Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Phasic acetylcholine release and the volume transmission hypothesis: time to move on

Abstract

Traditional descriptions of the cortical cholinergic input system focused on the diffuse organization of cholinergic projections and the hypothesis that slowly changing levels of extracellular acetylcholine (ACh) mediate different arousal states. The ability of ACh to reach the extrasynaptic space (volume neurotransmission), as opposed to remaining confined to the synaptic cleft (wired neurotransmission), has been considered an integral component of this conceptualization. Recent studies demonstrated that phasic release of ACh, at the scale of seconds, mediates precisely defined cognitive operations. This characteristic of cholinergic neurotransmission is proposed to be of primary importance for understanding cholinergic function and developing treatments for cognitive disorders that result from abnormal cholinergic neurotransmission.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The cortical cholinergic input system.
Figure 2: Cholinergic fibre distribution in the cortex.
Figure 3: Major steps in the synthesis, release and metabolism of ACh, and the main characteristics of wired and volume transmission.

Similar content being viewed by others

References

  1. Briand, L. A., Gritton, H., Howe, W. M., Young, D. A. & Sarter, M. Modulators in concert for cognition: modulator interactions in the prefrontal cortex. Prog. Neurobiol. 83, 69–91 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Everitt, B. J. & Robbins, T. W. Central cholinergic systems and cognition. Annu. Rev. Psychol. 48, 649–684 (1997).

    CAS  PubMed  Google Scholar 

  3. Sarter, M., Gehring, W. J. & Kozak, R. More attention must be paid: the neurobiology of attentional effort. Brain Res. Rev. 51, 145–160 (2006).

    PubMed  Google Scholar 

  4. Sarter, M., Givens, B. & Bruno, J. P. The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain Res. Rev. 35, 146–160 (2001).

    CAS  PubMed  Google Scholar 

  5. Sarter, M., Hasselmo, M. E., Bruno, J. P. & Givens, B. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and top-down cholinergic modulation of signal detection. Brain Res. Rev. 48, 98–111 (2005).

    CAS  PubMed  Google Scholar 

  6. Yu, A. J. & Dayan, P. Acetylcholine in cortical inference. Neural Netw. 15, 719–730 (2002).

    PubMed  Google Scholar 

  7. Hasselmo, M. E. & McGaughy, J. High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation. Prog. Brain Res. 145, 201–231 (2004).

    Google Scholar 

  8. Parikh, V. & Sarter, M. Cholinergic mediation of attention: contributions of phasic and tonic increases in prefrontal cholinergic activity. Ann. NY Acad. Sci. 1129, 225–235 (2008).

    CAS  PubMed  Google Scholar 

  9. Parikh, V., Kozak, R., Martinez, V. & Sarter, M. Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron 56, 141–154 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wilkinson, D. G., Francis, P. T., Schwam, E. & Payne-Parrish, J. Cholinesterase inhibitors used in the treatment of Alzheimer's disease: the relationship between pharmacological effects and clinical efficacy. Drugs Aging 21, 453–478 (2004).

    CAS  PubMed  Google Scholar 

  11. Messer, W. S. J. Cholinergic agonists and the treatment of Alzheimer's disease. Curr. Top. Med. Chem. 2, 353–358 (2002).

    CAS  PubMed  Google Scholar 

  12. Stip, E., Chouinard, S. & Boulay, L. J. On the trail of a cognitive enhancer for the treatment of schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 29, 219–232 (2005).

    CAS  PubMed  Google Scholar 

  13. Sarter, M. The substantia innominata remains incognita: pressing research themes on basal forebrain neuroanatomy. Brain Struct. Funct. 213, 11–15 (2008).

    PubMed  Google Scholar 

  14. Zaborszky, L. et al. in Computational neuroanatomy: Principles and methods (ed. Ascoli, A.) 171–197 (Humana, Totowa, New Jersey, 2002).

    Google Scholar 

  15. Zaborszky, L. The modular organization of brain systems. Basal forebrain: the last frontier. Prog. Brain Res. 136, 359–372 (2002).

    PubMed  Google Scholar 

  16. Zaborszky, L. in Neurotransmitter interactions and cognitive functions (eds Levin, E. D., Decker, M. W. & Butcher, L. L.) 27–65 (Birkauser, Boston, 1992).

    Google Scholar 

  17. Eckenstein, F. P., Baughman, R. W. & Quinn, J. An anatomical study of cholinergic innervation in rat cerebral cortex. Neuroscience 25, 457–474 (1988).

    CAS  PubMed  Google Scholar 

  18. Lysakowski, A., Wainer, B. H., Bruce, G. & Hersh, L. B. An atlas of the regional and laminar distribution of choline acetyltransferase immunoreactivity in rat cerebral cortex. Neuroscience 28, 291–336 (1989).

    CAS  PubMed  Google Scholar 

  19. Satoh, K., Armstrong, D. M. & Fibiger, H. C. A comparison of the distribution of central cholinergic neurons as demonstrated by acetylcholinesterase pharmacohistochemistry and choline acetyltransferase immunohistochemistry. Brain Res. Bull. 11, 693–720 (1983).

    CAS  PubMed  Google Scholar 

  20. Mesulam, M. M., Hersh, L. B., Mash, D. C. & Geula, C. Differential cholinergic innervation within functional subdivisions of the human cerebral cortex: a choline acetyltransferase study. J. Comp. Neurol. 318, 316–328 (1992).

    CAS  PubMed  Google Scholar 

  21. Raghanti, M. A. et al. Cholinergic innervation of the frontal cortex: differences among humans, chimpanzees, and macaque monkeys. J. Comp. Neurol. 506, 409–424 (2008).

    CAS  PubMed  Google Scholar 

  22. Price, J. L. & Stern, R. Individual cells in the nucleus basalis-diagonal band complex have restricted axonal projections to the cerebral cortex in the rat. Brain Res. 269, 352–356 (1983).

    CAS  PubMed  Google Scholar 

  23. Walker, L. C., Kitt, C. A., DeLong, M. R. & Price, D. L. Noncollateral projections of basal forebrain neurons to frontal and parietal neocortex in primates. Brain Res. Bull. 15, 307–314 (1985).

    CAS  PubMed  Google Scholar 

  24. Koliatsos, V. E. et al. Topographic, non-collateralized basal forebrain projections to amygdala, hippocampus, and anterior cingulate cortex in the rhesus monkey. Brain Res. 463, 133–139 (1988).

    CAS  PubMed  Google Scholar 

  25. Zaborszky, L., Buhl, D. L., Pobalashingham, S., Bjaalie, J. G. & Nadasdy, Z. Three-dimensional chemoarchitecture of the basal forebrain: spatially specific association of cholinergic and calcium binding protein-containing neurons. Neuroscience 136, 697–713 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zaborszky, L. et al. Stereotaxic probabilistic maps of the magnocellular cell groups in human basal forebrain. Neuroimage 42, 1127–1141 (2008).

    PubMed  PubMed Central  Google Scholar 

  27. Golmayo, L., Nunez, A. & Zaborszky, L. Electrophysiological evidence for the existence of a posterior cortical-prefrontal-basal forebrain circuitry in modulating sensory responses in visual and somatosensory rat cortical areas. Neuroscience 119, 597–609 (2003).

    CAS  PubMed  Google Scholar 

  28. Loopuijt, L. D. & Zahm, D. S. Synaptologic and fine structural features distinguishing a subset of basal forebrain cholinergic neurons embedded in the dense intrinsic fiber network of the caudal extended amygdala. J. Comp. Neurol. 498, 93–111 (2006).

    PubMed  Google Scholar 

  29. Gastard, M., Jensen, S. L., Martin, J. R., Williams, E. A. & Zahm, D. S. The caudal sublenticular region/anterior amygdaloid area is the only part of the rat forebrain and mesopontine tegmentum occupied by magnocellular cholinergic neurons that receives outputs from the central division of extended amygdala. Brain Res. 957, 207–222 (2002).

    CAS  PubMed  Google Scholar 

  30. Zmarowski, A., Sarter, M. & Bruno, J. P. Glutamate receptors in nucleus accumbens mediate regionally selective increases in cortical acetylcholine release. Synapse 61, 115–123 (2007).

    CAS  PubMed  Google Scholar 

  31. Zmarowski, A., Sarter, M. & Bruno, J. P. NMDA and dopamine interactions in the nucleus accumbens modulate cortical acetylcholine release. Eur. J. Neurosci. 22, 1731–1740 (2005).

    PubMed  Google Scholar 

  32. Fuxe, K. et al. Dynamics of volume transmission in the brain. Focus on catecholamine and opioid peptide communication and the role of uncoupling protein 2. J. Neural Transm. 112, 65–76 (2005).

    CAS  PubMed  Google Scholar 

  33. Agnati, L. F. et al. Volume transmission and wiring transmission from cellular to molecular networks: history and perspectives. Acta Physiol. (Oxf.) 187, 329–344 (2006).

    CAS  Google Scholar 

  34. Turrini, P. et al. Cholinergic nerve terminals establish classical synapses in the rat cerebral cortex: synaptic pattern and age-related atrophy. Neuroscience 105, 277–285 (2001).

    CAS  PubMed  Google Scholar 

  35. Smiley, J. F., Morrell, F. & Mesulam, M. M. Cholinergic synapses in human cerebral cortex: an ultrastructural study in serial sections. Exp. Neurol. 144, 361–368 (1997).

    CAS  PubMed  Google Scholar 

  36. Umbriaco, D., Watkins, K. C., Descarries, L., Cozzari, C. & Hartman, B. K. Ultrastructural and morphometric features of the acetylcholine innervation in adult rat parietal cortex: an electron microscopic study in serial sections. J. Comp. Neurol. 348, 351–373 (1994).

    CAS  PubMed  Google Scholar 

  37. Descarries, L., Gisiger, V. & Steriade, M. Diffuse transmission by acetylcholine in the CNS. Prog. Neurobiol. 53, 603–625 (1997).

    CAS  PubMed  Google Scholar 

  38. Descarries, L. & Mechawar, N. Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system. Prog. Brain Res. 125, 27–47 (2000).

    CAS  PubMed  Google Scholar 

  39. Mechawar, N., Watkins, K. C. & Descarries, L. Ultrastructural features of the acetylcholine innervation in the developing parietal cortex of rat. J. Comp. Neurol. 443, 250–258 (2002).

    CAS  PubMed  Google Scholar 

  40. Mechawar, N., Cozzari, C. & Descarries, L. Cholinergic innervation in adult rat cerebral cortex: a quantitative immunocytochemical description. J. Comp. Neurol. 428, 305–318 (2000).

    CAS  PubMed  Google Scholar 

  41. Mrzljak, L., Levey, A. I. & Goldman-Rakic, P. S. Association of m1 and m2 muscarinic receptor proteins with asymmetric synapses in the primate cerebral cortex: morphological evidence for cholinergic modulation of excitatory neurotransmission. Proc. Natl Acad. Sci. USA 90, 5194–5198 (1993).

    CAS  PubMed  Google Scholar 

  42. Vinson, P. N. & Justice, J. B. Jr. Effect of neostigmine on concentration and extraction fraction of acetylcholine using quantitative microdialysis. J. Neurosci. Methods 73, 61–67 (1997).

    CAS  PubMed  Google Scholar 

  43. Frey, K. A., Ehrenkaufer, R. L. & Agranoff, B. W. Quantitative in vivo receptor binding. II. Autoradiographic imaging of muscarinic cholinergic receptors. J. Neurosci. 5, 2407–2414 (1985).

    CAS  PubMed  Google Scholar 

  44. Parikh, V., Man, K., Decker, M. W. & Sarter, M. Glutamatergic contributions to nicotinic acetylcholine receptor agonist-evoked cholinergic transients in the prefrontal cortex. J. Neurosci. 28, 3769–3780 (2008).

    CAS  PubMed  Google Scholar 

  45. Lendvai, B. & Vizi, E. S. Nonsynaptic chemical transmission through nicotinic acetylcholine receptors. Physiol. Rev. 88, 333–349 (2008).

    CAS  PubMed  Google Scholar 

  46. Jones, I. W. & Wonnacott, S. Precise localization of a7 nicotinic acetylcholine receptors on glutamatergic axon terminals in the rat ventral tegmental area. J. Neurosci. 24, 11244–11252 (2004).

    CAS  PubMed  Google Scholar 

  47. Hill, J. A. Jr., Zoli, M., Bourgeois, J. P. & Changeux, J. P. Immunocytochemical localization of a neuronal nicotinic receptor: the β2-subunit. J. Neurosci. 13, 1551–1568 (1993).

    CAS  PubMed  Google Scholar 

  48. Alkondon, M. & Albuquerque, E. X. Subtype-specific inhibition of nicotinic acetylcholine receptors by choline: a regulatory pathway. J. Pharmacol. Exp. Ther. 318, 268–275 (2006).

    CAS  PubMed  Google Scholar 

  49. Wu, H. Q., Rassoulpour, A. & Schwarcz, R. Kynurenic acid leads, dopamine follows: a new case of volume transmission in the brain? J. Neural Transm. 114, 33–41 (2007).

    PubMed  Google Scholar 

  50. Vizi, E. S. & Lendvai, B. Modulatory role of presynaptic nicotinic receptors in synaptic and non-synaptic chemical communication in the central nervous system. Brain Res. Rev. 30, 219–235 (1999).

    CAS  PubMed  Google Scholar 

  51. Fadel, J., Moore, H., Sarter, M. & Bruno, J. P. Trans-synaptic stimulation of cortical acetylcholine release after partial 192 IgG-saporin-induced loss of cortical cholinergic afferents. J. Neurosci. 16, 6592–6600 (1996).

    CAS  PubMed  Google Scholar 

  52. Hartmann, J., Kiewert, C., Duysen, E. G., Lockridge, O. & Klein, J. Choline availability and acetylcholine synthesis in the hippocampus of acetylcholinesterase-deficient mice. Neurochem. Int. 52, 972–978 (2008).

    CAS  PubMed  Google Scholar 

  53. Robinson, T. E. & Camp, D. M. The effects of four days of continuous striatal microdialysis on indices of dopamine and serotonin neurotransmission in rats. J. Neurosci. Methods 40, 211–222 (1991).

    CAS  PubMed  Google Scholar 

  54. Westerink, B. H. & Tuinte, M. H. Chronic use of intracerebral dialysis for the in vivo measurement of 3,4-dihydroxyphenylethylamine and its metabolite 3,4-dihydroxyphenylacetic acid. J. Neurochem. 46, 181–185 (1986).

    CAS  PubMed  Google Scholar 

  55. Benveniste, H. & Diemer, N. H. Cellular reactions to implantation of a microdialysis tube in the rat hippocampus. Acta Neuropathol. 74, 234–238 (1987).

    CAS  PubMed  Google Scholar 

  56. Schiffer, W. K. et al. Serial microPET measures of the metabolic reaction to a microdialysis probe implant. J. Neurosci. Methods 155, 272–284 (2006).

    CAS  PubMed  Google Scholar 

  57. Westerink, B. H. Brain microdialysis and its application for the study of animal behaviour. Behav. Brain Res. 70, 103–124 (1995).

    CAS  PubMed  Google Scholar 

  58. Clapp-Lilly, K. L. et al. An ultrastructural analysis of tissue surrounding a microdialysis probe. J. Neurosci. Methods 90, 129–142 (1999).

    CAS  PubMed  Google Scholar 

  59. Chen, K. C. in Handbook of microdialysis (eds Westerink, B. H. C. & Cremers, T. I. F. H.) 47–70 (Elsevier, Amsterdam, 2007).

    Google Scholar 

  60. Borland, L. M., Shi, G., Yang, H. & Michael, A. C. Voltammetric study of extracellular dopamine near microdialysis probes acutely implanted in the striatum of the anesthetized rat. J. Neurosci. Methods 146, 149–158 (2005).

    CAS  PubMed  Google Scholar 

  61. Cooper, J. R., Bloom, F. E. & Roth, R. H. The biochemical basis of neuropharmacology (Oxford Univ. Press, Oxford, 2003).

    Google Scholar 

  62. Quinn, D. M. Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states. Chem. Rev. 87, 955–979 (1987).

    CAS  Google Scholar 

  63. Lawler, H. C. Turnover time of acetylcholinesterase. J. Biol. Chem. 236, 2296–2301 (1961).

    CAS  PubMed  Google Scholar 

  64. Peng, H. B., Xie, H., Rossi, S. G. & Rotundo, R. L. Acetylcholinesterase clustering at the neuromuscular junction involves perlecan and dystroglycan. J. Cell Biol. 145, 911–921 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Zimmerman, G. & Soreq, H. Termination and beyond: acetylcholinesterase as a modulator of synaptic transmission. Cell Tissue Res. 326, 655–669 (2006).

    CAS  PubMed  Google Scholar 

  66. Appleyard, M. E. Secreted acetylcholinesterase: non-classical aspects of a classical enzyme. Trends Neurosci. 15, 485–490 (1992).

    CAS  PubMed  Google Scholar 

  67. Burmeister, J. J., Moxon, K. & Gerhardt, G. A. Ceramic-based multisite microelectrodes for electrochemical recordings. Anal. Chem. 72, 187–192 (2000).

    CAS  PubMed  Google Scholar 

  68. Burmeister, J. J., Palmer, M. & Gerhardt, G. A. Ceramic-based multisite electrode array for rapid choline measures in brain tissue. Anal. Chim. Acta 481, 65–74 (2003).

    CAS  Google Scholar 

  69. Parikh, V. et al. Rapid assessment of in vivo cholinergic transmission by amperometric detection of changes in extracellular choline levels. Eur. J. Neurosci. 20, 1545–1554 (2004).

    PubMed  Google Scholar 

  70. Parikh, V., Apparsundaram, S., Kozak, R., Richards, J. B. & Sarter, M. Reduced expression and capacity of the striatal high-affinity choline transporter in hyperdopaminergic mice. Neuroscience 141, 379–389 (2006).

    CAS  PubMed  Google Scholar 

  71. Bruno, J. P. et al. Second-by-second measurement of acetylcholine release in prefrontal cortex. Eur. J. Neurosci. 24, 2749–2757 (2006).

    PubMed  Google Scholar 

  72. Giuliano, C., Parikh, V., Ward, J. R., Chiamulera, C. & Sarter, M. Increases in cholinergic neurotransmission measured by using choline-sensitive microelectrodes: enhanced detection by hydrolysis of acetylcholine on recording sites? Neurochem. Int. 52, 1343–1350 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Burmeister, J. J. et al. Ceramic-based multisite microelectrode arrays for simultaneous measures of choline and acetylcholine in CNS. Biosens. Bioelectron. 23, 1382–1389 (2008).

    CAS  PubMed  Google Scholar 

  74. Descarries, L. The hypothesis of an ambient level of acetylcholine in the central nervous system. J. Physiol. (Paris) 92, 215–220 (1998).

    CAS  Google Scholar 

  75. Voelker, R. Guideline: dementia drugs' benefits uncertain. JAMA 299, 1763 (2008).

    CAS  PubMed  Google Scholar 

  76. Thal, L. J., Forrest, M., Loft, H. & Mengel, H. Lu 25–109, a muscarinic agonist, fails to improve cognition in Alzheimer's disease. Lu25–109 Study Group. Neurology 54, 421–426 (2000).

    CAS  PubMed  Google Scholar 

  77. Yesavage, J. A. et al. Acetylcholinesterase inhibitor in combination with cognitive training in older adults. J. Gerontol. B Psychol. Sci. Soc. Sci. 63, P288–P294 (2008).

    PubMed  Google Scholar 

  78. Howe, W. M. et al. Prefrontal cholinergic transients indicating cue detection as a target for cognition enhancers. Soc. Neurosci. Ann. Meet. 388.26 (2008).

  79. Wilens, T. E. & Decker, M. W. Neuronal nicotinic receptor agonists for the treatment of attention-deficit/hyperactivity disorder: focus on cognition. Biochem. Pharmacol. 74, 1212–1223 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Newhouse, P. A., Potter, A., Kelton, M. & Corwin, J. Nicotinic treatment of Alzheimer's disease. Biol. Psychiatry 49, 268–278 (2001).

    CAS  PubMed  Google Scholar 

  81. Wilens, T. E., Verlinden, M. H., Adler, L. A., Wozniak, P. J. & West, S. A. ABT-089, a neuronal nicotinic receptor partial agonist, for the treatment of attention-deficit/hyperactivity disorder in adults: results of a pilot study. Biol. Psychiatry 59, 1065–1070 (2006).

    CAS  PubMed  Google Scholar 

  82. Rice, M. E. & Cragg, S. J. Dopamine spillover after quantal release: rethinking dopamine transmission in the nigrostriatal pathway. Brain Res. Rev. 58, 303–313 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Nishiyama, H. & Linden, D. J. Pure spillover transmission between neurons. Nature Neurosci. 10, 675–677 (2007).

    CAS  PubMed  Google Scholar 

  84. Vargova, L. & Sykova, E. Extracellular space diffusion and extrasynaptic transmission. Physiol. Res. 57 (Suppl. 3), S89–S99 (2008).

    PubMed  Google Scholar 

  85. Bunin, M. A. & Wightman, R. M. Paracrine neurotransmission in the CNS: involvement of 5-HT. Trends Neurosci. 22, 377–382 (1999).

    CAS  PubMed  Google Scholar 

  86. Ciranna, L. Serotonin as a modulator of glutamate- and GABA-mediated neurotransmission: implications in physiological functions and in pathology. Curr. Neuropharmacol. 4, 101–114 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Goto, Y., Otani, S. & Grace, A. A. The yin and yang of dopamine release: a new perspective. Neuropharmacology 53, 583–587 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Floresco, S. B. Dopaminergic regulation of limbic-striatal interplay. J. Psychiatry Neurosci. 32, 400–411 (2007).

    PubMed  PubMed Central  Google Scholar 

  89. Schultz, W. Multiple dopamine functions at different time courses. Annu. Rev. Neurosci. 30, 259–288 (2007).

    CAS  Google Scholar 

  90. Arbuthnott, G. W. & Wickens, J. Space, time and dopamine. Trends Neurosci. 30, 62–69 (2007).

    CAS  PubMed  Google Scholar 

  91. Roitman, M. F., Day, J. J., Seipel, A., Carelli, R. M. & Wightman, R. M. A steady-state concentration of dopamine is comprised of time-averaged, phasic dopamine release events. Monitoring Molecules in Neuroscience. 11th International Conference on In Vivo Methods (2006).

    Google Scholar 

  92. Roitman, M. F., Wheeler, R. A., Wightman, R. M. & Carelli, R. M. Real-time chemical responses in the nucleus accumbens differentiate rewarding and aversive stimuli. Nature Neurosci. 11, 1376–1377 (2008).

    CAS  PubMed  Google Scholar 

  93. Kozak, R. et al. Toward a neuro-cognitive animal model of the cognitive symptoms of schizophrenia: disruption of cortical cholinergic neurotransmission following repeated amphetamine exposure in attentional task-performing, but not non-performing, rats. Neuropsychopharmacology 32, 2074–2086 (2007).

    CAS  PubMed  Google Scholar 

  94. von Engelhardt, J., Eliava, M., Meyer, A. H., Rozov, A. & Monyer, H. Functional characterization of intrinsic cholinergic interneurons in the cortex. J. Neurosci. 27, 5633–5642 (2007).

    CAS  PubMed  Google Scholar 

  95. Parikh, V. & Sarter, M. Cortical choline transporter function measured in vivo using choline-sensitive microelectrodes: clearance of endogenous and exogenous choline and effects of removal of cholinergic terminals. J. Neurochem. 97, 488–503 (2006).

    CAS  PubMed  Google Scholar 

  96. Sarter, M. & Parikh, V. Choline transporters, cholinergic transmission and cognition. Nature Rev. Neurosci. 6, 48–56 (2005).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors' research was supported by Public Health Service (PHS) grants KO2MH10172, MH080426 and MH080332. W.M.H. was supported by the PHS Training Grant T32 DA007267. We thank S. Baran for comments on a draft of this paper and an anonymous reviewer for suggesting the final title of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Sarter.

Related links

Related links

FURTHER INFORMATION

Martin sarter's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarter, M., Parikh, V. & Howe, W. Phasic acetylcholine release and the volume transmission hypothesis: time to move on. Nat Rev Neurosci 10, 383–390 (2009). https://doi.org/10.1038/nrn2635

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2635

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing