Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Induced pluripotent stem cells: the new patient?

Key Points

  • Human induced pluripotent stem (iPS) cells resemble human embryonic stem (ES) cells and have the potential to differentiate into all somatic cell types of the body. Cardiomyocytes and neurons can be derived by using various protocols, but their phenotype is immature, and different subtypes are difficult to obtain and purify.

  • Human iPS cells provide opportunities to capture the heterogeneity that arises from gender, ethnicity and gene modifiers specific to patients from which they have been derived. Although human ES cells have higher genetic stability than human iPS cells, both cell types can be genetically manipulated to generate genotyped matched cell lines, allowing direct comparison of disease-specific genotypes.

  • Both integrating and non-integrating methods are available for reprogramming. Non-integrating approaches are generally preferred but may be less efficient or more labour intensive.

  • iPS cell technology is particularly suitable for modelling diseases and is of special interest for cardiology and neurosciences in which the isolation of primary human tissue is invasive and potentially harmful. Several proof-of-concept studies have recapitulated both genetic and complex diseases of the heart, for example long QT syndrome and catecholaminergic ventricular tachycardia, and the brain, for example, Parkinson's disease, Rett syndrome and schizophrenia.

  • Patient-specific human iPS cell lines are useful for studying drug–gene interactions and for the evaluation of the potency of candidate drugs in reversing aberrant phenotypes that are associated with disease and ameliorating pathological traits. Examples include β-blockade treatment and ion channel activators and inhibitors for cardiac arrhythmogenic disorders, and anti-psychotic drugs or insulin-growth factor application for schizophrenia and autism spectrum disorders, respectively.

  • Availability of larger cohorts of patients, possibly representing different ethnic backgrounds, will help in generalizing effectiveness of therapies and drug adverse effects.

Abstract

Worldwide increases in life expectancy have been paralleled by a greater prevalence of chronic and age-associated disorders, particularly of the cardiovascular, neural and metabolic systems. This has not been met by commensurate development of new drugs and therapies, which is in part owing to the difficulty in modelling human diseases in laboratory assays or experimental animals. Patient-specific induced pluripotent stem (iPS) cells are an emerging paradigm that may address this. Reprogrammed somatic cells from patients are already applied in disease modelling, drug testing and drug discovery, thus enabling researchers to undertake studies for treating diseases 'in a dish', which was previously inconceivable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human iPS cell derivation, differentiation and applications.
Figure 2: Human iPS cells in modelling cardiac and neural diseases.

Similar content being viewed by others

References

  1. Scannell, J. W., Blanckley, A., Boldon, H. & Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. Nature Rev. Drug Discov. 11, 191–200 (2012).

    Article  CAS  Google Scholar 

  2. Mullard, A. 2011 FDA drug approvals. Nature Rev. Drug Discov. 11, 91–94 (2012).

    Article  CAS  Google Scholar 

  3. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007). This breakthrough study demonstrates that pluripotent stem cells, termed iPS cells, can be generated from embryonic and adult tissue cells in mice by expressing only a few specific transcription factors.

    Article  CAS  PubMed  Google Scholar 

  4. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007). This study demonstrates the applicability of induced pluripotency technology to human somatic cells.

    Article  CAS  PubMed  Google Scholar 

  5. Burridge, P. W., Keller, G., Gold, J. D. & Wu, J. C. Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 10, 16–28 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu, H. & Zhang, S. C. Specification of neuronal and glial subtypes from human pluripotent stem cells. Cell. Mol. Life Sci. 68, 3995–4008 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu, S. M. & Hochedlinger, K. Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nature Cell Biol. 13, 497–505 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  PubMed  Google Scholar 

  9. Stadtfeld, M. & Hochedlinger, K. Induced pluripotency: history, mechanisms, and applications. Genes Dev. 24, 2239–2263 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Robinton, D. A. & Daley, G. Q. The promise of induced pluripotent stem cells in research and therapy. Nature 481, 295–305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gonzalez, F., Boue, S. & Izpisua Belmonte, J. C. Methods for making induced pluripotent stem cells: reprogramming à la carte. Nature Rev. Genet. 12, 231–242 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Bock, C. et al. Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144, 439–452 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ohi, Y. et al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nature Cell Biol. 13, 541–549 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Osafune, K. et al. Marked differences in differentiation propensity among human embryonic stem cell lines. Nature Biotech. 26, 313–315 (2008).

    Article  CAS  Google Scholar 

  15. Murry, C. E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132, 661–680 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Cheung, C., Bernardo, A. S., Trotter, M. W., Pedersen, R. A. & Sinha, S. Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility. Nature Biotech. 30, 165–173 (2012).

    Article  CAS  Google Scholar 

  17. Mummery, C. et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107, 2733–2740 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Laflamme, M. A. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotech. 25, 1015–1024 (2007).

    Article  CAS  Google Scholar 

  19. Xu, X. Q. et al. Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation 76, 958–970 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Yang, L. et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453, 524–528 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Mummery, C. L. et al. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ. Res. 111, 344–358 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dubois, N. C. et al. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nature Biotech. 29, 1011–1018 (2011).

    Article  CAS  Google Scholar 

  23. Elliott, D. A. et al. NKX2-5eGFP/w hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nature Methods 8, 1037–1040 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Ritner, C. et al. An engineered cardiac reporter cell line identifies human embryonic stem cell-derived myocardial precursors. PLoS ONE 6, e16004 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huber, I. et al. Identification and selection of cardiomyocytes during human embryonic stem cell differentiation. FASEB J. 21, 2551–2563 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Goulburn, A. L. et al. A targeted NKX2.1 human embryonic stem cell reporter line enables identification of human basal forebrain derivatives. Stem Cells 29, 462–473 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Noisa, P., Urrutikoetxea-Uriguen, A., Li, M. & Cui, W. Generation of human embryonic stem cell reporter lines expressing GFP specifically in neural progenitors. Stem Cell Rev. 6, 438–449 (2010).

    Article  CAS  Google Scholar 

  28. Ma, J. et al. High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. Am J. Physiol. Heart Circ. Physiol. 301, H2006–H2017 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhu, W. Z. et al. Neuregulin/ErbB signaling regulates cardiac subtype specification in differentiating human embryonic stem cells. Circ. Res. 107, 776–786 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hu, B. Y. et al. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc. Natl Acad. Sci. USA 107, 4335–4340 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dambrot, C. Passier, R., Atsma, D. & Mummery, C. L. Cardiomyocyte differentiation of pluripotent stem cells and their use as cardiac disease models. Biochem. J. 434, 25–35 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Lombardi, R. et al. Nuclear plakoglobin is essential for differentiation of cardiac progenitor cells to adipocytes in arrhythmogenic right ventricular cardiomyopathy. Circ. Res. 109, 1342–1353 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Siedner, S. et al. Developmental changes in contractility and sarcomeric proteins from the early embryonic to the adult stage in the mouse heart. J. Physiol. 548, 493–505 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schaaf, S. et al. Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology. PLoS ONE 6, e26397 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dvir, T. et al. Nanowired three-dimensional cardiac patches. Nature Nanotechnol. 6, 720–725 (2011).

    Article  CAS  Google Scholar 

  36. Davis, R. P., van den Berg, C. W., Casini, S., Braam, S. R. & Mummery, C. L. Pluripotent stem cell models of cardiac disease and their implication for drug discovery and development. Trends Mol. Med. 17, 475–484 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Carvajal-Vergara, X. et al. Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature 465, 808–812 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun, N. et al. Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci. Transl. Med. 4, 130ra147 (2012).

    Article  Google Scholar 

  39. Shi, Y., Kirwan, P., Smith, J., Robinson, H. P. & Livesey, F. J. Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nature Neurosci. 15, 477–486 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature 480, 547–551 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brennand, K. J. & Gage, F. H. Concise review: the promise of human induced pluripotent stem cell-based studies of schizophrenia. Stem Cells 29, 1915–1922 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Muotri, A. R., Nakashima, K., Toni, N., Sandler, V. M. & Gage, F. H. Development of functional human embryonic stem cell-derived neurons in mouse brain. Proc. Natl Acad. Sci. USA 102, 18644–18648 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jensen, M. B., Yan, H., Krishnaney-Davison, R., Al Sawaf, A. & Zhang, S. C. Survival and differentiation of transplanted neural stem cells derived from human induced pluripotent stem cells in a rat stroke model. J. Stroke Cerebrovasc. Dis. 10 Nov 2011 (doi:10.1016/j.jstrokecerebrovasdis.2011.09.008).

  44. Laurent, L. C. et al. Restricted ethnic diversity in human embryonic stem cell lines. Nature Methods 7, 6–7 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Narva, E. et al. High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nature Biotech. 28, 371–377 (2010).

    Article  CAS  Google Scholar 

  46. Pera, M. F. Stem cells: The dark side of induced pluripotency. Nature 471, 46–47 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Mummery, C. Induced pluripotent stem cells — a cautionary note. N. Engl. J. Med. 364, 2160–2162 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Young, M. A. et al. Background mutations in parental cells account for most of the genetic heterogeneity of induced pluripotent stem cells. Cell Stem Cell 10, 570–582 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yusa, K. et al. Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478, 391–394 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu, G. H. et al. Targeted gene correction of laminopathy-associated LMNA mutations in patient-specific iPSCs. Cell Stem Cell 8, 688–694 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Soldner, F. et al. Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136, 964–977 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Costa, M. et al. A method for genetic modification of human embryonic stem cells using electroporation. Nature Protoc. 2, 792–796 (2007).

    Article  CAS  Google Scholar 

  53. Zhou, H. et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4, 381–384 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Miller, J. C. et al. A TALE nuclease architecture for efficient genome editing. Nature Biotech. 29, 143–148 (2011).

    Article  CAS  Google Scholar 

  55. Soldner, F. et al. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146, 318–331 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. The Internation HapMap Consortium. The International HapMap Project. Nature 426, 789–796 (2003).

  57. Braam, S. R. et al. Repolarization reserve determines drug responses in human pluripotent stem cell derived cardiomyocytes. Stem Cell Res. 6 Sept 2012 (doi:10.1016/j.scr.2012.08.007).

  58. Tiscornia, G., Vivas, E. L. & Belmonte, J. C. Diseases in a dish: modeling human genetic disorders using induced pluripotent cells. Nature Med. 17, 1570–1576 (2011). Describes the generation of the first iPS cells from patients with various genetic diseases, characterised by either Mendelian or complex inheritance.

    Article  CAS  PubMed  Google Scholar 

  59. Park, I. H. et al. Disease-specific induced pluripotent stem cells. Cell 134, 877–886 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Simons, B. D. & Clevers, H. Strategies for homeostatic stem cell self-renewal in adult tissues. Cell 145, 851–862 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Matsa, E. et al. Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation. Eur. Heart J. 32, 952–962 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Moretti, A. et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N. Engl. J. Med. 363, 1397–1409 (2010). Generates iPS cells from the skin of two patients with LQTS and shows that their differentiated cardiac derivatives recapitulated the disease phenotype in vitro and that the efficacy of β-blockade therapy was evident in these cells.

    Article  CAS  PubMed  Google Scholar 

  63. Itzhaki, I. et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471, 225–229 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Yazawa, M. et al. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 471, 230–234 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lahti, A. L. et al. Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture. Dis. Model. Mech. 5, 220–230 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Jung, C. B. et al. Dantrolene rescues arrhythmogenic RYR2 defect in a patient-specific stem cell model of catecholaminergic polymorphic ventricular tachycardia. EMBO Mol. Med. 4, 180–191 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fatima, A. et al. In vitro modeling of ryanodine receptor 2 dysfunction using human induced pluripotent stem cells. Cell. Physiol. Biochem. 28, 579–592 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Novak, A. et al. Cardiomyocytes generated from CPVTD307H patients are arrhythmogenic in response to β-adrenergic stimulation. J. Cell. Mol. Med. 16, 468–482 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Davis, R. P. et al. Cardiomyocytes derived from pluripotent stem cells recapitulate electrophysiological characteristics of an overlap syndrome of cardiac sodium channel disease. Circulation 125, 3079–3091 (2012).

    Article  PubMed  Google Scholar 

  70. Lee, G. et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461, 402–406 (2009). Uses iPS cells from patients that are affected by familial dysautonomia to extend the knowledge and to provide new insights into the disease: mis-splicing of mutated IKBKAP occurred in a tissue-specific way; neural crest precursors expressed low levels of ASCL1 (achaete-scute complex homologue 1), resulting in a primary defect of autonomic neurogenesis; neural crest precursors had migration defects; and kinetin could partially rescue the splicing defect in human iPS cell-derived peripheral neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Marchetto, M. C. et al. A model for neural development and treatment of RTT using human induced pluripotent stem cells. Cell 143, 527–539 (2010). Derives iPS cells from patients that are affected by RTT and differentiates these cells into neurons that showed abnormalities in vitro that could be rescued by specific drug treatment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Batista, L. F. et al. Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells. Nature 474, 399–402 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Devine, M. J. et al. Parkinson's disease induced pluripotent stem cells with triplication of the α-synuclein locus. Nature Commun. 2, 440 (2011).

    Article  CAS  Google Scholar 

  74. Brennand, K. J. et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 473, 221–225 (2011). Generates iPS cells from patients that are affected by schizophrenia and differentiated these cells into neurons showing phenotypic and gene expression changes that were ameliorated upon anti-psychotic drug application.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pasca, S. P. et al. Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nature Med. 17, 1657–1662 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Koch, P. et al. Excitation-induced ataxin-3 aggregation in neurons from patients with Machado–Joseph disease. Nature 480, 543–546 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Israel, M. A. et al. Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells. Nature 482, 216–220 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Faustino, N. A. & Cooper, T. A. Pre-mRNA splicing and human disease. Genes Dev. 17, 419–437 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Mekhoubad, S. et al. Erosion of dosage compensation impacts human iPSC disease modeling. Cell Stem Cell 10, 595–609 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vogel, G. Stem cells. Diseases in a dish take off. Science 330, 1172–1173 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Gore, A. et al. Somatic coding mutations in human induced pluripotent stem cells. Nature 471, 63–67 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Marchetto, M. C. et al. Transcriptional signature and memory retention of human-induced pluripotent stem cells. PLoS ONE 4, e7076 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bruck, T. & Benvenisty, N. Meta-analysis of the heterogeneity of X chromosome inactivation in human pluripotent stem cells. Stem Cell Res. 6, 187–193 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Fusaki, N., Ban, H., Nishiyama, A., Saeki, K. & Hasegawa, M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 85, 348–362 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. The 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

  86. Kaji, K. et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458, 771–775 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Woltjen, K., Hamalainen, R., Kibschull, M., Mileikovsky, M. & Nagy, A. Transgene-free production of pluripotent stem cells using piggyBac transposons. Methods Mol. Biol. 767, 87–103 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G. & Hochedlinger, K. Induced pluripotent stem cells generated without viral integration. Science 322, 945–949 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yu, J. et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 324, 797–801 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Warren, L. et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7, 618–630 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Miyoshi, N. et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8, 633–638 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Kim, D. et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4, 472–476 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhu, S. et al. Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell 7, 651–655 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Esteban, M. A. et al. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 6, 71–79 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Lemonnier, T. et al. Modeling neuronal defects associated with a lysosomal disorder using patient-derived induced pluripotent stem cells. Hum. Mol. Genet. 20, 3653–3666 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Kazuki, Y. et al. Complete genetic correction of iPS cells from Duchenne muscular dystrophy. Mol. Ther. 18, 386–393 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Urbach, A., Bar-Nur, O., Daley, G. Q. & Benvenisty, N. Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell 6, 407–411 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jang, J. et al. Induced pluripotent stem cell models from X-linked adrenoleukodystrophy patients. Ann. Neurol. 70, 402–409 (2011).

    Article  PubMed  Google Scholar 

  99. Ho, J. C. et al. Generation of induced pluripotent stem cell lines from 3 distinct laminopathies bearing heterogeneous mutations in lamin A/C. Aging (Albany NY) 3, 380–390 (2011).

    Article  CAS  Google Scholar 

  100. Ye, Z. et al. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood 114, 5473–5480 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Maehr, R. et al. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc. Natl Acad. Sci. USA 106, 15768–15773 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ghodsizadeh, A. et al. Generation of liver disease-specific induced pluripotent stem cells along with efficient differentiation to functional hepatocyte-like cells. Stem Cell Rev. 6, 622–632 (2010).

    Article  Google Scholar 

  103. Agarwal, S. et al. Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. Nature 464, 292–296 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tolar, J. et al. Induced pluripotent stem cells from individuals with recessive dystrophic epidermolysis bullosa. J. Invest. Dermatol. 131, 848–856 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Itoh, M., Kiuru, M., Cairo, M. S. & Christiano, A. M. Generation of keratinocytes from normal and recessive dystrophic epidermolysis bullosa-induced pluripotent stem cells. Proc. Natl Acad. Sci. USA 108, 8797–8802 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Mitne-Neto, M. et al. Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients. Hum. Mol. Genet. 20, 3642–3652 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dimos, J. T. et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321, 1218–1221 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Rashid, S. T. et al. Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J. Clin. Invest. 120, 3127–3136 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang, J. et al. A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell 8, 31–45 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Liu, G. H. et al. Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome. Nature 472, 221–225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tolar, J. et al. Hematopoietic differentiation of induced pluripotent stem cells from patients with mucopolysaccharidosis type I (Hurler syndrome). Blood 117, 839–847 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nguyen, H. N. et al. LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8, 267–280 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Seibler, P. et al. Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. J. Neurosci. 31, 5970–5976 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Swistowski, A. et al. Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells 28, 1893–1904 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Jin, Z. B. et al. Modeling retinal degeneration using patient-specific induced pluripotent stem cells. PLoS ONE 6, e17084 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Muotri, A. R. et al. L1 retrotransposition in neurons is modulated by MeCP2. Nature 468, 443–446 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhang, S. et al. Rescue of ATP7B function in hepatocyte-like cells from Wilson's disease induced pluripotent stem cells using gene therapy or the chaperone drug curcumin. Hum. Mol. Genet. 20, 3176–3187 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Zou, J. et al. Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPS cells: functional correction by zinc finger nuclease-mediated safe harbor targeting. Blood 117, 5561–5572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pedrosa, E. et al. Development of patient-specific neurons in schizophrenia using induced pluripotent stem cells. J. Neurogenet. 25, 88–103 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Paulsen, B. D. et al. Altered oxygen metabolism associated to neurogenesis of induced pluripotent stem cells derived from a schizophrenic patient. Cell Transplant. 22 Sept 2011 (doi:10.3727/096368911X600957).

  121. Camnasio, S. et al. The first reported generation of several induced pluripotent stem cell lines from homozygous and heterozygous Huntington's disease patients demonstrates mutation related enhanced lysosomal activity. Neurobiol. Dis. 46, 41–51 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Jeon, I. et al. Neuronal properties, in vivo effects and pathology of a Huntington's Disease patient-derived induced pluripotent stem cells. Stem Cells 30, 2054–2062 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Liu, J. et al. Signaling defects in iPSC-derived fragile X premutation neurons. Hum. Mol. Genet. 21, 3795–3805 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Egawa, N. et al. Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci. Transl. Med. 4, 145ra104 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Ma, D. et al. Generation of patient-specific induced pluripotent stem cell-derived cardiomyocytes as a cellular model of arrhythmogenic right ventricular cardiomyopathy. Eur. Heart J. 13 Jul 2012 (doi:10.1093/eurheartj/ehs226).

  126. Egashira, T. et al. Disease characterization using LQTS-specific induced pluripotent stem cells. Cardiovasc. Res. 95, 419–429 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Andrade, L. N., Nathanson, J. L., Yeo, G. W., Menck, C. F. & Muotri, A. R. Evidence for premature aging due to oxidative stress in iPSCs from Cockayne Syndrome. Hum. Mol. Genet. 21, 3825–3834 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hotta, A., et al. Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nature Methods 6, 370–376 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Bilican, B., et al. Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability. Proc. Natl Acad. Sci. USA 109, 5803–5808 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Yagi, T., et al. Modeling familial Alzheimer's disease with induced pluripotent stem cells. Hum. Mol. Genet. 20, 4530–4539 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Ananiev, G., Williams, E. C., Li, H. & Chang, Q. Isogenic pairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett syndrome patients as in vitro disease model. PloS one 6, e25255 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Cheung, A. Y., et al. Isolation of MECP2-null Rett syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. Hum. Mol. Genet. 20, 2103–2115 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Huang, H. P., et al. Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification. Hum. Mol. Genet. 20, 4851–4864 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Ricciardi, S., et al. CDKL5 ensures excitatory synapse stability by reinforcing NGL-1-PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC-derived neurons. Nature Cell Biol. 14, 911–923 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Somers, A., et al. Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells 28, 1728–1740 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Khan, I. F., et al. Engineering of human pluripotent stem cells by AAV-mediated gene targeting. Mol. Ther. 18, 1192–1199 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hargus, G., et al. Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc. Natl Acad. Sci. USA 107, 15921–15926 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Ebert, A. D., et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457, 277–280 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. Howden, S. E., et al. Genetic correction and analysis of induced pluripotent stem cells from a patient with gyrate atrophy. Proc. Natl Acad. Sci. USA 108, 6537–6542 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Chiang, C. H., et al. Integration-free induced pluripotent stem cells derived from schizophrenia patients with a DISC1 mutation. Mol. Psychiatry 16, 358–360 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Boulting, G. L., et al. A functionally characterized test set of human induced pluripotent stem cells. Nature Biotechnol. 29, 279–286 (2011).

    Article  CAS  Google Scholar 

  142. Braam, S. R., et al. Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Res. 4, 107–116 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Son, E. Y., et al. Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9, 205–218 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Marchetto, M. C., et al. Non-cell-autonomous effect of human SOD1 G37R astrocytes on motor neurons derived from human embryonic stem cells. Cell Stem Cell 3, 649–657 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Gold-von Simson, G., et al. Kinetin in familial dysautonomia carriers: implications for a new therapeutic strategy targeting mRNA splicing. Pediatr. Res. 65, 341–346 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. Axelrod, F. B., et al. Kinetin improves IKBKAP mRNA splicing in patients with familial dysautonomia. Pediatr. Res. 70, 480–483 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Pini, G., et al. IGF1 as a potential treatment for Rett syndrome: safety assessment in six Rett patients. Autism research and treatment 2012, Article ID 679801 (2012).

  148. Zhang, Q., et al. Preparation of uniaxial multichannel silk fibroin scaffolds for guiding primary neurons. Acta Biomater. 8, 2628–2638 (2012).

    Article  CAS  PubMed  Google Scholar 

  149. Major, T., et al. Transgene excision has no impact on in vivo integration of human iPS derived neural precursors. PloS one 6, e24687 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhang, N., An, M. C., Montoro, D. & Ellerby, L. M. Characterization of human Huntington's disease cell model from induced pluripotent stem cells. PLoS currents 2, RRN1193 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank L. Studer for sharing insights on the familial dysautonomia human induced pluripotent stem cell model and R.P. Davis for constructive comments on the manuscript. Work in the Mummery laboratory was supported by a grant from the Dutch government to the Netherlands Institute for Regenerative Medicine (NIRM, grant No. FES0908) and M.B. is supported by the EU Marie Curie FP7-people-2011-IEF programme (HPSCLQT No. 29999).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fred H. Gage or Christine L. Mummery.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Christine L. Mummery's homepage

Coriell Institute Biobank Catalog

UK Stem Cell Bank

California Institute for Regenerative Medicine (CIRM)

Innovative Medicine Initiative (IMI)

Center for iPS Cell Research and Application (CiRA) Kyoto University

Core Facility Activities, Rutgers The State University of New Jersey

Glossary

Somatic cell nuclear transfer

Reprogramming technique in which a nucleus from a differentiated somatic cell is transplanted into an enucleated oocyte.

Cell co-culture system

In vitro differentiation technique in which pluripotent stem cells are cultured together with another cell type that is able to induce and support the specification of a particular lineage by mimicking in vivo tissue niches.

Neurite

A projection from the cell body of a neuron.

Homologous recombination

A type of genetic recombination in which DNA is exchanged between two DNA molecules that share high sequence similarity. This process is exploited for genetic manipulation of mouse and human embryonic stem cells.

Glial cells

Non-neuronal cells that provide support and protection for neurons in the brain and in other parts of the nervous system.

Sarcomere

The contractile unit of the skeletal and cardiac muscle fibre that consists of several contractile proteins.

Cortical neurons

Nerve cells that make up the cerebral cortex, which is the outer part of the brain.

Synapses

Structures that, in the nervous system, allow a neuron to communicate with another cell. The transmitted signal can be electrical or chemical (neurotransmitter).

Zinc-finger nucleases

(ZNFs). Artificial proteins that contain a sequence-specific DNA-binding domain (composed of engineered zinc-finger arrays) fused to a nuclease domain (from the FokI restriction enzyme). ZNFs cleave DNA in a non-sequence-specific manner.

Transcription activator-like effector nucleases

(TALENs). Like ZFNs, they consist of a non-specific FokI nuclease domain fused to a DNA-binding domain derived from bacterial transcription activator-like effectors (TALEs).

Adult progenitor cells

Self-renewing precursor cells that are present in some adult tissues and that are able to produce one or more specialized cell types.

Long QT syndromes

(LQTSs). Channelopathies characterized by a prolongation of the QT interval in the electrocardiogram and a propensity to ventricular tachycardia and sudden death. These syndromes are not associated with concomitant structural cardiac abnormalities.

Brugada syndromes

Channelopathies characterized by a specific electrocardiographic pattern and susceptibility to ventricular arrhythmia and sudden death. These syndromes are not associated with concomitant structural cardiac abnormalities.

Action potential duration

(APD). Duration of the event in which the membrane potential of an electrically excitable cell rises and falls.

Inward Na+ current

The specific Na+ current that passes through the Na+ channel SCN5A. This current is present at the surface of cardiac cells and is essential for the beginning of an action potential.

Familial dysautonomia

A rare but fatal peripheral neuropathy that is characterized by the degeneration and depletion of autonomic and sensory neurons.

Rett syndrome

(RTT). A progressive neurological disorder in which patients show a large spectrum of autistic characteristics.

Penetrance

In genetics, the proportion of individuals within a population carrying a mutation that causes a particular trait and that exhibits the specific associated clinical symptoms.

Roscovitine

A compound that selectively inhibits cyclin-dependent kinases and increases the (voltage-dependent) inactivation of the l-type Ca2+ channel CACNA1C.

Calpain

A family of Ca2+-dependent proteases that has an important role in the signal transduction pathway by catalysing the controlled proteolysis of target proteins.

Ataxin 3

(ATXN3). A deubiquitylating enzyme that is involved in protein homeostasis maintenance, transcription, cytoskeleton regulation, myogenesis and degradation of misfolded chaperone substrates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellin, M., Marchetto, M., Gage, F. et al. Induced pluripotent stem cells: the new patient?. Nat Rev Mol Cell Biol 13, 713–726 (2012). https://doi.org/10.1038/nrm3448

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3448

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing