Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neurobiology of butyrylcholinesterase

Key Points

  • BuChE is a serine hydrolase that catalyzes the hydrolysis of choline and non-choline esters, including the neurotransmitter acetylcholine. This enzyme also displays aryl acylamidase activity and enhances the activity of proteases such as trypsin.

  • The gene that codes BuChE displays polymorphisms, resulting in several enzymes with different levels of activity, including enzymatically silent variants. Moreover, BuChE exists in several different molecular forms, including monomers and oligomers that consist of identical catalytic subunits.

  • In the human brain, BuChE is expressed in substantial populations of neurons, particularly in deep layers of the cerebral cortex, hippocampal formation, amygdala and many thalamic nuclei.

  • BuChE might be associated with cellular proliferation and neurite growth during the development of the nervous system.

  • In Alzheimer's disease, the cortical levels of BuChE are increased and its enzymatic properties and molecular forms are altered. Significant levels of BuChE are present within plaques and tangles, the pathological hallmarks of this disorder, and might participate in the formation of these lesions. So, BuChE inhibition might be of therapeutic value in Alzheimer's disease.

Abstract

Butyrylcholinesterase is a serine hydrolase related to acetylcholinesterase that catalyses the hydrolysis of esters of choline, including acetylcholine. Butyrylcholinesterase has unique enzymatic properties and is widely distributed in the nervous system, pointing to its possible involvement in neural function. Here, we summarize the biochemical properties of butyrylcholinesterase and review the evidence that this enzyme has important roles in cholinergic neurotransmission and could be involved in other nervous system functions and in neurodegenerative diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The active site of butyrylcholinesterase is at the bottom of a 20 Å gorge.
Figure 2: Molecular forms of butyrylcholinesterase.
Figure 3: The butyrylcholinesterase gene.
Figure 4: Butyrylcholinesterase- and acetylcholinesterase-expressing neurons in the human amygdala and hippocampal formation.
Figure 5: Butyrylcholinesterase and Alzheimer's disease.

Similar content being viewed by others

References

  1. Silver, A. The Biology of Cholinesterases (Elsevier, Amsterdam, 1974). One of the first and most complete presentations of the biology of cholinesterases. This book is a classic in the field.

    Google Scholar 

  2. Stedman, E., Stedman, E. & Easson, L. H. Choline-esterase. An enzyme present in the blood-serum of the horse. Biochem. J. 26, 2056–2066 (1932).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alles, G. A. & Hawes, R. C. Cholinesterases in the blood of man. J. Biol. Chem. 133, 375–390 (1940).

    CAS  Google Scholar 

  4. Mendel, B. & Rudney, H. On the type of cholinesterase present in the brain tissue. Science 98, 201–202 (1943).

    Article  CAS  PubMed  Google Scholar 

  5. Evans, F. T., Gray, P. W. S., Lehman, H. & Silk, E. Sensitivity to succinylcholine in relation to serum-cholinesterase. Lancet 1, 1229–1230 (1952).

    Article  CAS  PubMed  Google Scholar 

  6. Lehmann, H. & Ryan, E. The familial incidence of low pseudocholinesterase level. Lancet 2, 124 (1956).

    Article  Google Scholar 

  7. Kalow, W. & Staron, N. On distribution and inheritance of atypical forms of human serum cholinesterase, as indicated by dibucaine numbers. Can. J. Biochem. Physiol. 35, 568–574 (1957).

    Article  Google Scholar 

  8. McGehee, D. S. et al. Cholinesterase inhibition by potato glycoalkaloids slows mivacurium metabolism. Anesthesiology 93, 510–519 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Primo-Parmo, S. L. et al. Characterization of 12 silent alleles of the human butyrylcholinesterase (BCHE) gene. Am. J. Hum. Genet. 58, 52–64 (1996). Identification of several mutations that can give rise to BuChE with altered enzymatic activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Rubinstein, H. M., Dietz, A. A., Hodges, L. K., Lubrano, T. & Czebotar, V. Silent cholinesterase gene: variations in the properties of serum enzyme in apparent homozygotes. J. Clin. Invest. 49, 479–486 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Friede, R. L. A comparative histochemical mapping of the distribution of butyric cholinesterase in the brains of four species of mammals, including man. Acta Anat. 66, 161–177 (1967).

    Article  CAS  PubMed  Google Scholar 

  12. Tago, H., Maeda, T., McGeer, P. L. & Kimura, H. Butyrylcholinesterase-rich neurons in rat brain demonstrated by a sensitive histochemical method. J. Comp. Neurol. 325, 301–312 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Darvesh, S., Grantham, D. L. & Hopkins, D. A. Butyrylcholinesterase in normal human amygdala and hippocampal formation. J. Comp. Neurol. 393, 374–390 (1998). Demonstration of abundant BuChE-positive neurons in the human limbic system.

    Article  CAS  PubMed  Google Scholar 

  14. Darvesh, S. et al. Cholinesterases in cardiac ganglia and modulation of canine intrinsic cardiac neuronal activity. J. Autonom. Nerv. Syst. 71, 75–84 (1998).

    Article  CAS  Google Scholar 

  15. Darvesh, S. & Hopkins, D. A. Differential distribution of butyrylcholinesterase and acetylcholinesterase in the human thalamus. J. Comp. Neurol. (in the press).

  16. Giacobini, E. in Cholinesterases and Cholinesterase Inhibitors (ed. Giacobini, E.) 181–226 (Martin Dunitz Ltd, London, 2000).

    Google Scholar 

  17. Mesulam, M. -M. et al. Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience 110, 627–639 (2002). Demonstration of the ability of BuChE to hydrolyze acetylcholine in AChE knockout mice.

    Article  CAS  PubMed  Google Scholar 

  18. Robertson, R. T. & Mostamand, F. Development of non-specific cholinesterase-containing neurons in the dorsal thalamus of the rat. Brain Res. Dev. Brain Res. 41, 43–60 (1988).

    Article  Google Scholar 

  19. Layer, P. G. Cholinesterases during development of the avian nervous system. Cell. Mol. Neurobiol. 11, 7–33 (1991). Evidence for a developmental link between BuChE and cell proliferation in the chick embryo.

    Article  CAS  PubMed  Google Scholar 

  20. Dubovy, P. & Haninec, P. Non-specific cholinesterase activity of the developing peripheral nerves and its possible function in cells in intimate contact with growing axons of chick embryo. Int. J. Dev. Neurosci. 8, 589–602 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Kostovic, I. & Goldman-Rakic, P. S. Transient cholinesterase staining in the mediodorsal nucleus of the thalamus and its connections in the developing human and monkey brain. J. Comp. Neurol. 219, 431–447 (1983).

    Article  CAS  PubMed  Google Scholar 

  22. Tsigelny, I., Shindyalov, I. N., Bourne, P. E., Sudhof, T. C. & Taylor, P. Common EF-hand motifs in cholinesterases and neuroligins suggest a role for Ca2+ binding in cell associations. Protein Sci. 9, 180–185 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Perry, E. K., Perry, R. H., Blessed, G. & Tomlinson, E. Changes in brain cholinesterases in senile dementia of Alzheimer type. Neuropath. Appl. Neurobiol. 4, 273–277 (1978). One of the first papers showing an increase in brain BuChE activity in AD.

    Article  CAS  Google Scholar 

  24. Atack, J. R., Perry, E. K., Bonham, J. R., Candy, J. M. & Perry, R. H. Molecular forms of acetylcholinesterase and butyrylcholinesterase in the aged human central nervous system. J. Neurochem. 47, 263–277 (1986).

    Article  CAS  PubMed  Google Scholar 

  25. Geula, C. & Mesulam, M. -M. Special properties of cholinesterases in the cerebral cortex of Alzheimer's disease. Brain Res. 498, 185–189 (1989). The first demonstration of altered enzymatic properties of cholinesterases associated with plaques and tangles in AD.

    Article  CAS  PubMed  Google Scholar 

  26. Arendt, T., Bruckner, M. K., Lange, M. & Bigl, V. Changes in acetylcholinesterase and butyrylcholinesterase in Alzheimer's disease resemble embryonic development — a study of molecular forms. Neurochem. Int. 21, 381–396 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Wright, C. I., Geula, C. & Mesulam M. -M. Neuroglial cholinesterases in the normal brain and in Alzheimer's disease: relationship to plaques, tangles, and patterns of selective vulnerability. Ann. Neurol. 34, 373–384 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Morán, M. A., Mufson, E. J. & G—mez-Ramos, P. Cholinesterases co-localize with sites of neurofibrillary degeneration in aged and Alzheimer's brains. Acta Neuropathol. 87, 284–292 (1994).

    Article  PubMed  Google Scholar 

  29. Mesulam, M. -M. & Geula, C. Butyrylcholinesterase reactivity differentiates the amyloid plaques of aging from those of dementia. Ann. Neurol. 36, 722–727 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Geula, C. & Mesulam, M. -M. Cholinesterases and the pathology of Alzheimer disease. Alzheimer Dis. Assoc. Disord. 9, 23–28 (1995).

    Article  PubMed  Google Scholar 

  31. Francis, P. T., Palmer, A. M., Snape, M. & Wilcock, G. K. The cholinergic hypothesis of Alzheimer's disease: a review of progress. J. Neurol. Neurosurg. Psychiatry 66, 137–147 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McKeith, I. et al. Efficacy of rivastigmine in dementia with Lewy bodies: a randomized, double-blind, placebo-controlled international study. Lancet 356, 2031–2036 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Massoulié, J., Pezzementi, L., Bon, S., Krejci, E. & Vallette, F. M. Molecular and cellular biology of cholinesterases. Prog. Neurobiol. 41, 31–91 (1993).

    Article  PubMed  Google Scholar 

  34. Taylor, P. & Radić, Z. The cholinesterases: from genes to proteins. Annu. Rev. Pharmacol. Toxicol. 34, 281–320 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Cohen, J. A. & Oosterbaan, R. A. in Cholinesterases and Anticholinesterase Agents (ed. Koelle, G. B.) 299–373 (Springer, Berlin, 1963).

    Book  Google Scholar 

  36. Millard, C. B. & Broomfield, C. A. A computer model of glycosylated human butyrylcholinesterase. Biochem. Biophys. Res. Commun. 189, 1280–1286 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Li, B. et al. Abundant tissue butyrylcholinesterase and its possible function in the acetylcholinesterase knockout mouse. J. Neurochem. 75, 1320–1331 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Mesulam, M. -M, Guillozet, A., Shaw, P. & Quinn B. Widely spread butyrylcholinesterase can hydrolyze acetylcholine in the normal and Alzheimer brain. Neurobiol. Dis. 9, 88–93 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Lockridge, O., Mottershaw-Jackson, N., Eckerson, H., & La Du, B. N. Hydrolysis of diacetylmorphine (heroin) by human serum cholinesterase. J. Pharmacol. Exp. Ther. 215, 1–8 (1980).

    CAS  PubMed  Google Scholar 

  40. Gatley, S. J. Activities of the enantiomers of cocaine and some related compounds as substrates and inhibitors of plasma butyrylcholinesterase. Biochem. Pharmacol. 41, 1249–1254 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Masson, P. et al. Butyrylcholinesterase-catalyzed hydrolysis of aspirin, a negatively charged ester, and aspirin-related neutral esters. Biochim. Biophys. Acta 1387, 41–52 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Radić, Z., Pickering, N. A., Vellom, D. C., Camp, S. & Taylor P. Three distinct domains in the cholinesterase molecule confer selectivity for acetyl- and butyrylcholinesterase inhibitors. Biochemistry 32, 12074–12084 (1993).

    Article  PubMed  Google Scholar 

  43. Neville, L. F. et al. Intramolecular relationships in cholinesterases revealed by oocyte expression of site-directed and natural variants of human BCHE. EMBO J. 11, 1641–1649 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Saxena, A., Redman, A. M., Jiang, X., Lockridge, O. & Doctor, B. P. Differences in active site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase. Biochemistry 36, 14642–14651 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Masson, P., Froment, M. T., Bartels, C. F. & Lockridge, O. Asp70 in the peripheral anionic site of human butyrylcholinesterase. Eur. J. Biochem. 235, 36–48 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Vellom, D. C. et al. Amino acid residues controlling acetylcholinesterase and butyrylcholinesterase specificity. Biochemistry 32, 12–17 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Lockridge, O. et al. Complete amino acid sequence of human serum cholinesterase. J. Biol. Chem. 262, 549–557 (1987). This paper provided the complete amino acid sequence of BuChE.

    CAS  PubMed  Google Scholar 

  48. Sussman, J. L. et al. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 253, 872–879 (1991).

    Article  CAS  PubMed  Google Scholar 

  49. Harel, M. et al. Conversion of acetylcholinesterase to butyrylcholinesterase: modeling and mutagenesis. Proc. Natl Acad. Sci. USA 89, 10827–10831 (1992). A modelling study of the structure of BuChE.

    Article  CAS  PubMed  Google Scholar 

  50. Soreq, H. & Seidman, S. Acetylcholinesterase — new roles for an old actor. Nature Rev. Neurosci. 2, 294–302 (2001).

    Article  CAS  Google Scholar 

  51. Masson, P. et al. Interaction between the peripheral site residues of human butyrylcholinesterase, D70 and Y332, in binding and hydrolysis of substrates. Biochim. Biophys. Acta 1433, 281–293 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Nachon, F. et al. Engineering of a monomeric and low-glycosylated form of human butyrylcholinesterase: expression, purification, characterization and crystallization. Eur. J. Biochem. 269, 630–637 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. George, S. T. & Balasubramanian, A. S. The aryl acylamidases and their relationship to cholinesterases in human serum, erythrocyte and liver. Eur. J. Biochem. 121, 177–186 (1981).

    Article  CAS  PubMed  Google Scholar 

  54. Fujimoto, D. Serotonin-sensitive aryl acylamidase activity of acetylcholinesterase. FEBS Lett. 71, 121–123 (1976).

    Article  CAS  Google Scholar 

  55. Majumdar, R., George, S. T. & Balasubramanian, A. S. Serotonin-sensitive aryl acylamidase activity of platelet acetylcholinesterase. Biochem. Pharmacol. 31, 2319–2325 (1982).

    Article  CAS  PubMed  Google Scholar 

  56. Massoulié, J. & Bon, S. The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Annu. Rev. Neurosci. 5, 57–106 (1982).

    Article  PubMed  Google Scholar 

  57. Chatonnet, A. & Lockridge, O. Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem. J. 260, 625–634 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Massoulie, J. The origin of the molecular diversity and functional anchoring of cholinesterases. Neurosignals 11, 130–143 (2002). A thorough review of the diverse molecular forms of cholinesterase, including BuChE.

    Article  CAS  PubMed  Google Scholar 

  59. Perrier, A. L., Massoulie, J. & Krejci, E. PRiMA: the membrane anchor of acetylcholinesterase in the brain. Neuron 33, 275–285 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Feng, G. et al. Genetic analysis of collagen Q: roles in acetylcholinesterase and butyrylcholinesterase assembly and in synaptic structure and function. J. Cell Biol. 144, 1349–1360 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Krejci, E. et al. The mammalian gene of acetylcholinesterase-associated collagen. J. Biol. Chem. 272, 22840–22847 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Bon, S., Coussen, F. & Massoulie, J. Quaternary associations of acetylcholinesterase. II. The polyproline attachment domain of the collagen tail. J. Biol. Chem. 272, 3016–3021 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Prody, C. A., Zevin-Sonkin, D., Gnatt, A., Goldberg, O. & Soreq, H. Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues. Proc. Natl Acad. Sci. USA 84, 3555–3559 (1987).

    Article  CAS  PubMed  Google Scholar 

  64. Allderdice, P. W. et al. The cloned butyrylcholinesterase (BCHE) gene maps to a single chromosome site, 3q26. Genomics 11, 452–454 (1991). This paper identifies the location of the BCHE gene.

    Article  CAS  PubMed  Google Scholar 

  65. Gaughan, G., Park, H., Priddle, J., Craig, I. & Craig, S. Refinement of the localization of human butyrylcholinesterase to chromosome 3q26.1-q26.2 using a PCR-derived probe. Genomics 11, 455–458 (1991).

    Article  CAS  PubMed  Google Scholar 

  66. Gnatt, A. et al. Expression of alternatively terminated unusual human butyrylcholinesterase messenger RNA transcripts, mapping to chromosome 3q26-ter, in nervous system tumors. Cancer Res. 50, 1983–1987 (1990).

    CAS  PubMed  Google Scholar 

  67. Arpagaus, M. et al. Structure of the gene for human butyrylcholinesterase. Evidence for a single copy. Biochemistry 9, 124–131 (1990).

    Article  Google Scholar 

  68. Getman, D. K., Eubanks, J. H., Camp, S., Evans, G. A. & Taylor, P. The human gene encoding acetylcholinesterase is located on the long arm of chromosome 7. Am. J. Hum. Genet. 51, 170–177 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Roychoudhury, A. K. & Nei, M. Human Polymorphic Genes: World Distribution (Oxford Univ. Press, New York, 1988).

    Google Scholar 

  70. La Du, B. N. et al. Phenotypic and molecular biological analysis of human butyrylcholinesterase variants. Clin. Biochem. 23, 423–431 (1990).

    Article  CAS  PubMed  Google Scholar 

  71. La Du, B. N., Bartels, C. F., Nogueira, C. P., Arpagaus, M. & Lockridge, O. Proposed nomenclature for human butyrylcholinesterase genetic variants identified by DNA sequencing. Cell. Mol. Neurobiol. 11, 79–89 (1991).

    Article  CAS  PubMed  Google Scholar 

  72. Kalow, W. & Genest, K. A method for the detection of atypical forms of human cholinesterase: determination of dibucaine numbers. Can. J. Biochem. Physiol. 35, 339–346 (1957).

    Article  CAS  PubMed  Google Scholar 

  73. McGuire, M. C. et al. Identification of the structural mutation responsible for the dibucaine-resistant (atypical) variant form of human serum cholinesterase. Proc. Natl Acad. Sci. USA 86, 953–957 (1989).

    Article  CAS  PubMed  Google Scholar 

  74. Neville, L. F., Gnatt, A., Padan, R., Seidman, S. & Soreq, H. Anionic site interactions in human butyrylcholinesterase disrupted by two single point mutations. J. Biol. Chem. 265, 20735–20738 (1990).

    CAS  PubMed  Google Scholar 

  75. Loewenstein-Lichtenstein, Y. et al. Genetic predisposition to adverse consequences of anti-cholinesterases in 'atypical' BCHE carriers. Nature Med. 1, 1082–1085 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Bartels, C. F. et al. DNA mutation associated with the human butyrylcholinesterase K-variant and its linkage to the atypical variant mutation and other polymorphic sites. Am. J. Hum. Genet. 50, 1086–1103 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Rubinstein, H. M., Dietz, A. A. & Lubrano, T. E1k, another quantitative variant at cholinesterase locus 1. J. Med. Genet. 15, 27–29 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bartels, C. F., James, K. & La Du, B. N. DNA mutations associated with the human butyrylcholinesterase J-variant. Am. J. Hum. Genet. 50, 1104–1114 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Garry, P. J. et al. New allele at cholinesterase locus 1. J. Med. Genet. 13, 38–42 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Whittaker, M. & Britten, J. J. E1h, a new allele at cholinesterase locus 1. Hum. Hered. 37, 54–58 (1987).

    Article  CAS  PubMed  Google Scholar 

  81. Jensen, F. S., Bartels, C. F. & La Du, B. N. Structural basis of the butyrylcholinesterase H-variant segregating in two Danish families. Pharmacogenetics 2, 234–240 (1992).

    Article  CAS  PubMed  Google Scholar 

  82. Nogueira, C. P. et al. Identification of two different point mutations associated with the fluoride-resistant phenotype for human butyrylcholinesterase. Am. J. Hum. Genet. 51, 821–828 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Liddell, J., Lehmann, H., & Silk, E. A 'silent' pseudocholinesterase gene. Nature 193, 561–562 (1962).

    Article  CAS  PubMed  Google Scholar 

  84. Soreq, H. & Zakut, H. Human Cholinesterases and Anticholinesterases (Academic Press, San Diego, California, 1993).

    Google Scholar 

  85. Maekawa, M. et al. Genetic mutations of butyrylcholine esterase identified from phenotypic abnormalities in Japan. Clin. Chem. 43, 924–929 (1997).

    CAS  PubMed  Google Scholar 

  86. Lehmann, D. J., Williams, J., McBroom, J. & Smith, A. D. Using meta-analysis to explain the diversity of results in genetic studies of late-onset Alzheimer's disease and to identify high-risk subgroups. Neuroscience 108, 541–554 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Ehrlich, G. et al. Population diversity and distinct haplotype frequencies associated with ACHE and BCHE genes of Israeli Jews from trans-Caucasian Georgia and from Europe. Genomics 22, 288–295 (1994).

    Article  CAS  PubMed  Google Scholar 

  88. Friede, R. L. Enzyme histochemical studies of senile plaques. J. Neuropathol. Exp. Neurol. 24, 477–491 (1965).

    Article  CAS  Google Scholar 

  89. Olivier, A., Parent, A. & Poirier, L. J. Identification of the thalamic nuclei on the basis of their cholinesterase content in the monkey. J. Anat. 106, 37–50 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kuznetsov, D., Scinto, L. F. M. & Geula, C. Development of butyrylcholinesterase activity in neurons of the rat forebrain. Soc. Neurosci. Abstr. 24, 1748 (1998).

    Google Scholar 

  91. Graybiel, A. M. & Ragsdale, C. W. Pseudocholinesterase staining in the primary visual pathway of the macaque monkey. Nature 299, 439–442 (1982).

    Article  CAS  PubMed  Google Scholar 

  92. Darvesh, S., Arora, R. C., Hopkins, D. A. & Armour, J. A. Cholinesterase inhibitor effects on the intrinsic cardiac nervous system and cardiodynamics. Soc. Neurosci. Abstr. 26, 2289 (2000).

    Google Scholar 

  93. Darvesh, S., Gillis, M., Hopkins, D. A. & Armour, J. A. Butyrylcholinesterase and acetylcholinesterase in the human intrinsic cardiac nervous system: implications in Alzheimer's disease. Can. J. Neurol. Sci. 28, S34 (2001).

    Google Scholar 

  94. Small, D. H., Michaelson, S. & Sberna, G. Non-classical actions of cholinesterases: role in cellular differentiation, tumorigenesis and Alzheimer's disease. Neurochem. Int. 28, 453–483 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Greig, N. H. et al. A new therapeutic target in Alzheimer's disease: attention to butyrylcholinesterase. Curr. Med. Res. Opin. 17, 159–165 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Masson, P. A naturally occurring molecular form of human plasma cholinesterase is an albumin conjugate. Biochim. Biophys. Acta 998, 258–266 (1989).

    Article  CAS  PubMed  Google Scholar 

  97. Weitnauer, E. et al. Butyrylcholinesterase is complexed with transferrin in chicken serum. J. Protein Chem. 18, 205–214 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Checler, F., Grassi, J. & Vincent, J. P. Cholinesterases display genuine arylacylamidase activity but are totally devoid of intrinsic peptidase activities. J. Neurochem. 62, 756–763 (1994).

    Article  CAS  PubMed  Google Scholar 

  99. Darvesh, S., Kumar, R., Roberts, S., Walsh, R. & Martin, E. Butyrylcholinesterase-mediated enhancement of the enzymatic activity of trypsin. Cell. Mol. Neurobiol. 21, 285–289 (2001). Direct proof of the relevance of the association of BuChE with proteases in terms of enhancing proteolytic activity.

    Article  CAS  PubMed  Google Scholar 

  100. Katona, G., Berglund, G. I., Hajdu, J., Graf, L. & Szilagyi, L. Crystal structure reveals basis for the inhibitor resistance of human brain trypsin. J. Mol. Biol. 315, 1209–1218 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Koenigsberger, C., Hammond, P. & Brimijoin, S. Developmental expression of acetyl- and butyrylcholinesterase in the rat: enzyme and mRNA levels in embryonic dorsal root ganglia. Brain Res. 787, 248–258 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Behra, M. et al. Acetylcholinesterase is required for neuronal and muscular development in the zebrafish embryo. Nature Neurosci. 5, 111–118 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Perry, E. K., Perry, R. H., Blessed, G. & Tomlinson, B. E. Necropsy evidence of central cholinergic deficits in senile dementia. Lancet 1, 189 (1977).

    Article  CAS  PubMed  Google Scholar 

  104. Geula, C. & Mesulam, M. -M. in Alzheimer Disease (2nd edn) (eds Terry, R., Katzman, R., Bick, K. & Sisodia, S. S.) 269–292 (Lippincott Williams & Wilkins, Philadelphia, Pennsylvania, 1999).

    Google Scholar 

  105. Guillozet, A. L., Smiley, J. F., Mash, D. C. & Mesulam, M. -M. Butyrylcholinesterase in the life cycle of amyloid plaques. Ann. Neurol. 42, 909–918 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Wright, C. I., Geula, C. & Mesulam, M. -M. Protease inhibitors and indoleamines selectively inhibit cholinesterases in the histopathologic structures of Alzheimer's disease. Proc. Natl Acad. Sci. USA 90, 683–686 (1993). An inhibitor-based investigation showing that the cholinesterase activity that is found in plaques and tangles in AD is aryl acylamidase activity.

    Article  CAS  PubMed  Google Scholar 

  107. Geula, C. in Early Diagnosis of Alzheimer's Disease (eds Scinto, L. F. M. & Daffner, K. R.) 65–82 (Humana, Totowa, New Jersey, 2000).

    Google Scholar 

  108. Lehmann, D. J., Johnston, C. & Smith, A. D. Synergy between the genes for butyrylcholinesterase K variant and apolipoprotein E4 in late-onset confirmed Alzheimer's disease. Hum. Mol. Genet. 6, 1933–1936 (1997).

    Article  CAS  PubMed  Google Scholar 

  109. Lehmann, D. J. et al. Association of butyrylcholinesterase K variant with cholinesterase-positive neuritic plaques in the temporal cortex in late-onset Alzheimer's disease. Hum. Genet. 106, 447–452 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. McIlroy, S. P. et al. Butyrylcholinesterase K variant is genetically associated with late onset Alzheimer's disease in Northern Ireland. J. Med. Genet. 37, 182–185 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tilley, L. et al. Evaluation of polymorphisms in the presenilin-1 gene and the butyrylcholinesterase gene as risk factors in sporadic Alzheimer's disease. Eur. J. Hum. Genet. 7, 659–663 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Wiebusch, H., Poirier, J., Sevigny, P. & Schappert, K. Further evidence for a synergistic association between APOE ε4 and BCHE-K in confirmed Alzheimer's disease. Hum. Genet. 104, 158–163 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Alvarez-Arcaya, A. et al. The butyrylcholinesterase K variant is a protective factor for sporadic Alzheimer's disease in women. Acta Neurol. Scand. 102, 350–353 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Ki, C. S. et al. No association between the genes for butyrylcholinesterase K variant and apolipoprotein E4 in late-onset Alzheimer's disease. Am. J. Med. Genet. 88, 113–135 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Singleton, A. B. et al. No association between the K variant of the butyrylcholinesterase gene and pathologically confirmed Alzheimer's disease. Hum. Mol. Genet. 7, 937–939 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Ballard, C. G. et al. Regulation of attention and rate of progression of cognitive deficits by butyrylcholinesterase in DLB and moderate/severe Alzheimer's disease. Neurology 58, A42 (2002).

    Article  Google Scholar 

  117. Mattila, K. M. et al. Dipeptidyl carboxypeptidase 1 (DCP1) and butyrylcholinesterase (BCHE) gene interactions with the apolipoprotein E ε4 allele as risk factors in Alzheimer's disease and in Parkinson's disease with coexisting Alzheimer pathology. J. Med. Genet. 37, 766–770 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sim, A. Rivastigmine: a review. Hosp. Med. 60, 731–735 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. McKenna, M. T., Proctor, G. R., Young, L. C. & Harvey, A. L. Novel tacrine analogues for potential use against Alzheimer's disease: potent and selective acetylcholinesterase inhibitors and 5-HT uptake inhibitors. J. Med. Chem. 40, 3516–3523 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Qizilbash, N. et al. Cholinesterase inhibition for Alzheimer disease: a meta-analysis of the tacrine trials. Dementia Trialists' Collaboration. J. Am. Med. Assoc. 280, 1777–1782 (1998).

    Article  CAS  Google Scholar 

  121. Giacobini, E., Spiegel, R., Enz, A., Veroff, A. E. & Cutler, N. R. Inhibition of acetyl- and butyryl-cholinesterase in the cerebrospinal fluid of patients with Alzheimer's disease by rivastigmine: correlation with cognitive benefit. J. Neural. Transm. 109, 1053–1065 (2002). One of two studies showing a correlation between BuChE inhibition and cognitive improvement in AD.

    Article  CAS  PubMed  Google Scholar 

  122. Farlow, M., Anand, R., Messina, J. Jr, Hartman, R. & Veach, J. A 52-week study of the efficacy of rivastigmine in patients with mild to moderately severe Alzheimer's disease. Eur. Neurol. 44, 236–241 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Corey-Bloom, J. et al. A randomised trial evaluating the efficacy and safety of ENA 713 (rivastigmine tartrate), a new acetylcholinesterase inhibitor, in patients with mild to moderate severe Alzheimer's disease. Int. J. Geriatr. Psychiatry 1, 55–65 (1998).

    CAS  Google Scholar 

  124. Lahiri, D. K., Farlow, M. R., Hintz, N., Utsuki, T. & Greig, N. H. Cholinesterase inhibitors, β-amyloid precursor protein and amyloid β-peptides in Alzheimer's disease. Acta Neurol. Scand. 176, 60–67 (2000). A study showing that cholinesterase inhibitors reduce the levels of APP and the Aβ-peptide, which is deposited in plaques in AD.

    Article  CAS  Google Scholar 

  125. Shaw, K. T. et al. Phenserine regulates translation of β-amyloid precursor protein mRNA by a putative interleukin-1 responsive element, a target for drug development. Proc. Natl Acad. Sci. USA 98, 7605–7610 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Darreh-Shori, T. et al. Sustained cholinesterase inhibition in AD patients receiving rivastigmine for 12 months. Neurology 59, 563–572 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank E. Martin and R. Walsh for their assistance and helpful discussions. The preparation of this review was made possible in part by an unrestricted educational grant from Novartis Pharma. Research on cholinesterases was supported by the Canadian Institutes of Health Research, The Scottish Rite Charitable Foundation of Canada, Capital District Health Authority Research Fund, Heart and Stroke Foundations of New Brunswick and Nova Scotia (S.D. and D.A.H.), and by Novartis Pharma. (C.G.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sultan Darvesh or Changiz Geula.

Related links

Related links

DATABASES

LocusLink

ACHE

BCHE

OMIM

Alzheimer disease

FURTHER INFORMATION

Encyclopedia of Life Sciences

Alzheimer disease

neurotransmitters

Glossary

DEMENTIA WITH LEWY BODIES

A neurodegenerative disorder clinically characterized, in part, by motor impairments, dementia, and psychiatric disturbances. Neuropathologically, it is characterized by the presence of intracytoplasmic inclusions called Lewy bodies in cortical and subcortical neurons. Clinically and neuropathologically, this disorder bears some resemblance to Alzheimer's and Parkinson's diseases.

SITE-DIRECTED MUTAGENESIS

The generation of a mutation at a predetermined position in a DNA sequence. The most common method involves the use of a chemically synthesized mutant DNA strand that can hybridize with the target molecule.

POLYMORPHISMS

The simultaneous existence in the same population of two or more genotypes in frequencies that cannot be explained by recurrent mutations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darvesh, S., Hopkins, D. & Geula, C. Neurobiology of butyrylcholinesterase. Nat Rev Neurosci 4, 131–138 (2003). https://doi.org/10.1038/nrn1035

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1035

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing