini, M. Chemokines and leukocyte traffic. Nature Immunol. 9, 949–952 (2008).

    Article  CAS  Google Scholar 

  4. Gerard, C. & Rollins, B. J. Chemokines and disease. Nature Immunol. 2, 108–115 (2001).

    Article  CAS  Google Scholar 

  5. Viola, A. & Luster, A. D. Chemokines and their receptors: drug targets in immunity and inflammation. Annu. Rev. Pharmacol. Toxicol. 48, 171–197 (2008).

    Article  CAS  Google Scholar 

  6. Mackay, C. R. Moving targets: cell migration inhibitors as new anti-inflammatory therapies. Nature Immunol. 9, 988–998 (2008).

    Article  CAS  Google Scholar 

  7. Charo, I. F. & Ransohoff, R. M. The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med. 354, 610–621 (2006).

    Article  CAS  Google Scholar 

  8. Balkwill, F. & Mantovani, A. Inflammation and cancer: back to Virchow? Lancet 357, 539–545 (2001).

    Article  CAS  Google Scholar 

  9. Gulik, R. M. et al. Maraviroc for previously treated patients with R5 HIV-1 infection. N. Engl. J. Med. 359, 1429–1441 (2006).

    Article  Google Scholar 

  10. DiPersio, J. F., Uy, G. L., Yasothan, U. & Kirkpatrick, P. Plerixafor. Nature Rev. Drug Disc. 8, 105–107 (2009).

    Article  CAS  Google Scholar 

  11. Skov, L. et al. IL-8 as antibody therapeutic target in inflammatory diseases: reduction of clinical activity in palmoplantar pustulosis. J. Immunol. 181, 669–679 (2008).

    Article  CAS  Google Scholar 

  12. Hutchings, C. J., Koglin, M. & Marshall, F. H. Therapeutic antibodies directed at G protein-coupled receptors. MAbs 2, 594–606 (2010).

    Article  Google Scholar 

  13. Lukacs, N. W., Oliveira, S. H. & Hogaboam, C. M. Chemokines and asthma: redundancy of function or a coordinated effort? J. Clin. Invest. 104, 995–999 (1999).

    Article  CAS  Google Scholar 

  14. Power, C. A. Knock out models to dissect chemokine receptor function in vivo. J. Immunol. Methods 273, 73–82 (2003).

    Article  CAS  Google Scholar 

  15. Geissmann, F., Jung, S. & Littman, D. R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19, 71–82 (2003).

    Article  CAS  Google Scholar 

  16. Tacke, F. & Randolph, G. J. Migratory fate and differentiation of blood monocyte subsets. Immunobiology 211, 609–618 (2006).

    Article  CAS  Google Scholar 

  17. Bardi, G., Lipp, M., Baggiolini, M. & Loetscher, P. The T cell chemokine receptor CCR7 is internalized on stimulation with ELC, but not with SLC. Eur. J. Immunol. 31, 3291–3297 (2001).

    Article  CAS  Google Scholar 

  18. Mack, M. et al. Aminooxypentane-RANTES induces CCR5 internalization but inhibits recycling: a novel inhibitory mechanism of HIV infectivity. J. Exp. Med. 187, 1215–1224 (1998).

    Article  CAS  Google Scholar 

  19. Zimmermann, N., Conkright, J. J. & Rothenberg, M. E. CC chemokine receptor-3 undergoes prolonged ligand-induced internalization. J. Biol. Chem. 274, 12611–12618 (1999).

    Article  CAS  Google Scholar 

  20. Elsner, J. et al. Aminooxypentane-RANTES induces CCR3 activation and internalization of CCR3 from the surface of human eosinophils. Int. Arch. Allergy Immunol. 124, 227–229 (2001).

    Article  CAS  Google Scholar 

  21. Richardson, R. M., Marjoram, R. J., Barak, L. S. & Snyderman, R. Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170, 2904–2911 (2003).

    Article  CAS  Google Scholar 

  22. Hieshima, K. et al. CCL28 has dual roles in mucosal immunity as a chemokine with broad-spectrum antimicrobial activity. J. Immunol. 170, 1452–1461 (2003).

    Article  CAS  Google Scholar 

  23. Werner, T., Fessele, S., Maier, H. & Nelson, P. J. Computer modeling of promoter organization as a tool to study transcriptional coregulation. FASEB J. 17, 1228–1237 (2003).

    Article  CAS  Google Scholar 

  24. Watarai, Y. et al. Intraallograft chemokine RNA and protein during rejection of MHC-matched/multiple minor histocompatibility-disparate skin grafts. J. Immunol. 164, 6027–6033 (2000).

    Article  CAS  Google Scholar 

  25. Lu, B. et al. Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J. Exp. Med. 187, 601–608 (1998).

    Article  CAS  Google Scholar 

  26. Peters, W. et al. Chemokine receptor 2 serves an early and essential role in resistance to Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 98, 7958–7963 (2001).

    Article  CAS  Google Scholar 

  27. Tsou, C. L. et al. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J. Clin. Invest. 117, 902–909 (2007).

    Article  CAS  Google Scholar 

  28. Koenecke, C. & Forster, R. CCR9 and inflammatory bowel disease. Expert Opin. Ther. Targets 13, 297–306 (2009).

    Article  CAS  Google Scholar 

  29. Heydtmann, M. & Adams, D. H. Understanding selective trafficking of lymphocyte subsets. Gut 50, 150–152 (2002).

    Article  CAS  Google Scholar 

  30. Kakinuma, T. et al. Thymus and activation-regulated chemokine in atopic dermatitis: serum thymus and activation-regulated chemokine level is closely related with disease activity. J. Allergy Clin. Immunol. 107, 535–541 (2001).

    Article  CAS  Google Scholar 

  31. Zheng, X. et al. Demonstration of TARC and CCR4 mRNA expression and distribution using in situ RT-PCR in the lesional skin of atopic dermatitis. J. Dermatol. 30, 26–32 (2003).

    Article  CAS  Google Scholar 

  32. Cyster, J. G. Chemokines and cell migration in secondary lymphoid organs. Science 286, 2098–2102 (1999).

    Article  CAS  Google Scholar 

  33. Moatti, D. et al. Polymorphism in the fractalkine receptor CX3CR1 as a genetic risk factor for coronary artery disease. Blood 97, 1925–1928 (2001).

    Article  CAS  Google Scholar 

  34. Stahl, E. A. et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nature Genet. 42, 508–514 (2010).

    Article  CAS  Google Scholar 

  35. Quinones, M. P. et al. Experimental arthritis in CC chemokine receptor 2-null mice closely mimics severe human rheumatoid arthritis. J. Clin. Invest. 113, 856–866 (2004).

    Article  CAS  Google Scholar 

  36. Bruhl, H. et al. Dual role of CCR2 during initiation and progression of collagen-induced arthritis: evidence for regulatory activity of CCR2+ T cells. J. Immunol. 172, 890–898 (2004).

    Article  Google Scholar 

  37. Dairaghi, D. et al. Pharmacokinetic and pharmacodynamic evaluation of the novel CCR1 antagonist CCX354-C in healthy human subjects. Implications for phase 2 dose selection. Clin. Pharmacol. Ther. 30 March 2011 (doi:10.1038/clpt.2011.33).

  38. Berahovich, R. D. et al. Proteolytic activation of alternative CCR1 ligands in inflammation. J. Immunol. 174, 7341–7351 (2005).

    Article  CAS  Google Scholar 

  39. Haringman, J. J. et al. A randomized controlled trial with an anti-CCL2 (anti-monocyte chemotactic protein 1) monoclonal antibody in patients with rheumatoid arthritis. Arthritis Rheum. 54, 2387–2392 (2006).

    Article  CAS  Google Scholar 

  40. Vergunst, C. E. et al. Modulation of CCR2 in rheumatoid arthritis: a double-blind, randomized, placebo-controlled clinical trial. Arthritis Rheum. 58, 1931–1939 (2008).

    Article  CAS  Google Scholar 

  41. Struthers, M. & Pasternak, A. CCR2 antagonists. Curr. Top. Med. Chem. 10, 1278–1298 (2010).

    Article  CAS  Google Scholar 

  42. Doodes, P. D. et al. CCR5 is involved in resolution of inflammation in proteoglycan-induced arthritis. Arthritis Rheum. 60, 2945–2953 (2009).

    Article  CAS  Google Scholar 

  43. Van Kuijk, A. W. et al. CCR5 blockade in rheumatoid arthritis: a randomised, double-blind, placebo-controlled clinical trial. Ann. Rheum. Dis. 69, 2013–2016 (2010).

    Article  CAS  Google Scholar 

  44. Gerlag, D. M. et al. Preclinical and clinical investigation of a CCR5 antagonist, AZD5672, in patients with rheumatoid arthritis receiving methotrexate. Arthritis Rheum. 62, 3154–3160 (2010).

    Article  CAS  Google Scholar 

  45. Neote, K., DiGregorio, D., Mak, J. Y., Horuk, R. & Schall, T. J. Molecular cloning, functional expression, and signaling characteristics of a C-C chemokine receptor. Cell 72, 415–425 (1993).

    Article  CAS  Google Scholar 

  46. Gao, J. L. et al. Structure and functional expression of the human macrophage inflammatory protein 1α/RANTES receptor. J. Exp. Med. 177, 1421–1427 (1993).

    Article  CAS  Google Scholar 

  47. Haringman, J. J., Smeets, T. J., Reinders-Blankert, P. & Tak, P. P. Chemokine and chemokine receptor expression in paired peripheral blood mononuclear cells and synovial tissue of patients with rheumatoid arthritis, osteoarthritis, and reactive arthritis. Ann. Rheum. Dis. 65, 294–300 (2006).

    Article  CAS  Google Scholar 

  48. Haringman, J. J., Kraan, M. C., Smeets, T. J., Zwinderman, K. H. & Tak, P. P. Chemokine blockade and chronic inflammatory disease: proof of concept in patients with rheumatoid arthritis. Ann. Rheum. Dis. 62, 715–721 (2003).

    Article  CAS  Google Scholar 

  49. Kraan, M. C. et al. Modulation of inflammation and metalloproteinase expression in synovial tissue by leflunomide and methotrexate in patients with active rheumatoid arthritis. Findings in a prospective, randomized, double-blind, parallel-design clinical trial in thirty-nine patients at two centers. Arthritis Rheum. 43, 1820–1830 (2000).

    Article  CAS  Google Scholar 

  50. Gladue, R. P., Brown, M. F. & Zwillich, S. H. CCR1 antagonists: what have we learned from clinical trials. Curr. Top. Med. Chem. 10, 1268–1277 (2010).

    Article  CAS  Google Scholar 

  51. Vergunst, C. E. et al. MLN3897 plus methotrexate in patients with rheumatoid arthritis: safety, efficacy, pharmacokinetics, and pharmacodynamics of an oral CCR1 antagonist in a phase IIa, double-blind, placebo-controlled, randomized, proof-of-concept study. Arthritis Rheum. 60, 3572–3581 (2009).

    Article  CAS  Google Scholar 

  52. Proudfoot, A. E., Power, C. A. & Schwarz, M. K. Anti-chemokine small molecule drugs: a promising future? Expert Opin. Investig. Drugs 19, 345–355 (2010).

    Article  CAS  Google Scholar 

  53. Trebst, C. et al. CCR1+/CCR5+ mononuclear phagocytes accumulate in the central nervous system of patients with multiple sclerosis. Am. J. Pathol. 159, 1701–1710 (2001).

    Article  CAS  Google Scholar 

  54. Balashov, K. E., Rottman, J. B., Weiner, H. L. & Hancock, W. W. CCR5+ and CXCR3+ T cells are increased in multiple sclerosis and their ligands MIP-1α and IP-10 are expressed in demyelinating brain lesions. Proc. Natl Acad. Sci. USA 96, 6873–6878 (1999).

    Article  CAS  Google Scholar 

  55. Keshav, S., Johnson, D., Bekker, P. & Schall, T. J. PROTECT-1 study demonstrated efficacy of the intestine-specific chemokine receptor antagonist CCX282-B (Traficet-EN) in treatment of patients with moderate-to-severe Crohn's disease. Gastroenterology 136, A65 (2009).

    Article  Google Scholar 

  56. Keshav, S. et al. PROTECT-1 study of intestine-specific chemokine receptor antagonist CCX282-B (TRAFICET-EN) in Crohn's disease. Gut 58, A468 (2009).

    Google Scholar 

  57. Walters, M. et al. Characterization of CCX282-B, an orally bioavailable antagonist of the CCR9 chemokine receptor, for the treatment of inflammatory bowel disease. J. Pharmacol. Exp. Ther. 335, 61–69 (2010).

    Article  CAS  Google Scholar 

  58. Kenakin, T., Jenkinson, S. & Watson, C. Determining the potency and molecular mechanism of action of insurmountable antagonists. J. Pharmacol. Exp. Ther. 319, 710–723 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to our colleagues D. Dairaghi, H. Wang, J. Powers and particularly J. Jaen for their work in assessing the 'true potencies' of chemokine receptor antagonists in vivo and in modelling receptor coverage requirements for therapeutic efficacy, as well as for insightful discussions.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Thomas J. Schall is an employee and shareholder of ChemoCentryx, which has an interest in developing chemokine-based therapeutics. He is an inventor on patents for chemokine receptor antagonists, antibodies and chemokine-based immune modulators.

Amanda E. I. Proudfoot is an employee of Merck Serono SA and is an inventor on patents for chemokine receptor inhibitors, modified chemokine antagonists and chemokine binding proteins.

Supplementary information

Supplementary information S1 (box)

Annotated response to the referees' comments (PDF 120 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schall, T., Proudfoot, A. Overcoming hurdles in developing successful drugs targeting chemokine receptors. Nat Rev Immunol 11, 355–363 (2011). https://doi.org/10.1038/nri2972

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2972

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing