Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The co-workers of actin filaments: from cell structures to signals

Key Points

  • Actin filaments in membrane protrusions are organized either in bundles — as occurs in microvilli, stereocilia and bristles — or in branched networks, as occurs in lamellipodia. Filopodia are distinct from bundle-based structures as they are supported by a bundled bunch of actin filaments that emerge from a pre-existing branched network.

  • The morphology of each type of protrusion is determined by the content of actin-binding proteins (ABPs) as well as their concentration in cells. A wide range of ABPs organizes the networks and specifies their shape, size and location. However, these networks are not static but are the result of a balance between filament polymerization and depolymerization, which is finely regulated by ABPs.

  • The control of the actin cytoskeleton and its remodelling in response to environmental stimuli are the result of a complex regulation of ABPs. They are downstream effectors of several signalling pathways including those induced by phospholipase Cγ1 and the small GTPases. Calcium- and phosphoinositide-binding or phosphorylation are among the molecular cues that modify ABP activities towards actin.

  • The regulation of selected ABPs is illustrated in a selection of dynamic cellular events: gelsolin and actin-depolymerizing factor (ADF)/cofilin, for their role in enhancing actin treadmilling; villin and ezrin/radixin/moesin (ERM) proteins, for the breakdown of structures to generate new specializations; and filamin and fascin, for their regulation in the formation of dynamic protrusions. Finally, the regulation of ABPs is implicated in the establishment of cell defence structures.

  • The integration of the complex regulation of ABPs in the study of microfilament functions is discussed. Post-translational modifications and the many interactions of ABPs have prompted the use of cell-culture and animal models that resemble physiological conditions.

Abstract

Cells have various surface architectures, which allow them to carry out different specialized functions. Actin microfilaments that are associated with the plasma membrane are important for generating these cell-surface specializations, and also provide the driving force for remodelling cell morphology and triggering new cell behaviour when the environment is modified. This phenomenon is achieved through a tight coupling between cell structure and signal transduction, a process that is modulated by the regulation of actin-binding proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Actin networks in cellular protrusions.
Figure 2: Phosphoinositides and actin filaments.
Figure 3: Model of villin regulation in actin remodelling.
Figure 4: Filamin, fascin and the formation of protrusions.
Figure 5: Regulation of Arp2/3 and cofilin in the formation of immunological synapses.

Similar content being viewed by others

References

  1. Bretscher, A. & Weber, K. Villin: the major microfilament-associated protein of the intestinal microvillus. Proc. Natl Acad. Sci. USA 76, 2321–2325 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bretscher, A. & Weber, K. Fimbrin, a new microfilament-associated protein present in microvilli and other cell surface structures. J. Cell Biol. 86, 335–340 (1980).

    CAS  PubMed  Google Scholar 

  3. Bartles, J. R., Zheng, L., Li, A., Wierda, A. & Chen, B. Small espin: a third actin-bundling protein and potential forked protein ortholog in brush border microvilli. J. Cell Biol. 143, 107–119 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Tilney, L. G., Tilney, M. S. & DeRosier, D. J. Actin filaments, stereocilia, and hair cells: how cells count and measure. Annu. Rev. Cell Biol. 8, 257–274 (1992).

    CAS  PubMed  Google Scholar 

  5. Zheng, L. et al. The deaf jerker mouse has a mutation in the gene encoding the espin actin-bundling proteins of hair cell stereocilia and lacks espins. Cell 102, 377–385 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Tilney, M. S. et al. Preliminary biochemical characterization of the stereocilia and cuticular plate of hair cells of the chick cochlea. J. Cell Biol. 109, 1711–1723 (1989).

    CAS  PubMed  Google Scholar 

  7. Tilney, L. G., Tilney, M. S. & Guild, G. M. F actin bundles in Drosophila bristles. I. Two filament cross-links are involved in bundling. J. Cell Biol. 130, 629–638 (1995).

    CAS  PubMed  Google Scholar 

  8. Bartles, J. R. Parallel actin bundles and their multiple actin-bundling proteins. Curr. Opin. Cell Biol. 12, 72–78 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Tilney, L. G., Connelly, P. S., Vranich, K. A., Shaw, M. K. & Guild, G. M. Why are two different cross-linkers necessary for actin bundle formation in vivo and what does each cross-link contribute? J. Cell Biol. 143, 121–133 (1998). Studies the impact of forked and fascin in the formation of actin bundles that support a bristle, and highlights their non-redundant roles.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ezzell, R. M., Chafel, M. M. & Matsudaira, P. T. Differential localization of villin and fimbrin during development of the mouse visceral endoderm and intestinal epithelium. Development 106, 407–419 (1989).

    CAS  PubMed  Google Scholar 

  11. Tilney, L. G. & DeRosier, D. J. Actin filaments, stereocilia, and hair cells of the bird cochlea. IV. How the actin filaments become organized in developing stereocilia and in the cuticular plate. Dev. Biol. 116, 119–129 (1986).

    CAS  PubMed  Google Scholar 

  12. Cant, K., Knowles, B. A., Mahajan-Miklos, S., Heintzelman, M. & Cooley, L. Drosophila fascin mutants are rescued by overexpression of the villin-like protein, quail. J. Cell Sci. 111, 213–221 (1998).

    CAS  PubMed  Google Scholar 

  13. DeRosier, D. J. & Tilney, L. G. F-actin bundles are derivatives of microvilli: what does this tell us about how bundles might form? J. Cell Biol. 148, 1–6 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Guild, G. M., Connelly, P. S., Ruggiero, L., Vranich, K. A. & Tilney, L. G. Long continuous actin bundles in Drosophila bristles are constructed by overlapping short filaments. J. Cell Biol. 162, 1069–1077 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Dustin, M. L. & Cooper, J. A. The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nature Immunol. 1, 23–29 (2000).

    CAS  Google Scholar 

  16. Svitkina, T. M. & Borisy, G. G. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145, 1009–1026 (1999). Describes the organization of the actin network in lamellipodia and supports the dendritic-nucleation model by the analysis of pointed-end protection and depolymerization by the Arp2/3 complex and ADF/cofilin, respectively.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Svitkina, T. M., Verkhovsky, A. B., McQuade, K. M. & Borisy, G. G. Analysis of the actin-myosin II system in fish epidermal keratocytes: mechanism of cell body translocation. J. Cell Biol. 139, 397–415 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mullins, R. D., Heuser, J. A. & Pollard, T. D. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl Acad. Sci. USA 95, 6181–6186 (1998). The first proposal of a dendritic-nucleation model, which describes the treadmilling of a whole array of branched filaments to explain actin treadmilling at the leading edge of motile cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Flanagan, L. A. et al. Filamin A, the Arp2/3 complex, and the morphology and function of cortical actin filaments in human melanoma cells. J. Cell Biol. 155, 511–517 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Blanchoin, L. et al. Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins. Nature 404, 1007–1011 (2000).

    CAS  PubMed  Google Scholar 

  21. Svitkina, T. M. et al. Mechanism of filopodia initiation by reorganization of a dendritic network. J. Cell Biol. 160, 409–421 (2003). Analyses filopodia formation and proposes a model in which filopodia emerge from uncapped filaments of a dendritic network.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chou, J., Stolz, D. B., Burke, N. A., Watkins, S. C. & Wells, A. Distribution of gelsolin and phosphoinositol 4,5-bisphosphate in lamellipodia during EGF-induced motility. Int. J. Biochem. Cell Biol. 34, 776–790 (2002). Investigates the recruitment of gelsolin to the actin cytoskeleton in lamellipodia following hydrolysis of PtdIns(4,5)P 2 in response to stimulation with hepatocyte growth factor. Supports the regulation of gelsolin downstream of the PLCγ pathway.

    CAS  PubMed  Google Scholar 

  23. Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yamashiro, S., Yamakita, Y., Ono, S. & Matsumura, F. Fascin, an actin-bundling protein, induces membrane protrusions and increases cell motility of epithelial cells. Mol. Biol. Cell 9, 993–1006 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bear, J. E. et al. Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell 109, 509–521 (2002).

    CAS  PubMed  Google Scholar 

  26. Bachmann, C., Fischer, L., Walter, U. & Reinhard, M. The EVH2 domain of the vasodilator-stimulated phosphoprotein mediates tetramerization, F-actin binding, and actin bundle formation. J. Biol. Chem. 274, 23549–23557 (1999).

    CAS  PubMed  Google Scholar 

  27. Vignjevic, D. et al. Formation of filopodia-like bundles in vitro from a dendritic network. J. Cell Biol. 160, 951–962 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Friederich, E., Huet, C., Arpin, M. & Louvard, D. Villin induces microvilli growth and actin redistribution in transfected fibroblasts. Cell 59, 461–475 (1989).

    CAS  PubMed  Google Scholar 

  29. Loomis, P. A. et al. Espin cross-links cause the elongation of microvillus-type parallel actin bundles in vivo. J. Cell Biol. 163, 1045–1055 (2003). Shows a correlation between the concentration of espin and the length of microvilli in cultured cell lines, or the length of stereocilia in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Berryman, M., Franck, Z. & Bretscher, A. Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is found primarily in endothelial cells. J. Cell Sci. 105, 1025–1043 (1993).

    CAS  PubMed  Google Scholar 

  31. Denker, S. P. & Barber, D. L. Cell migration requires both ion translocation and cytoskeletal anchoring by the Na–H exchanger NHE1. J. Cell Biol. 159, 1087–1096 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lamb, R. F. et al. Essential functions of ezrin in maintenance of cell shape and lamellipodial extension in normal and transformed fibroblasts. Curr. Biol. 7, 682–688 (1997).

    CAS  PubMed  Google Scholar 

  33. Castelo, L. & Jay, D. G. Radixin is involved in lamellipodial stability during nerve growth cone motility. Mol. Biol. Cell 10, 1511–1520 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Pataky, F., Pironkova, R. & Hudspeth, A. J. Radixin is a constituent of stereocilia in hair cells. Proc. Natl Acad. Sci. USA 101, 2601–2606 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Belyantseva, I. A., Boger, E. T. & Friedman, T. B. Myosin XVa localizes to the tips of inner ear sensory cell stereocilia and is essential for staircase formation of the hair bundle. Proc. Natl Acad. Sci. USA 100, 13958–13963 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Boeda, B. et al. Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle. EMBO J. 21, 6689–6699 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mooseker, M. S. & Coleman, T. R. The 110-kD protein–calmodulin complex of the intestinal microvillus (brush border myosin I) is a mechanoenzyme. J. Cell Biol. 108, 2395–2400 (1989).

    CAS  PubMed  Google Scholar 

  38. Berg, J. S., Derfler, B. H., Pennisi, C. M., Corey, D. P. & Cheney, R. E. Myosin-X, a novel myosin with pleckstrin homology domains, associates with regions of dynamic actin. J. Cell Sci. 113, 3439–3451 (2000).

    CAS  PubMed  Google Scholar 

  39. Tilney, L. G., Connelly, P. S., Vranich, K. A., Shaw, M. K. & Guild, G. M. Regulation of actin filament cross-linking and bundle shape in Drosophila bristles. J. Cell Biol. 148, 87–100 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tilney, L. G., Connelly, P. S., Ruggiero, L., Vranich, K. A. & Guild, G. M. Actin filament turnover regulated by cross-linking accounts for the size, shape, location, and number of actin bundles in Drosophila bristles. Mol. Biol. Cell 14, 3953–3966 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    CAS  PubMed  Google Scholar 

  42. Stidwill, R. P., Wysolmerski, T. & Burgess, D. R. The brush border cytoskeleton is not static: in vivo turnover of proteins. J. Cell Biol. 98, 641–645 (1984).

    CAS  PubMed  Google Scholar 

  43. Tyska, M. J. & Mooseker, M. S. MYO1A (brush border myosin I) dynamics in the brush border of LLC-PK1-CL4 cells. Biophys. J. 82, 1869–1883 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Schneider, M. E., Belyantseva, I. A., Azevedo, R. B. & Kachar, B. Rapid renewal of auditory hair bundles. Nature 418, 837–838 (2002). Using transient expression of fluorescent actin, this paper analyses the rapid and continuous incorporation of actin monomers in the tips of stereocilia actin bundles.

    CAS  PubMed  Google Scholar 

  45. Rzadzinska, A. K., Schneider, M. E., Davies, C., Riordan, G. P. & Kachar, B. An actin molecular treadmill and myosins maintain stereocilia functional architecture and self-renewal. J. Cell Biol. 164, 887–897 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mallavarapu, A. & Mitchison, T. Regulated actin cytoskeleton assembly at filopodium tips controls their extension and retraction. J. Cell Biol. 146, 1097–1106 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Guild, G. M., Connelly, P. S., Vranich, K. A., Shaw, M. K. & Tilney, L. G. Actin filament turnover removes bundles from Drosophila bristle cells. J. Cell Sci. 115, 641–653 (2002).

    CAS  PubMed  Google Scholar 

  48. Janmey, P. A. et al. Interactions of gelsolin and gelsolin–actin complexes with actin. Effects of calcium on actin nucleation, filament severing, and end blocking. Biochemistry 24, 3714–3723 (1985).

    CAS  PubMed  Google Scholar 

  49. Lin, K. M., Mejillano, M. & Yin, H. L. Ca2+ regulation of gelsolin by its C-terminal tail. J. Biol. Chem. 275, 27746–27752 (2000).

    CAS  PubMed  Google Scholar 

  50. Lagarrigue, E. et al. The activation of gelsolin by low pH: the calcium latch is sensitive to calcium but not pH. Eur. J. Biochem. 270, 4105–4112 (2003).

    CAS  PubMed  Google Scholar 

  51. McGough, A. M., Staiger, C. J., Min, J. K. & Simonetti, K. D. The gelsolin family of actin regulatory proteins: modular structures, versatile functions. FEBS Lett. 552, 75–81 (2003).

    CAS  PubMed  Google Scholar 

  52. Xian, W. & Janmey, P. A. Dissecting the gelsolin–polyphosphoinositide interaction and engineering of a polyphosphoinositide-sensitive gelsolin C-terminal half protein. J. Mol. Biol. 322, 755–771 (2002).

    CAS  PubMed  Google Scholar 

  53. Janmey, P. A. & Stossel, T. P. Modulation of gelsolin function by phosphatidylinositol 4,5-bisphosphate. Nature 325, 362–364 (1987).

    CAS  PubMed  Google Scholar 

  54. Yamamoto, M. et al. Phosphatidylinositol 4,5-bisphosphate induces actin stress-fiber formation and inhibits membrane ruffling in CV1 cells. J. Cell Biol. 152, 867–876 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Meerschaert, K., De Corte, V., De Ville, Y., Vandekerckhove, J. & Gettemans, J. Gelsolin and functionally similar actin-binding proteins are regulated by lysophosphatidic acid. EMBO J. 17, 5923–5932 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Witke, W. et al. Hemostatic, inflammatory, and fibroblast responses are blunted in mice lacking gelsolin. Cell 81, 41–51 (1995). This article was the first analysis of gelsolin -knockout mice and reports reduced neutrophil and fibroblast motility as well as defects in platelet shape changes.

    CAS  PubMed  Google Scholar 

  57. Chellaiah, M. et al. Gelsolin deficiency blocks podosome assembly and produces increased bone mass and strength. J. Cell Biol. 148, 665–678 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Schafer, D. A., Jennings, P. B. & Cooper, J. A. Dynamics of capping protein and actin assembly in vitro: uncapping barbed ends by polyphosphoinositides. J. Cell Biol. 135, 169–179 (1996).

    CAS  PubMed  Google Scholar 

  59. Yonezawa, N., Nishida, E., Iida, K., Yahara, I. & Sakai, H. Inhibition of the interactions of cofilin, destrin, and deoxyribonuclease I with actin by phosphoinositides. J. Biol. Chem. 265, 8382–8386 (1990).

    CAS  PubMed  Google Scholar 

  60. Lassing, I. & Lindberg, U. Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin. Nature 314, 472–474 (1985).

    CAS  PubMed  Google Scholar 

  61. McGough, A., Pope, B., Chiu, W. & Weeds, A. Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J. Cell Biol. 138, 771–781 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Bobkov, A. A. et al. Structural effects of cofilin on longitudinal contacts in F-actin. J. Mol. Biol. 323, 739–750 (2002).

    CAS  PubMed  Google Scholar 

  63. Galkin, V. E. et al. ADF/cofilin use an intrinsic mode of F-actin instability to disrupt actin filaments. J. Cell Biol. 163, 1057–1066 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Agnew, B. J., Minamide, L. S. & Bamburg, J. R. Reactivation of phosphorylated actin depolymerizing factor and identification of the regulatory site. J. Biol. Chem. 270, 17582–17587 (1995).

    CAS  PubMed  Google Scholar 

  65. Morgan, T. E., Lockerbie, R. O., Minamide, L. S., Browning, M. D. & Bamburg, J. R. Isolation and characterization of a regulated form of actin depolymerizing factor. J. Cell Biol. 122, 623–633 (1993).

    CAS  PubMed  Google Scholar 

  66. Moon, A. & Drubin, D. G. The ADF/cofilin proteins: stimulus-responsive modulators of actin dynamics. Mol. Biol. Cell 6, 1423–1431 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zebda, N. et al. Phosphorylation of ADF/cofilin abolishes EGF-induced actin nucleation at the leading edge and subsequent lamellipod extension. J. Cell Biol. 151, 1119–1128 (2000). Supports a role for dephosphorylated ADF/cofilin in the generation of barbed ends associated with actin dynamics that allow lamellipodial extension.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Niwa, R., Nagata-Ohashi, K., Takeichi, M., Mizuno, K. & Uemura, T. Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108, 233–246 (2002).

    CAS  PubMed  Google Scholar 

  69. Chan, A. Y., Bailly, M., Zebda, N., Segall, J. E. & Condeelis, J. S. Role of cofilin in epidermal growth factor-stimulated actin polymerization and lamellipod protrusion. J. Cell Biol. 148, 531–542 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Carlier, M. F. et al. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J. Cell Biol. 136, 1307–1322 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ressad, F., Didry, D., Egile, C., Pantaloni, D. & Carlier, M. F. Control of actin filament length and turnover by actin depolymerizing factor (ADF/cofilin) in the presence of capping proteins and ARP2/3 complex. J. Biol. Chem. 274, 20970–20976 (1999).

    CAS  PubMed  Google Scholar 

  72. Ichetovkin, I., Grant, W. & Condeelis, J. Cofilin produces newly polymerized actin filaments that are preferred for dendritic nucleation by the Arp2/3 complex. Curr. Biol. 12, 79–84 (2002).

    CAS  PubMed  Google Scholar 

  73. Ghosh, M. et al. Cofilin promotes actin polymerization and defines the direction of cell motility. Science 304, 743–746 (2004).

    CAS  PubMed  Google Scholar 

  74. Arber, S. et al. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393, 805–809 (1998). Together with reference 77, this study shows that cofilin is physiologically phosphorylated by LIM kinase downstream of Rac and that this phosphorylation stabilizes actin structures.

    CAS  PubMed  Google Scholar 

  75. Yang, N. et al. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393, 809–812 (1998).

    CAS  PubMed  Google Scholar 

  76. Sumi, T., Matsumoto, K., Shibuya, A. & Nakamura, T. Activation of LIM kinases by myotonic dystrophy kinase-related Cdc42-binding kinase α. J. Biol. Chem. 276, 23092–23096 (2001).

    CAS  PubMed  Google Scholar 

  77. Bretscher, A. & Weber, K. Villin is a major protein of the microvillus cytoskeleton which binds both G and F actin in a calcium-dependent manner. Cell 20, 839–847 (1980).

    CAS  PubMed  Google Scholar 

  78. Ferrary, E. et al. In vivo, villin is required for Ca2+-dependent F-actin disruption in intestinal brush borders. J. Cell Biol. 146, 819–830 (1999). This analysis of villin -knockout mice is the first report of the in vivo role of villin in cellular remodelling.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kumar, N., Zhao, P., Tomar, A., Galea, C. A. & Khurana, S. Association of villin with phosphatidylinositol 4,5-bisphosphate regulates the actin cytoskeleton. J. Biol. Chem. 279, 3096–3110 (2004).

    CAS  PubMed  Google Scholar 

  80. Zhai, L., Zhao, P., Panebra, A., Guerrerio, A. L. & Khurana, S. Tyrosine phosphorylation of villin regulates the organization of the actin cytoskeleton. J. Biol. Chem. 276, 36163–36167 (2001).

    CAS  PubMed  Google Scholar 

  81. Kumar, N. & Khurana, S. Identification of a functional switch for actin severing by cytoskeletal proteins. J. Biol. Chem. 279, 24915–24918 (2004).

    CAS  PubMed  Google Scholar 

  82. Khurana, S., Arpin, M., Patterson, R. & Donowitz, M. Ileal microvillar protein villin is tyrosine-phosphorylated and associates with PLC-γ1. Role of cytoskeletal rearrangement in the carbachol-induced inhibition of ileal NaCl absorption. J. Biol. Chem. 272, 30115–30121 (1997). Reports the tyrosine phosphorylation of villin and its association with PLCγ1 and implies a role for villin in signalling cascades that control sodium chloride absorption.

    CAS  PubMed  Google Scholar 

  83. Panebra, A. et al. Regulation of phospholipase C-γ1 by the actin-regulatory protein villin. Am. J. Physiol. Cell Physiol. 281, C1046–C1058 (2001).

    CAS  PubMed  Google Scholar 

  84. Athman, R., Louvard, D. & Robine, S. Villin enhances hepatocyte growth factor-induced actin cytoskeleton remodeling in epithelial cells. Mol. Biol. Cell 14, 4641–4653 (2003). Investigates the ability of villin to enhance actin remodelling in cellular processes such as hepatocyte growth factor (HGF)-induced motility and morphogenesis.

    PubMed  PubMed Central  Google Scholar 

  85. Gary, R. & Bretscher, A. Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site. Mol. Biol. Cell 6, 1061–1075 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Reczek, D. & Bretscher, A. The carboxyl-terminal region of EBP50 binds to a site in the amino-terminal domain of ezrin that is masked in the dormant molecule. J. Biol. Chem. 273, 18452–18458 (1998).

    CAS  PubMed  Google Scholar 

  87. Matsui, T. et al. Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J. Cell Biol. 140, 647–657 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Nakamura, F., Amieva, M. R. & Furthmayr, H. Phosphorylation of threonine 558 in the carboxyl-terminal actin-binding domain of moesin by thrombin activation of human platelets. J. Biol. Chem. 270, 31377–31385 (1995).

    CAS  PubMed  Google Scholar 

  89. Gautreau, A., Louvard, D. & Arpin, M. Morphogenic effects of ezrin require a phosphorylation-induced transition from oligomers to monomers at the plasma membrane. J. Cell Biol. 150, 193–203 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Oshiro, N., Fukata, Y. & Kaibuchi, K. Phosphorylation of moesin by rho-associated kinase (Rho-kinase) plays a crucial role in the formation of microvilli-like structures. J. Biol. Chem. 273, 34663–34666 (1998).

    CAS  PubMed  Google Scholar 

  91. Ng, T. et al. Ezrin is a downstream effector of trafficking PKC-integrin complexes involved in the control of cell motility. EMBO J. 20, 2723–2741 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Yonemura, S., Matsui, T. & Tsukita, S. Rho-dependent and-independent activation mechanisms of ezrin/radixin/moesin proteins: an essential role for polyphosphoinositides in vivo. J. Cell Sci. 115, 2569–2580 (2002).

    CAS  PubMed  Google Scholar 

  93. Fievet, B. T. et al. Phosphoinositide binding and phosphorylation act sequentially in the activation mechanism of ezrin. J. Cell Biol. 164, 653–659 (2004). Describes the sequential requirement for PtdIns(4,5)P 2 binding and threonine phosphorylation in ezrin activation and its role in epithelial-cell morphogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Nakamura, N. et al. Phosphorylation of ERM proteins at filopodia induced by Cdc42. Genes Cells 5, 571–581 (2000).

    CAS  PubMed  Google Scholar 

  95. Kondo, T. et al. ERM (ezrin/radixin/moesin)-based molecular mechanism of microvillar breakdown at an early stage of apoptosis. J. Cell Biol. 139, 749–758 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Speck, O., Hughes, S. C., Noren, N. K., Kulikauskas, R. M. & Fehon, R. G. Moesin functions antagonistically to the Rho pathway to maintain epithelial integrity. Nature 421, 83–87 (2003).

    CAS  PubMed  Google Scholar 

  97. Takahashi, K. et al. Direct interaction of the Rho GDP dissociation inhibitor with ezrin/radixin/moesin initiates the activation of the Rho small G protein. J. Biol. Chem. 272, 23371–23375 (1997).

    CAS  PubMed  Google Scholar 

  98. Legg, J. W., Lewis, C. A., Parsons, M., Ng, T. & Isacke, C. M. A novel PKC-regulated mechanism controls CD44 ezrin association and directional cell motility. Nature Cell Biol. 4, 399–407 (2002).

    CAS  PubMed  Google Scholar 

  99. Krieg, J. & Hunter, T. Identification of the two major epidermal growth factor-induced tyrosine phosphorylation sites in the microvillar core protein ezrin. J. Biol. Chem. 267, 19258–19265 (1992).

    CAS  PubMed  Google Scholar 

  100. Crepaldi, T., Gautreau, A., Comoglio, P. M., Louvard, D. & Arpin, M. Ezrin is an effector of hepatocyte growth factor-mediated migration and morphogenesis in epithelial cells. J. Cell Biol. 138, 423–434 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Vadlamudi, R. K. et al. Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1. Nature Cell Biol. 4, 681–690 (2002). Provides evidence for a reciprocal activation of filamin and PAK1, which is necessary for PAK1-mediated formation of dynamic protrusions.

    CAS  PubMed  Google Scholar 

  102. Sells, M. A. et al. Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells. Curr. Biol. 7, 202–210 (1997).

    CAS  PubMed  Google Scholar 

  103. Sells, M. A., Boyd, J. T. & Chernoff, J. p21-activated kinase 1 (Pak1) regulates cell motility in mammalian fibroblasts. J. Cell Biol. 145, 837–849 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Stossel, T. P. et al. Filamins as integrators of cell mechanics and signalling. Nature Rev. Mol. Cell Biol. 2, 138–145 (2001).

    CAS  Google Scholar 

  105. Yamakita, Y., Ono, S., Matsumura, F. & Yamashiro, S. Phosphorylation of human fascin inhibits its actin binding and bundling activities. J. Biol. Chem. 271, 12632–12638 (1996).

    CAS  PubMed  Google Scholar 

  106. Ono, S. et al. Identification of an actin binding region and a protein kinase C phosphorylation site on human fascin. J. Biol. Chem. 272, 2527–2533 (1997).

    CAS  PubMed  Google Scholar 

  107. Adams, J. C. et al. Cell–matrix adhesions differentially regulate fascin phosphorylation. Mol. Biol. Cell 10, 4177–4190 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Anilkumar, N., Parsons, M., Monk, R., Ng, T. & Adams, J. C. Interaction of fascin and protein kinase Cα: a novel intersection in cell adhesion and motility. EMBO J. 22, 5390–5402 (2003). Reports a direct interaction between phosphorylated fascin and PKCα, which favours cell spreading and decreases fascin protrusions and cell motility.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Adams, J. C. & Schwartz, M. A. Stimulation of fascin spikes by thrombospondin-1 is mediated by the GTPases Rac and Cdc42. J. Cell Biol. 150, 807–822 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Wulfing, C. & Davis, M. M. A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 282, 2266–2269 (1998).

    CAS  PubMed  Google Scholar 

  111. Roumier, A. et al. The membrane-microfilament linker ezrin is involved in the formation of the immunological synapse and in T cell activation. Immunity 15, 715–728 (2001).

    CAS  PubMed  Google Scholar 

  112. Allenspach, E. J. et al. ERM-dependent movement of CD43 defines a novel protein complex distal to the immunological synapse. Immunity 15, 739–750 (2001).

    CAS  PubMed  Google Scholar 

  113. Bubeck Wardenburg, J. et al. Regulation of PAK activation and the T cell cytoskeleton by the linker protein SLP-76. Immunity 9, 607–616 (1998).

    CAS  PubMed  Google Scholar 

  114. Cannon, J. L. et al. Wasp recruitment to the T cell: APC contact site occurs independently of Cdc42 activation. Immunity 15, 249–259 (2001).

    CAS  PubMed  Google Scholar 

  115. Machesky, L. M. et al. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc. Natl Acad. Sci. USA 96, 3739–3744 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Badour, K. et al. Fyn and PTP-PEST-mediated regulation of Wiskott–Aldrich Syndrome Protein (WASp) tyrosine phosphorylation is required for coupling T cell antigen receptor engagement to WASp effector function and T cell activation. J. Exp. Med. 199, 99–112 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Edwards, D. C., Sanders, L. C., Bokoch, G. M. & Gill, G. N. Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nature Cell Biol. 1, 253–259 (1999).

    CAS  PubMed  Google Scholar 

  118. Glogauer, M. et al. Calcium ions and tyrosine phosphorylation interact coordinately with actin to regulate cytoprotective responses to stretching. J. Cell Sci. 110, 11–21 (1997).

    CAS  PubMed  Google Scholar 

  119. Glogauer, M. et al. The role of actin-binding protein 280 in integrin-dependent mechanoprotection. J. Biol. Chem. 273, 1689–1698 (1998).

    CAS  PubMed  Google Scholar 

  120. Tigges, U., Koch, B., Wissing, J., Jockusch, B. M. & Ziegler, W. H. The F-actin cross-linking and focal adhesion protein filamin A is a ligand and in vivo substrate for protein kinase Cα. J. Biol. Chem. 278, 23561–23569 (2003).

    CAS  PubMed  Google Scholar 

  121. Loisel, T. P., Boujemaa, R., Pantaloni, D. & Carlier, M. F. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613–616 (1999).

    CAS  PubMed  Google Scholar 

  122. Cameron, L. A., Footer, M. J., van Oudenaarden, A. & Theriot, J. A. Motility of ActA protein-coated microspheres driven by actin polymerization. Proc. Natl Acad. Sci. USA 96, 4908–4913 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Noireaux, V. et al. Growing an actin gel on spherical surfaces. Biophys. J. 78, 1643–1654 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Yarar, D., D'Alessio, J. A., Jeng, R. L. & Welch, M. D. Motility determinants in WASP family proteins. Mol. Biol. Cell 13, 4045–4059 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Samarin, S. et al. How VASP enhances actin-based motility. J. Cell Biol. 163, 131–142 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Bernheim-Groswasser, A., Wiesner, S., Golsteyn, R. M., Carlier, M. F. & Sykes, C. The dynamics of actin-based motility depend on surface parameters. Nature 417, 308–311 (2002).

    CAS  PubMed  Google Scholar 

  127. Wiesner, S. et al. A biomimetic motility assay provides insight into the mechanism of actin-based motility. J. Cell Biol. 160, 387–398 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Friederich, E., Vancompernolle, K., Louvard, D. & Vandekerckhove, J. Villin function in the organization of the actin cytoskeleton. Correlation of in vivo effects to its biochemical activities in vitro. J. Biol. Chem. 274, 26751–26760 (1999).

    CAS  PubMed  Google Scholar 

  129. Friederich, E. et al. An actin-binding site containing a conserved motif of charged amino acid residues is essential for the morphogenic effect of villin. Cell 70, 81–92 (1992).

    CAS  PubMed  Google Scholar 

  130. Costa de Beauregard, M. A., Pringault, E., Robine, S. & Louvard, D. Suppression of villin expression by antisense RNA impairs brush border assembly in polarized epithelial intestinal cells. EMBO J. 14, 409–421 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Phillips, M. J. et al. Abnormalities in villin gene expression and canalicular microvillus structure in progressive cholestatic liver disease of childhood. Lancet 362, 1112–1119 (2003).

    CAS  PubMed  Google Scholar 

  132. Zigmond, S. H. Formin-induced nucleation of actin filaments. Curr. Opin. Cell Biol. 16, 99–105 (2004).

    CAS  PubMed  Google Scholar 

  133. Loy, C. J., Sim, K. S. & Yong, E. L. Filamin-A fragment localizes to the nucleus to regulate androgen receptor and coactivator functions. Proc. Natl Acad. Sci. USA 100, 4562–4567 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. De Joussineau, C. et al. Delta-promoted filopodia mediate long-range lateral inhibition in Drosophila. Nature 426, 555–559 (2003).

    CAS  PubMed  Google Scholar 

  135. Rodriguez, O. C. et al. Conserved microtubule–actin interactions in cell movement and morphogenesis. Nature Cell Biol. 5, 599–609 (2003).

    CAS  PubMed  Google Scholar 

  136. Athman, R. et al. The epithelial cell cytoskeleton and intracellular trafficking III. How is villin involved in the actin cytoskeleton dynamics in intestinal cells? Am. J. Physiol. Gastrointest. Liver. Physiol. 283, G496–G502 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank J. Srivastava and D. Vignjevic for careful reading of the manuscript and helpful comments. This work was supported by funds from the French ministry of research, Action Concertée Incitative Biologie du développement et physiologie intégrative. C.R. is supported by a Ph.D. fellowship from the Centre National de la Recherche Scientifique and R.A. is supported by a post-doctoral fellowship from the Institut Pasteur.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Flybase

Ena

fimbrin

quail

Interpro

ActA

FERM

VCA

Swiss-Prot

ezrin

fascin

filamin A

gelsolin

harmonin b

moesin

myosin VIIa

myosin XVa

NCK

PAK

radixin

SLP76

villin

VASP

VAV

WASP

Glossary

PHAGOCYTOSIS

An actin-dependent process by which cells engulf external particulate material by extension and fusion of pseudopods.

MICROVILLI

Small, finger-like projections (1–2 μm long and 100 nm wide) that occur on the exposed surfaces of epithelial cells to maximize the surface area.

STEREOCILIA

Tapered, finger-like projections from hair cells of the inner ear that respond to mechanical displacement with alterations in membrane potential, and thereby mediate sensory transduction.

FILOPODIA

Thin cellular processes containing long, unbranched, parallel bundles of actin filaments.

LAMELLIPODIA

Broad, flat protrusions at the leading edge of a moving cell that are enriched with a branched network of actin filaments.

SCHWANN CELLS

Supporting cells of the peripheral nervous system that associate with peripheral axons and can contribute to their myelination.

LEADING EDGE

The thin margin of a lamellipodium spanning the area of the cell from the plasma membrane to about 1 μm back into the lamellipodium.

HAIR CELLS

The sensory cells in the organ of Corti from the inner ear.

NURSE-CELL STRUT

D. melanogaster nurse cells are auxiliary cells that supply the oocyte with synthesized mRNAs and proteins during insect oogenesis. Nurse-cell struts are the cytoplasmic actin bundles in these cells that prevent the nucleus from blocking the canals that allow the delivery of cytoplasmic components to the oocyte.

ECTOPLASMIC SPECIALIZATION

An intercellular junction that tightly attaches the elongate spermatid head to the membrane of a Sertoli cell. It is characterized by the presence of a junctional plaque which contains a layer of tightly packed actin bundles under the Sertoli-cell plasma membrane.

SERTOLI CELLS

Non-dividing supporting cells that extend from the base of the seminiferous epithelium to the tubule lumen. They surround germ cells and provide a microenvironment in which germ cells develop and differentiate.

IMMUNOLOGICAL SYNAPSE

A junction that forms at the contact region between a T cell and its target cells. T-cell activation occurs here.

ANTIGEN-PRESENTING CELL

A cell, generally a macrophage or dendritic cell, that presents an antigen to activate a T cell.

GROWTH CONE

Motile tip of the axon or dendrite of a growing nerve cell, which spreads out into a cone-shaped outgrowth.

BILE CANALICULI

Tiny channels on the surface of liver cells that collect the bile that they produce.

MYOSIN

Molecular motors that move along actin filaments and have several cellular roles in contraction or protein transport.

FRAP

(fluorescence recovery after photobleaching). This technique involves the irradiation of a limited region containing fluorescent molecules, such that the fluorescent molecules inside the region become non-fluorescent. The subsequent reappearance of fluorescent molecules from the surrounding non-bleached region gives information on their dynamic parameters such as diffusion coefficient, immobile fraction and binding or residence time.

HAEMOSTATIC RESPONSE

The process that allows platelets to carry out coagulation.

RHO-FAMILY GTPases

Ras-related small GTPases that function as GDP/GTP-regulated binary switches and regulate signal-transduction pathways that control actin organization. RhoGTPase function is required for both the establishment of a fully polarized state and a motile phenotype on epithelial–mesenchymal transition.

MEMBRANE RUFFLES

Processes that are formed by lamellipodia that have lifted from the substratum on which they previously extended.

GLYCOCALYX

The carbohydrate-rich region at the surface of many plant and animal cells that is rich in glycoproteins and glycolipids.

MAJOR HISTOCOMPATIBILITY COMPLEX

A complex of genetic loci in higher vertebrates that encodes a family of cellular antigens that allow the immune system to recognize self from non-self.

ADAPTOR PROTEINS

Proteins that usually have several protein–protein interaction domains and increase cellular responses by recruiting other proteins to a complex.

BRUSH BORDER

The apical surface of epithelial intestinal or kidney cells. It is involved in absorption, and is characterized by the presence of abundant microvilli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Revenu, C., Athman, R., Robine, S. et al. The co-workers of actin filaments: from cell structures to signals. Nat Rev Mol Cell Biol 5, 635–646 (2004). https://doi.org/10.1038/nrm1437

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1437

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing