Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

ATR: an essential regulator of genome integrity

Key Points

  • Ataxia-telangiectasia mutated (ATM) and RAD3-related (ATR) is a member of the phosphoinositide 3-kinase (PI3K)-related family of protein kinases, which includes ATM, that regulates DNA-damage responses to maintain genome integrity.

  • A common DNA structure — single-stranded DNA (ssDNA) with a 5′ double-stranded primer junction — is responsible in most instances for ATR activation.

  • ATR binds to a protein cofactor, ATR-interacting protein (ATRIP), that regulates ATR localization and activation.

  • Topoisomerase-binding protein-1 (TOPBP1) directly activates ATR–ATRIP complexes. Its recruitment to DNA lesions is promoted by the 9-1-1 checkpoint clamp.

  • ATR signals to regulate DNA replication, cell-cycle transitions and DNA repair through the phosphorylation of hundreds of substrates, including checkpoint kinase-1 (CHK1) and the minichromosome maintenance (MCM) helicase complex.

  • ATM and ATR have overlapping but non-redundant functions in the DNA-damage response. Crosstalk between these pathways often occurs as a consequence of interconversion of the activating DNA lesions.

  • ATR is essential for the survival of most replicating cells, perhaps because of the ubiquitous presence of DNA lesions and replication stress.

Abstract

Genome maintenance is a constant concern for cells, and a coordinated response to DNA damage is required to maintain cellular viability and prevent disease. The ataxia-telangiectasia mutated (ATM) and ATM and RAD3-related (ATR) protein kinases act as master regulators of the DNA-damage response by signalling to control cell-cycle transitions, DNA replication, DNA repair and apoptosis. Recent studies have provided new insights into the mechanisms that control ATR activation, have helped to explain the overlapping but non-redundant activities of ATR and ATM in DNA-damage signalling, and have clarified the crucial functions of ATR in maintaining genome integrity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simple models for ATR and ATM activation.
Figure 2: A common DNA structure activates ATR.
Figure 3: ATR phosphorylates numerous substrates to regulate replication and cell-cycle transitions.
Figure 4: Interconversion of ATR- and ATM-activating DNA lesions.

Similar content being viewed by others

References

  1. Cortez, D., Guntuku, S., Qin, J. & Elledge, S. J. ATR and ATRIP: partners in checkpoint signaling. Science 294, 1713–1716 (2001). Reported the identification of ATRIP and, along with reference 129, demonstrated that ATR is essential for cell viability.

    Article  CAS  PubMed  Google Scholar 

  2. Brown, E. J. & Baltimore, D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev. 14, 397–402 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. de Klein, A. et al. Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice. Curr. Biol. 10, 479–482 (2000). Reported, together with reference 2, that disruption of ATR in mice causes early embryonic lethality.

    Article  CAS  PubMed  Google Scholar 

  4. Nyberg, K. A., Michelson, R. J., Putnam, C. W. & Weinert, T. A. Toward maintaining the genome: DNA damage and replication checkpoints. Annu. Rev. Genet. 36, 617–656 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Shechter, D., Costanzo, V. & Gautier, J. Regulation of DNA replication by ATR: signaling in response to DNA intermediates. DNA Repair (Amst.) 3, 901–908 (2004).

    Article  CAS  Google Scholar 

  6. Swift, M., Reitnauer, P. J., Morrell, D. & Chase, C. L. Breast and other cancers in families with ataxia-telangiectasia. N. Engl. J. Med. 316, 1289–1294 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. Renwick, A. et al. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nature Genet. 38, 873–875 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Savitsky, K. et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268, 1749–1753 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. O'Driscoll, M., Ruiz-Perez, V. L., Woods, C. G., Jeggo, P. A. & Goodship, J. A. A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nature Genet. 33, 497–501 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Collins, I. & Garrett, M. D. Targeting the cell division cycle in cancer: CDK and cell cycle checkpoint kinase inhibitors. Curr. Opin. Pharmacol. 5, 366–373 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Kaelin, W. G. Jr. The concept of synthetic lethality in the context of anticancer therapy. Nature Rev. Cancer 5, 689–698 (2005).

    Article  CAS  Google Scholar 

  12. Costanzo, V. et al. An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication. Mol. Cell 11, 203–213 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Zou, L. & Elledge, S. J. Sensing DNA damage through ATRIP recognition of RPA–ssDNA complexes. Science 300, 1542–1548 (2003). Demonstrated that ATRIP promotes ATR binding to RPA–ssDNA.

    Article  CAS  PubMed  Google Scholar 

  14. Fanning, E., Klimovich, V. & Nager, A. R. A dynamic model for replication protein A (RPA) function in DNA processing pathways. Nucleic Acids Res. 34, 4126–4137 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Umezu, K., Sugawara, N., Chen, C., Haber, J. E. & Kolodner, R. D. Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism. Genetics 148, 989–1005 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee, S. E. et al. Saccharomyces Ku70, Mre11/Rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94, 399–409 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Jiang, G. & Sancar, A. Recruitment of DNA damage checkpoint proteins to damage in transcribed and nontranscribed sequences. Mol. Cell. Biol. 26, 39–49 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hermand, D. & Nurse, P. Cdc18 enforces long-term maintenance of the S phase checkpoint by anchoring the Rad3–Rad26 complex to chromatin. Mol. Cell 26, 553–563 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Yoshioka, K., Yoshioka, Y. & Hsieh, P. ATR kinase activation mediated by MutSα and MutLα in response to cytotoxic O6-methylguanine adducts. Mol. Cell 22, 501–510 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ball, H. L. et al. Function of a conserved checkpoint recruitment domain in ATRIP proteins. Mol. Cell. Biol. 27, 3367–3377 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stokes, M. P., Van Hatten, R., Lindsay, H. D. & Michael, W. M. DNA replication is required for the checkpoint response to damaged DNA in Xenopus egg extracts. J. Cell Biol. 158, 863–872 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Michael, W. M., Ott, R., Fanning, E. & Newport, J. Activation of the DNA replication checkpoint through RNA synthesis by primase. Science 289, 2133–2137 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Byun, T. S., Pacek, M., Yee, M. C., Walter, J. C. & Cimprich, K. A. Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev. 19, 1040–1052 (2005). Demonstrated that checkpoint activation in X. laevis egg extracts, by agents that stall DNA-replication forks, requires the uncoupling of helicase and polymerase activities to generate long stretches of ssDNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. MacDougall, C. A., Byun, T. S., Van, C., Yee, M. C. & Cimprich, K. A. The structural determinants of checkpoint activation. Genes Dev. 21, 898–903 (2007). Used defined DNA structures in X. laevis egg extracts to show that ssDNA and a 5′ junction are sufficient to activate ATR signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Parrilla-Castellar, E. R., Arlander, S. J. & Karnitz, L. Dial 9-1-1 for DNA damage: the Rad9–Hus1–Rad1 (9-1-1) clamp complex. DNA Repair (Amst.) 3, 1009–1014 (2004).

    Article  CAS  Google Scholar 

  26. Ellison, V. & Stillman, B. Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5′ recessed DNA. PLoS Biol. 1, E33 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Zou, L., Liu, D. & Elledge, S. J. Replication protein A-mediated recruitment and activation of Rad17 complexes. Proc. Natl Acad. Sci. USA 100, 13827–13832 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bermudez, V. P. et al. Loading of the human 9-1-1 checkpoint complex onto DNA by the checkpoint clamp loader hRad17-replication factor C complex in vitro. Proc. Natl Acad. Sci. USA 100, 1633–1638 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Majka, J., Binz, S. K., Wold, M. S. & Burgers, P. M. Replication protein A directs loading of the DNA damage checkpoint clamp to 5′-DNA junctions. J. Biol. Chem. 281, 27855–27861 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Kanoh, Y., Tamai, K. & Shirahige, K. Different requirements for the association of ATR–ATRIP and 9-1-1 to the stalled replication forks. Gene 377, 88–95 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Pacek, M. & Walter, J. C. A requirement for MCM7 and Cdc45 in chromosome unwinding during eukaryotic DNA replication. EMBO J. 23, 3667–3676 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nedelcheva, M. N. et al. Uncoupling of unwinding from DNA synthesis implies regulation of MCM helicase by Tof1/Mrc1/Csm3 checkpoint complex. J. Mol. Biol. 347, 509–521 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Majka, J., Niedziela-Majka, A. & Burgers, P. M. The checkpoint clamp activates Mec1 kinase during initiation of the DNA damage checkpoint. Mol. Cell 24, 891–901 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee, J., Kumagai, A. & Dunphy, W. G. The Rad9–Hus1–Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR. J. Biol. Chem. 282, 28036–28044 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Delacroix, S., Wagner, J. M., Kobayashi, M., Yamamoto, K. & Karnitz, L. M. The Rad9–Hus1–Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1. Genes Dev. 21, 1472–1477 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Furuya, K., Poitelea, M., Guo, L., Caspari, T. & Carr, A. M. Chk1 activation requires Rad9 S/TQ-site phosphorylation to promote association with C-terminal BRCT domains of Rad4TOPBP1. Genes Dev. 18, 1154–1164 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kumagai, A., Lee, J., Yoo, H. Y. & Dunphy, W. G. TopBP1 activates the ATR–ATRIP complex. Cell 124, 943–955 (2006). Demonstrated that TOPBP1 is a protein activator of ATR kinase activity.

    Article  CAS  PubMed  Google Scholar 

  38. St Onge, R. P., Besley, B. D., Pelley, J. L. & Davey, S. A role for the phosphorylation of hRad9 in checkpoint signaling. J. Biol. Chem. 278, 26620–26628 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Weiss, R. S., Enoch, T. & Leder, P. Inactivation of mouse Hus1 results in genomic instability and impaired responses to genotoxic stress. Genes Dev. 14, 1886–1898 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hopkins, K. M. et al. Deletion of mouse rad9 causes abnormal cellular responses to DNA damage, genomic instability, and embryonic lethality. Mol. Cell. Biol. 24, 7235–7248 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mordes, D. A., Glick, G. G., Zhao, R. & Cortez, D. TopBP1 activates ATR through ATRIP and a PIKK regulatory domain. Genes Dev. 22, 1478–1489 (2008). Defined binding surfaces on ATR and ATRIP for TOPBP1, and identified a common regulatory domain among PIKK family members that provides specialized regulatory opportunities for these kinases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sekulic, A. et al. A direct linkage between the phosphoinositide 3-kinase–AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. 60, 3504–3513 (2000).

    CAS  PubMed  Google Scholar 

  43. Sun, Y., Xu, Y., Roy., K. & Price, B. D. DNA damage induced acetylation of lysine 3016 of ATM activates ATM kinase activity. Mol. Cell. Biol. 24, 8502–8509 (2007).

    Article  CAS  Google Scholar 

  44. Stucki, M. & Jackson, S. P. γH2AX and MDC1: anchoring the DNA-damage-response machinery to broken chromosomes. DNA Repair (Amst.) 5, 534–543 (2006).

    Article  CAS  Google Scholar 

  45. Soutoglou, E. & Misteli, T. Activation of the cellular DNA damage response in the absence of DNA lesions. Science 320, 1507–1510 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bonilla, C. Y., Melo, J. A. & Toczyski, D. P. Colocalization of sensors is sufficient to activate the DNA damage checkpoint in the absence of damage. Mol. Cell 30, 267–276 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Toledo, L. I., Murga, M., Gutierrez-Martinez, P., Soria, R. & Fernandez-Capetillo, O. ATR signaling can drive cells into senescence in the absence of DNA breaks. Genes Dev. 22, 297–302 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Choi, J. H., Lindsey-Boltz, L. A. & Sancar, A. Reconstitution of a human ATR-mediated checkpoint response to damaged DNA. Proc. Natl Acad. Sci. USA 104, 13301–13306 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kondo, T., Wakayama, T., Naiki, T., Matsumoto, K. & Sugimoto, K. Recruitment of Mec1 and Ddc1 checkpoint proteins to double-strand breaks through distinct mechanisms. Science 294, 867–870 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Melo, J. A., Cohen, J. & Toczyski, D. P. Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev. 15, 2809–2821 (2001). References 49 and 50 provided the first evidence that the checkpoint clamp and the ATR kinase are recruited to sites of DNA lesions independently.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zou, L., Cortez, D. & Elledge, S. J. Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Dev. 16, 198–208 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. You, Z., Kong, L. & Newport, J. The role of single-stranded DNA and polymerase α in establishing the ATR, Hus1 DNA replication checkpoint. J. Biol. Chem. 277, 27088–27093 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Lee, J., Kumagai, A. & Dunphy, W. G. Claspin, a Chk1-regulatory protein, monitors DNA replication on chromatin independently of RPA, ATR, and Rad17. Mol. Cell 11, 329–340 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Ball, H. L., Myers, J. S. & Cortez, D. ATRIP binding to RPA–ssDNA promotes ATR–ATRIP localization but is dispensable for Chk1 phosphorylation. Mol. Biol. Cell 16, 2372–2381 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Ball, H. L. & Cortez, D. ATRIP oligomerization is required for ATR-dependent checkpoint signaling. J. Biol. Chem. 280, 31390–31396 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Itakura, E., Sawada, I. & Matsuura, A. Dimerization of the ATRIP protein through the coiled-coil motif and its implication to the maintenance of stalled replication forks. Mol. Biol. Cell 16, 5551–5562 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee, S. J., Duong, J. K. & Stern, D. F. A Ddc2–Rad53 fusion protein can bypass the requirements for RAD9 and MRC1 in Rad53 activation. Mol. Biol. Cell 15, 5443–5455 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim, S. M., Kumagai, A., Lee, J. & Dunphy, W. G. Phosphorylation of Chk1 by ATM- and Rad3-related (ATR) in Xenopus egg extracts requires binding of ATRIP to ATR but not the stable DNA-binding or coiled-coil domains of ATRIP. J. Biol. Chem. 280, 38355–38364 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Bentley, N. J. et al. The Schizosaccharomyces pombe rad3 checkpoint gene. EMBO J. 15, 6641–6651 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lindsay, H. D. et al. S-phase-specific activation of Cds1 kinase defines a subpathway of the checkpoint response in Schizosaccharomyces pombe. Genes Dev. 12, 382–395 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Paciotti, V., Clerici, M., Scotti, M., Lucchini, G. & Longhese, M. P. Characterization of mec1 kinase-deficient mutants and of new hypomorphic mec1 alleles impairing subsets of the DNA damage response pathway. Mol. Cell. Biol. 21, 3913–3925 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Canman, C. E. et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281, 1677–1679 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Banin, S. et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281, 1674–1677 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Kumagai, A., Kim, S. M. & Dunphy, W. G. Claspin and the activated form of ATR–ATRIP collaborate in the activation of Chk1. J. Biol. Chem. (2004).

  66. Yoo, H. Y., Kumagai, A., Shevchenko, A., Shevchenko, A. & Dunphy, W. G. Ataxia-telangiectasia mutated (ATM)-dependent activation of ATR occurs through phosphorylation of TopBP1 by ATM. J. Biol. Chem. 282, 17501–17506 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Buchmann, A. M., Skaar, J. R. & DeCaprio, J. A. Activation of a DNA damage checkpoint response in a TAF1-defective cell line. Mol. Cell. Biol. 24, 5332–5339 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Derheimer, F. A. et al. RPA and ATR link transcriptional stress to p53. Proc. Natl Acad. Sci. USA 104, 12778–12783 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yamane, K., Wu, X. & Chen, J. A DNA damage-regulated BRCT-containing protein, TopBP1, is required for cell survival. Mol. Cell. Biol. 22, 555–566 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yan, S., Lindsay, H. D. & Michael, W. M. Direct requirement for Xmus101 in ATR-mediated phosphorylation of Claspin bound Chk1 during checkpoint signaling. J. Cell Biol. 173, 181–186 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lupardus, P. J. & Cimprich, K. A. Phosphorylation of Xenopus Rad1 and Hus1 defines a readout for ATR activation that is independent of Claspin and the Rad9 carboxy terminus. Mol. Biol. Cell 17, 1559–1569 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Namiki, Y. & Zou, L. ATRIP associates with replication protein A-coated ssDNA through multiple interactions. Proc. Natl Acad. Sci. USA 103, 580–585 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sivasubramaniam, S., Sun, X., Pan, Y. R., Wang, S. & Lee, E. Y. Cep164 is a mediator protein required for the maintenance of genomic stability through modulation of MDC1, RPA, and CHK1. Genes Dev. 22, 587–600 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Unsal-Kacmaz, K., Makhov, A. M., Griffith, J. D. & Sancar, A. Preferential binding of ATR protein to UV-damaged DNA. Proc. Natl Acad. Sci. USA 99, 6673–6678 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Roche, K. C., Rocha, S., Bracken, C. P. & Perkins, N. D. Regulation of ATR-dependent pathways by the FHA domain containing protein SNIP1. Oncogene 26, 4523–4530 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Park, B. J. et al. The haploinsufficient tumor suppressor p18 upregulates p53 via interactions with ATM/ATR. Cell 120, 209–221 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Zhang, J. et al. Protein phosphatase 5 is required for ATR-mediated checkpoint activation. Mol. Cell. Biol. 25, 9910–9919 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zachos, G., Rainey, M. D. & Gillespie, D. A. Chk1-dependent S–M checkpoint delay in vertebrate cells is linked to maintenance of viable replication structures. Mol. Cell. Biol. 25, 563–574 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Matsuoka, S. et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Mu, J. J. et al. A proteomic analysis of ataxia telangiectasia-mutated (ATM)/ATM-Rad3-related (ATR) substrates identifies the ubiquitin-proteasome system as a regulator for DNA damage checkpoints. J. Biol. Chem. 282, 17330–17334 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Stokes, M. P. et al. Profiling of UV-induced ATM/ATR signaling pathways. Proc. Natl Acad. Sci. USA 104, 19855–19860 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Smolka, M. B., Albuquerque, C. P., Chen, S. H. & Zhou, H. Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proc. Natl Acad. Sci. USA 104, 10364–10369 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Walworth, N. C. & Bernards, R. rad-dependent response of the chk1-encoded protein kinase at the DNA damage checkpoint. Science 271, 353–356 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Liu, Q. et al. Chk1 is an essential kinase that is regulated by Atr and required for the G2/M DNA damage checkpoint. Genes Dev. 14, 1448–1459 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lopez-Girona, A. et al. Serine-345 is required for Rad3-dependent phosphorylation and function of checkpoint kinase Chk1 in fission yeast. Proc. Natl Acad. Sci. USA 98, 11289–11294 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kumagai, A. & Dunphy, W. G. Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. Mol. Cell 6, 839–849 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Kumagai, A. & Dunphy, W. G. Repeated phosphopeptide motifs in Claspin mediate the regulated binding of Chk1. Nature Cell Biol. 5, 161–165 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Liu, S. et al. Claspin operates downstream of TopBP1 to direct ATR signaling towards Chk1 activation. Mol. Cell. Biol. 26, 6056–6064 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang, X. et al. Rad17 phosphorylation is required for claspin recruitment and Chk1 activation in response to replication stress. Mol. Cell 23, 331–341 (2006).

    Article  PubMed  CAS  Google Scholar 

  90. Bao, S. et al. ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses. Nature 411, 969–974 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Unsal-Kacmaz, K. et al. The human Tim/Tipin complex coordinates an Intra-S checkpoint response to UV that slows replication fork displacement. Mol. Cell. Biol. 27, 3131–3142 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Errico, A., Costanzo, V. & Hunt, T. Tipin is required for stalled replication forks to resume DNA replication after removal of aphidicolin in Xenopus egg extracts. Proc. Natl Acad. Sci. USA 104, 14929–14934 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Smits, V. A., Reaper, P. M. & Jackson, S. P. Rapid PIKK-dependent release of Chk1 from chromatin promotes the DNA-damage checkpoint response. Curr. Biol. 16, 150–159 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Boutros, R., Dozier, C. & Ducommun, B. The when and wheres of CDC25 phosphatases. Curr. Opin. Cell Biol. 18, 185–191 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Furnari, B., Rhind, N. & Russell, P. Cdc25 mitotic inducer targeted by chk1 DNA damage checkpoint kinase. Science 277, 1495–1497 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Peng, C. Y. et al. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277, 1501–1505 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Sanchez, Y. et al. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277, 1497–1501 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. Shechter, D., Costanzo, V. & Gautier, J. ATR and ATM regulate the timing of DNA replication origin firing. Nature Cell Biol. 6, 648–655 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Maya-Mendoza, A., Petermann, E., Gillespie, D. A., Caldecott, K. W. & Jackson, D. A. Chk1 regulates the density of active replication origins during the vertebrate S phase. EMBO J. 26, 2719–2731 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shirahige, K. et al. Regulation of DNA-replication origins during cell-cycle progression. Nature 395, 618–621 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Tercero, J. A. & Diffley, J. F. Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 412, 553–557 (2001). Used the S. cerevisiae system to show that the ATR checkpoint pathway regulates both fork stability and origin firing.

    Article  CAS  PubMed  Google Scholar 

  102. Merrick, C. J., Jackson, D. & Diffley, J. F. Visualization of altered replication dynamics after DNA damage in human cells. J. Biol. Chem. 279, 20067–20075 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Dimitrova, D. S. & Gilbert, D. M. Temporally coordinated assembly and disassembly of replication factories in the absence of DNA synthesis. Nature Cell Biol. 2, 686–694 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Feijoo, C. et al. Activation of mammalian Chk1 during DNA replication arrest: a role for Chk1 in the intra-S phase checkpoint monitoring replication origin firing. J. Cell Biol. 154, 913–923 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Alvino, G. M. et al. Replication in hydroxyurea: it's a matter of time. Mol. Cell. Biol. 27, 6396–6406 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Heffernan, T. P. et al. An ATR- and Chk1-dependent S checkpoint inhibits replicon initiation following UVC-induced DNA damage. Mol. Cell. Biol. 22, 8552–8561 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mickle, K. L. et al. Checkpoint independence of most DNA replication origins in fission yeast. BMC Mol. Biol. 8, 112 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Trenz, K., Smith, E., Smith, S. & Costanzo, V. ATM and ATR promote Mre11 dependent restart of collapsed replication forks and prevent accumulation of DNA breaks. EMBO J. 25, 1764–1774 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Brush, G. S., Morrow, D. M., Hieter, P. & Kelly, T. J. The ATM homologue MEC1 is required for phosphorylation of replication protein A in yeast. Proc. Natl Acad. Sci. USA 93, 15075–15080 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang, H., Guan, J., Perrault, A. R., Wang, Y. & Iliakis, G. Replication protein A2 phosphorylation after DNA damage by the coordinated action of ataxia telangiectasia-mutated and DNA-dependent protein kinase. Cancer Res. 61, 8554–8563 (2001).

    CAS  PubMed  Google Scholar 

  111. Cortez, D., Glick, G. & Elledge, S. J. Minichromosome maintenance proteins are direct targets of the ATM and ATR checkpoint kinases. Proc. Natl Acad. Sci. USA 101, 10078–10083 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yoo, H. Y., Shevchenko, A. & Dunphy, W. G. Mcm2 is a direct substrate of ATM and ATR during DNA damage and DNA replication checkpoint responses. J. Biol. Chem. 279, 53353–53364 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Liu, J. S., Kuo, S. R. & Melendy, T. Phosphorylation of replication protein A by S-phase checkpoint kinases. DNA Repair (Amst.) 5, 369–380 (2006).

    Article  CAS  Google Scholar 

  114. Oakley, G. G. et al. UV-induced hyperphosphorylation of replication protein A depends on DNA replication and expression of ATM protein. Mol. Biol. Cell 12, 1199–1213 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Trenz, K., Errico, A. & Costanzo, V. Plx1 is required for chromosomal DNA replication under stressful conditions. EMBO J. 27, 876–885 (2008). Determined that the ATR-dependent phosphorylation of MCM2 (previously identified in references 111 and 112) recruits the Polo-like kinase to stalled replication forks to promote completion of DNA synthesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ge, X. Q., Jackson, D. A. & Blow, J. J. Dormant origins licensed by excess Mcm2–7 are required for human cells to survive replicative stress. Genes Dev. 21, 3331–3341 (2007). Determined that excess MCM complex promotes the firing of additional origins of replication when replication is stalled.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Woodward, A. M. et al. Excess Mcm2–7 license dormant origins of replication that can be used under conditions of replicative stress. J. Cell Biol. 173, 673–683 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tibbetts, R. S. et al. Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev. 14, 2989–3002 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pichierri, P., Rosselli, F. & Franchitto, A. Werner's syndrome protein is phosphorylated in an ATR/ATM-dependent manner following replication arrest and DNA damage induced during the S phase of the cell cycle. Oncogene 22, 1491–1500 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Davies, S. L., North, P. S., Dart, A., Lakin, N. D. & Hickson, I. D. Phosphorylation of the Bloom's syndrome helicase and its role in recovery from S-phase arrest. Mol. Cell. Biol. 24, 1279–1291 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li, W., Kim, S. M., Lee, J. & Dunphy, W. G. Absence of BLM leads to accumulation of chromosomal DNA breaks during both unperturbed and disrupted S phases. J. Cell Biol. 165, 801–812 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Meister, P. et al. Temporal separation of replication and recombination requires the intra-S checkpoint. J. Cell Biol. 168, 537–544 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Andreassen, P. R., D'Andrea, A. D. & Taniguchi, T. ATR couples FANCD2 monoubiquitination to the DNA-damage response. Genes Dev. 18, 1958–1963 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wu, X., Shell, S. M., Liu, Y. & Zou, Y. ATR-dependent checkpoint modulates XPA nuclear import in response to UV irradiation. Oncogene 26, 757–764 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Jazayeri, A. et al. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nature Cell Biol. 8, 37–45 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Myers, J. S. & Cortez, D. Rapid activation of ATR by ionizing radiation requires ATM and Mre11. J. Biol. Chem. 281, 9346–9350 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Adams, K. E., Medhurst, A. L., Dart, D. A. & Lakin, N. D. Recruitment of ATR to sites of ionising radiation-induced DNA damage requires ATM and components of the MRN protein complex. Oncogene 25, 3894–3904 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Cuadrado, M. et al. ATM regulates ATR chromatin loading in response to DNA double-strand breaks. J. Exp. Med. 203, 297–303 (2006). References 125–128 demonstrated a function of ATM that is upstream of ATR activation owing to ATM-dependent end-resection of the DSBs.

    Google Scholar 

  129. Brown, E. J. & Baltimore, D. Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance. Genes Dev. 17, 615–628 (2003). Demonstrated, along with reference 1, that ATR is essential for cell viability.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Costanzo, V. et al. Mre11 protein complex prevents double-strand break accumulation during chromosomal DNA replication. Mol. Cell 8, 137–147 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Mirzoeva, O. K. & Petrini, J. H. DNA replication-dependent nuclear dynamics of the Mre11 complex. Mol. Cancer Res. 1, 207–218 (2003).

    CAS  PubMed  Google Scholar 

  132. Xiao, Y. & Weaver, D. T. Conditional gene targeted deletion by Cre recombinase demonstrates the requirement for the double-strand break repair Mre11 protein in murine embryonic stem cells. Nucleic Acids Res. 25, 2985–2991 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Luo, G. et al. Disruption of mRad50 causes embryonic stem cell lethality, abnormal embryonic development, and sensitivity to ionizing radiation. Proc. Natl Acad. Sci. USA 96, 7376–7381 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kang, J., Bronson, R. T. & Xu, Y. Targeted disruption of NBS1 reveals its roles in mouse development and DNA repair. EMBO J. 21, 1447–1455 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Stiff, T. et al. Nbs1 is required for ATR-dependent phosphorylation events. EMBO J. 24, 199–208 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Olson, E., Nievera, C. J., Lee, A. Y., Chen, L. & Wu, X. The Mre11–Rad50–Nbs1 complex acts both upstream and downstream of ataxia telangiectasia mutated and Rad3-related protein (ATR) to regulate the S-phase checkpoint following UV treatment. J. Biol. Chem. 282, 22939–22952 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Stiff, T. et al. ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling. EMBO J. 25, 5775–5782 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yajima, H., Lee, K. J. & Chen, B. P. ATR-dependent phosphorylation of DNA-dependent protein kinase catalytic subunit in response to UV-induced replication stress. Mol. Cell. Biol. 26, 7520–7528 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Siliciano, J. D. et al. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev. 11, 3471–3481 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Cortez, D., Wang, Y., Qin, J. & Elledge, S. J. Requirement of ATM-dependent phosphorylation of Brca1 in the DNA damage response to double-strand breaks. Science 286, 1162–1166 (1999).

    Article  CAS  PubMed  Google Scholar 

  141. Tibbetts, R. S. et al. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 13, 152–157 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gatei, M. et al. Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation. J. Biol. Chem. 278, 14806–14811 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Tercero, J. A., Longhese, M. P. & Diffley, J. F. A central role for DNA replication forks in checkpoint activation and response. Mol. Cell 11, 1323–1336 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Zhao, X., Muller, & Rothstein, R. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol. Cell 2, 329–340 (1998).

    Article  CAS  PubMed  Google Scholar 

  145. Desany, B. A., Alcasabas, A. A., Bachant, J. B. & Elledge, S. J. Recovery from DNA replicational stress is the essential function of the S-phase checkpoint pathway. Genes Dev. 12, 2956–2970 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993).

    Article  CAS  PubMed  Google Scholar 

  147. Mirkin, E. V. & Mirkin, S. M. Replication fork stalling at natural impediments. Microbiol Mol. Biol. Rev. 71, 13–35 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Gruber, M., Wellinger, R. E. & Sogo, J. M. Architecture of the replication fork stalled at the 3′ end of yeast ribosomal genes. Mol. Cell. Biol. 20, 5777–5787 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ivessa, A. S. et al. The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein–DNA complexes. Mol. Cell 12, 1525–1536 (2003).

    Article  CAS  PubMed  Google Scholar 

  150. Lenzmeier, B. A. & Freudenreich, C. H. Trinucleotide repeat instability: a hairpin curve at the crossroads of replication, recombination, and repair. Cytogenet. Genome Res. 100, 7–24 (2003).

    Article  CAS  PubMed  Google Scholar 

  151. Arlt, M. F., Durkin, S. G., Ragland, R. L. & Glover, T. W. Common fragile sites as targets for chromosome rearrangements. DNA Repair (Amst.) 5, 1126–1135 (2006).

    Article  CAS  Google Scholar 

  152. Lambert, S., Watson, A., Sheedy, D. M., Martin, B. & Carr, A. M. Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier. Cell 121, 689–702 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Calzada, A., Hodgson, B., Kanemaki, M., Bueno, A. & Labib, K. Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes Dev. 19, 1905–1919 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Cox, M. M. et al. The importance of repairing stalled replication forks. Nature 404, 37–41 (2000).

    Article  CAS  PubMed  Google Scholar 

  155. Haber, J. E. DNA recombination: the replication connection. Trends Biochem. Sci. 24, 271–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  156. Paulsen, R. D. & Cimprich, K. A. The ATR pathway: fine-tuning the fork. DNA Repair (Amst.) 6, 953–966 (2007).

    Article  CAS  Google Scholar 

  157. Glover, T. W., Arlt, M. F., Casper, A. M. & Durkin, S. G. Mechanisms of common fragile site instability. Hum. Mol. Genet. 14, R197–R205 (2005).

    Article  CAS  PubMed  Google Scholar 

  158. Casper, A. M., Nghiem, P., Arlt, M. F. & Glover, T. W. ATR regulates fragile site stability. Cell 111, 779–789 (2002).

    Article  CAS  PubMed  Google Scholar 

  159. Cha, R. S. & Kleckner, N. ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 297, 602–606 (2002).

    Article  CAS  PubMed  Google Scholar 

  160. Painter, R. B. & Young, B. R. Radiosensitivity in ataxia-telangiectasia: a new explanation. Proc. Natl Acad. Sci. USA 77, 7315–7317 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Houldsworth, J. & Lavin, M. F. Effect of ionizing radiation on DNA synthesis in ataxia telangiectasia cells. Nucleic Acids Res. 8, 3709–3720 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Fang, Y. et al. ATR functions as a gene dosage-dependent tumor suppressor on a mismatch repair-deficient background. EMBO J. 23, 3164–3174 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864–870 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Gorgoulis, V. G. et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907–913 (2005). References 163 and 164 demonstrated that the DNA-damage response is activated in premalignant lesions as a consequence of replication stress.

    Article  CAS  PubMed  Google Scholar 

  165. Llorca, O., Rivera-Calzada, A., Grantham, J. & Willison, K. R. Electron microscopy and 3D reconstructions reveal that human ATM kinase uses an arm-like domain to clamp around double-stranded DNA. Oncogene 22, 3867–3874 (2003).

    Article  CAS  PubMed  Google Scholar 

  166. Leuther, K. K., Hammarsten, O., Kornberg, R. D. & Chu, G. Structure of DNA-dependent protein kinase: implications for its regulation by DNA. EMBO J. 18, 1114–1123 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Rivera-Calzada, A., Maman, J. D., Spagnolo, L., Pearl, L. H. & Llorca, O. Three-dimensional structure and regulation of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Structure 13, 243–255 (2005).

    Article  CAS  PubMed  Google Scholar 

  168. Chiu, C. Y., Cary, R. B., Chen, D. J., Peterson, S. R. & Stewart, P. L. Cryo-EM imaging of the catalytic subunit of the DNA-dependent protein kinase. J. Mol. Biol. 284, 1075–1081 (1998).

    Article  CAS  PubMed  Google Scholar 

  169. Williams, D. R., Lee, K. J., Shi, J., Chen, D. J. & Stewart, P. L. Cryo-EM structure of the DNA-dependent protein kinase catalytic subunit at subnanometer resolution reveals α helices and insight into DNA binding. Structure 16, 468–477 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Perry, J. & Kleckner, N. The ATRs, ATMs, and TORs are giant HEAT repeat proteins. Cell 112, 151–155 (2003).

    Article  CAS  PubMed  Google Scholar 

  171. Jiang, X., Sun, Y., Chen, S., Roy, K. & Price, B. D. The FATC domains of PIKK proteins are functionally equivalent and participate in the Tip60-dependent activation of DNA-PKcs and ATM. J. Biol. Chem. 281, 15741–15746 (2006).

    Article  CAS  PubMed  Google Scholar 

  172. Chen, X., Zhao, R., Glick, G. G. & Cortez, D. Function of the ATR N-terminal domain revealed by an ATM/ATR chimera. Exp. Cell Res. 313, 1667–1674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. You, Z., Chahwan, C., Bailis, J., Hunter, T. & Russell, P. ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Mol. Cell. Biol. 25, 5363–5379 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kim, D. H. et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175 (2002).

    Article  CAS  PubMed  Google Scholar 

  175. Dvir, A., Peterson, S. R., Knuth, M. W., Lu, H. & Dynan, W. S. Ku autoantigen is the regulatory component of a template-associated protein kinase that phosphorylates RNA polymerase II. Proc. Natl Acad. Sci. USA 89, 11920–11924 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Gottlieb, T. M. & Jackson, S. P. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72, 131–142 (1993).

    Article  CAS  PubMed  Google Scholar 

  177. Falck, J., Coates, J. & Jackson, S. P. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434, 605–611 (2005).

    Article  CAS  PubMed  Google Scholar 

  178. Andegeko, Y. et al. Nuclear retention of ATM at sites of DNA double strand breaks. J. Biol. Chem. 276, 38224–38230 (2001).

    Article  CAS  PubMed  Google Scholar 

  179. Kitagawa, R., Bakkenist, C. J., McKinnon, P. J. & Kastan, M. B. Phosphorylation of SMC1 is a critical downstream event in the ATM–NBS1–BRCA1 pathway. Genes Dev. 18, 1423–1438 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Chang, Y. F., Imam, J. S. & Wilkinson, M. F. The nonsense-mediated decay RNA surveillance pathway. Annu. Rev. Biochem. 76, 51–74 (2007).

    Article  CAS  PubMed  Google Scholar 

  181. Sarbassov, D. D. et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14, 1296–1302 (2004).

    Article  CAS  PubMed  Google Scholar 

  182. Hara, K. et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177–189 (2002).

    Article  CAS  PubMed  Google Scholar 

  183. Lee, J. H. & Paull, T. T. ATM Activation by DNA double-strand breaks through the Mre11–Rad50–Nbs1 complex. Science 308, 551–554 (2005).

    Article  CAS  PubMed  Google Scholar 

  184. Kim, D. H. et al. GβL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol. Cell 11, 895–904 (2003).

    Article  CAS  PubMed  Google Scholar 

  185. Long, X., Lin, Y., Ortiz-Vega, S., Yonezawa, K. & Avruch, J. Rheb binds and regulates the mTOR kinase. Curr. Biol. 15, 702–713 (2005).

    Article  CAS  PubMed  Google Scholar 

  186. Takai, H., Wang, R. C., Takai, K. K., Yang, H. & de Lange, T. Tel2 regulates the stability of PI3K-related protein kinases. Cell 131, 1248–1259 (2007).

    Article  CAS  PubMed  Google Scholar 

  187. Itakura, E. et al. ATR-dependent phosphorylation of ATRIP in response to genotoxic stress. Biochem. Biophys. Res. Commun. 323, 1197–1202 (2004).

    Article  CAS  PubMed  Google Scholar 

  188. Myers, J. S., Zhao, R., Xu, X., Ham, A. J. & Cortez, D. Cyclin-dependent kinase 2 dependent phosphorylation of ATRIP regulates the G2–M checkpoint response to DNA damage. Cancer Res. 67, 6685–6690 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Venere, M., Snyder, A., Zgheib, O. & Halazonetis, T. D. Phosphorylation of ATR-interacting protein on Ser239 mediates an interaction with breast-ovarian cancer susceptibility 1 and checkpoint function. Cancer Res. 67, 6100–6105 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the Cimprich laboratory is supported by the National Institute of Environmental Health Sciences, the American Cancer Society and the California Breast Cancer Research Program. K.A.C. is a Leukemia and Lymphoma Scholar. The Cortez laboratory is supported by the National Cancer Institute, the Robert J. Kleberg Jr and Helen C. Kleberg Foundation and the Ingram Charitable Fund. The authors apologize for the many important references that could not be discussed owing to space limitations.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Interpro

BRCT

FAT

FATC

OB-fold

OMIM

ataxia-telangiectasia

Bloom syndrome

Werner syndrome

FURTHER INFORMATION

David Cortez's homepage

Karlene Cimprich's homepage

Glossary

Hypomorphic mutation

A mutation that reduces, but does not completely eliminate, the function of a gene.

Seckel syndrome

A rare autosomal-recessive disorder that is characterized by microcephaly, mental retardation and growth retardation. One form is caused by mutations in the ataxia-telangiectasia mutated and RAD3-related (ATR) gene.

Replication stress

A problem during DNA replication that is caused by DNA lesions, inadequate deoxynucleotide supplies or other difficulties that interfere with replication-fork movement.

Replication protein A

(RPA). A heterotrimeric single-stranded DNA-binding protein complex with multiple activities in nucleic acid metabolism.

Clamp loader

A protein complex that binds and then assembles a protein clamp onto the DNA at a 3′ hydroxyl primer end for DNA replication or a 5′ phosphate primer end for checkpoint signalling.

End resection

The nuclease-dependent removal of base pairs at a double-strand break to leave an extended single-stranded DNA end with a recessed 5′ end.

Nucleotide-excision repair

A process in which a small region of the DNA strand that surrounds a bulky DNA lesion is removed from the DNA helix as an oligonucleotide.

BRCT domain

An evolutionarily conserved phospho-Ser/Thr-interaction motif that was identified first in the C-terminal part of breast cancer-1 (BRCA1) and subsequently in several other checkpoint mediators.

MRN complex

A double-strand-break-sensing complex that contains meiotic recombination protein-11 (MRE11), RAD50 and Nijmegen breakage syndrome protein-1 (NBS1) and that is important in the recruitment and activation of ataxia-telangiectasia mutated (ATM) kinase.

Cellular senescence

A nearly irreversible stage of permanent G1 cell-cycle arrest that is linked to morphological changes (for example, flattening of the cells), metabolic changes and changes in gene expression.

HEAT repeat

A tandemly repeated, 37–47-amino-acid module that forms an extended α-helical structure. It is named after four proteins: huntingtin, elongation factor-3 (EF3), protein phosphatase-2A (PP2A) and target of rapamycin-1 (TOR1).

Replisome

A multiprotein complex at the junction of the DNA replication fork that contains all of the enzymes that are required for DNA replication.

Nonsense-mediated mRNA decay

A pathway that eliminates mRNAs that bear premature stop codons.

Exon-junction complex

A complex of proteins that is deposited, as a consequence of pre-mRNA splicing, 20–24 nucleotides upstream of the splicing-generated exon–exon junctions of newly synthesized mRNA.

MCM2–7 complex

A complex of 6 minichromosome maintenance proteins (MCM2–7) that functions, together with accessory proteins, as the replicative helicase that unwinds double-stranded DNA.

Polo-like kinase

An evolutionarily conserved Ser/Thr kinase with functions in mitosis and checkpoint signalling.

Collapsed replication fork

A blocked replication fork that has lost components of the replisome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cimprich, K., Cortez, D. ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 9, 616–627 (2008). https://doi.org/10.1038/nrm2450

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2450

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing