Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

The Allen Brain Atlas: 5 years and beyond

Abstract

The Allen Brain Atlas, a Web-based, genome-wide atlas of gene expression in the adult mouse brain, was an experiment on a massive scale. The development of the atlas faced a combination of great technical challenges and a non-traditional open research model, and it encountered many hurdles on the path to completion and community adoption. Having overcome these challenges, it is now a fundamental tool for neuroscientists worldwide and has set the stage for the creation of other similar open resources. Nevertheless, there are many untapped opportunities for exploration.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Allen Institute technology platform.

Similar content being viewed by others

References

  1. Tessier-Lavigne, M. & Stryer, L. Setting priorities for molecular neuroanatomy in the postgenomic era. NIH NIDA [online], (2002).

    Google Scholar 

  2. Heintz, N. Gene expression nervous system atlas (GENSAT). Nature Neurosci. 7, 483 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Geschwind, D. GENSAT: a genomic resource for neuroscience research. Lancet Neurol. 3, 82 (2004).

    Article  PubMed  Google Scholar 

  4. Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Tecan. The GenePaint System. Mol. Biotechnol. 25, 103–104 (2003).

  6. Mamounas, L., Gubitz, A. K. & Talley, N. NIH blueprint for neuroscience research: GENSAT. NIH [online], (2008).

  7. Burris, J., Cook-Deegan, R. & Alberts, B. The Human Genome Project after a decade: policy issues. Nature Genet. 20, 333–335 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Collins, F. S., Morgan, M. & Patrinos, A. The Human Genome Project: lessons from large-scale biology. Science 300, 286–290 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Allen Institute for Brain Science. ISH platform controls. Allen Brain Atlas [online], (2006).

  10. Allen Institute for Brain Science. Cross platform validation. Allen Brain Atlas [online], (2006).

  11. Allen Institute for Brain Science. Informatics data processing. Allen Brain Atlas [online], (2006).

  12. Allen Institute for Brain Science. Data production processes. Allen Brain Atlas [online], (2006).

  13. Allen Institute for Brain Science. NeuroBlast: user guide. Allen Brain Atlas [online], (2007).

  14. Allen Institute for Brain Science. AGEA user guide. Allen Brain Atlas [online], (2007).

  15. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Ng, L. L. et al. Neuroinformatics for genome-wide 3D gene expression mapping in the mouse brain. IEEE/ACM Trans Comput. Biol. Bioinform. 4, 382–393 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Lau, C. et al. Exploration and visualization of gene expression with neuroanatomy in the adult mouse brain. BMC Bioinformatics 9, 153–163 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ng, L. et al. An anatomic gene expression atlas of the adult mouse brain. Nature Neurosci. 12, 356–362 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Lee, C. K. et al. Quantitative methods for genome-scale analysis of in situ hybridization and correlation with microarray data. Genome Biol. 9, R23 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gosso, F. M. et al. Exploring the functional role of the CHRM2 gene in human cognition: results from a dense genotyping and brain expression study. BMC Med. Genet. 8, 66 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hougaard, D. M., Hansen, H. & Larsson, L. I. Non-radioactive in situ hybridization for mRNA with emphasis on the use of oligodeoxynucleotide probes. Histochem. Cell Biol. 108, 335–344 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Higo, N., Oishi, T., Yamashita, A., Matsuda, K. & Hayashi, M. Quantitative non-radioactive in situ hybridization study of GAP-43 and SCG10 mRNAs in the cerebral cortex of adult and infant macaque monkeys. Cereb. Cortex 9, 317–331 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Bello, M. et al. Hybrid segmentation framework for tissue images containing gene expression data. Med. Image Comput. Comput. Assist. Interv. Int. Conf. Med. Image Comput. Comput. Assist. Interv. 8, 254–261 (2005).

    Google Scholar 

  24. Carson, J. P. et al. A digital atlas to characterize the mouse brain transcriptome. PLoS Comput.Biol. 1, e41 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sandberg, R. et al. Regional and strain-specific gene expression mapping in the adult mouse brain. Proc. Natl Acad. Sci. USA 97, 11038–11043 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Heimel, J. A., Hermans, J. M., Sommeijer, J. P. & Levelt, C. N. Genetic control of experience-dependent plasticity in the visual cortex. Genes Brain Behav. 7, 915–923 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Allen Institute for Brain Science. Comparison of the top 1000 genes. Allen Brain Atlas [online], (2007).

  28. Mi, H., Guo, N., Kejariwal, A. & Thomas, P. D. PANTHER version 6: protein sequence and function evolution data with expanded representation of biological pathways. Nucleic Acids Res. 35, D1247–D1252 (2007).

    Article  Google Scholar 

  29. McHugh, P. C. et al. Downregulation of Ccnd1 and Hes6 in rat hippocampus after chronic exposure to the antidepressant paroxetine. Acta Neuropsychiatrica 20, 307–313 (2008).

    Article  PubMed  Google Scholar 

  30. Ball-Rosen, C. et al. Identification of histidine-rich glycoprotein, a potential autoantigen, in human and rat brain preparations. Ann. NY Acad. Sci. 1109, 473–483 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Greene, J. G., Borges, K. & Dingledine, R. Quantitative transcriptional neuroanatomy of the rat hippocampus: evidence for wide-ranging, pathway-specific heterogeneity among three principal cell layers. Hippocampus 19, 253–264 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sakakibara, S. et al. Developmental and spatial expression pattern of alpha-taxilin in the rat central nervous system. J. Comp. Neurol. 511, 65–80 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Benoist, M. et al. Distribution of zinedin in the rat brain. J. Neurochem. 106, 969–977 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Oldham, M. C. et al. Functional organization of the transcriptome in human brain. Nature Neurosci. 11, 1271–1282 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Ernst, C. et al. Confirmation of region-specific patterns of gene expression in the human brain. Neurogenetics 8, 219–224 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Von Stetina, S. E. et al. Cell-specific microarray profiling experiments reveal a comprehensive picture of gene expression in the C. elegans nervous system. Genome Biol. 8, R135 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mecklenburg, K. L. Drosophila retinophilin contains MORN repeats and is conserved in humans. Mol. Genet. Genomics 277, 481–489 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Chizhikov, V. V. et al. Cilia proteins control cerebellar morphogenesis by promoting expansion of the granule progenitor pool. J. Neurosci. 27, 9780–9789 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tabakoff, B. et al. The genomic determinants of alcohol preference in mice. Mamm. Genome 19, 352–365 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kelai, S. et al. Nrxn3 upregulation in the globus pallidus of mice developing cocaine addiction. Neuroreport 19, 751–755 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Andrade, N. et al. ApoER2/VLDL receptor and Dab1 in the rostral migratory stream function in postnatal neuronal migration independently of Reelin. Proc. Natl Acad. Sci. USA 104, 8508–8513 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Satoh, J. et al. Protein microarray analysis identifies human cellular prion protein interactors. Neuropathol. Appl. Neurobiol. 35, 16–35 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Lim, J. et al. Opposing effects of polyglutamine expansion on native protein complexes contribute to SCA1. Nature 452, 713–718 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mozhui, K. et al. Dissection of a QTL hotspot on mouse distal chromosome 1 that modulates neurobehavioral phenotypes and gene expression. PLoS Genet. 4, e1000260 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Alavian, K. N. & Simon, H. H. Linkage of cDNA expression profiles of mesencephalic dopaminergic neurons to a genome-wide in situ hybridization database. Mol. Neurodegener. 4, 6 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Papassotiropoulos, A. et al. Common Kibra alleles are associated with human memory performance. Science 314, 475–478 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Gerhard, D. S. et al. The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 14, 2121–2127 (2004).

    Article  PubMed  Google Scholar 

  49. Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science 309, 1559–1563 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Sunkin, S. M. & Hohmann, J. G. Insights from spatially mapped gene expression in the mouse brain. Hum. Mol. Genet. 16, R209–R219 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Ramos, R. L., Smith, P. T. & Brumberg, J. C. Novel in silico method for teaching cytoarchitecture, cellular diversity, and gene expression in the mammalian brain. Journal of Undergraduate Neuroscience Education 6, A8–A13 (2007).

    PubMed  PubMed Central  Google Scholar 

  52. Jenks, B. G. A self-study tutorial using the Allen Brain Explorer and Brain Atlas to teach concepts of mammalian neuroanatomy and brain function. Journal of Undergraduate Neuroscience Education 8, A21–A25 (2009).

    Google Scholar 

  53. Davis, F. P. & Eddy, S. R. A tool for identification of genes expressed in patterns of interest using the Allen Brain Atlas. Bioinformatics 25, 1647–1654 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lichtman, J. W. & Sanes, J. R. Ome sweet ome: what can the genome tell us about the connectome? Curr. Opin. Neurobiol. 18, 346–353 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jagalur, M., Pal, C., Learned-Miller, E., Zoeller, R. T. & Kulp, D. Analyzing in situ gene expression in the mouse brain with image registration, feature extraction and block clustering. BMC Bioinformatics 8 (Suppl. 10), S5 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Haitina, T. et al. Expression profile of the entire family of Adhesion G protein-coupled receptors in mouse and rat. BMC Neurosci. 9, 43 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  57. D'Souza, C. A. et al. Identification of a set of genes showing regionally enriched expression in the mouse brain. BMC Neurosci. 9, 66 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Olszewski, P. K., Cedernaes, J., Olsson, F., Levine, A. S. & Schioth, H. B. Analysis of the network of feeding neuroregulators using the Allen Brain Atlas. Neurosci. Biobehav. Rev. 32, 945–956 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ramos, R. L. et al. Cytoarchitecture and transcriptional profiles of neocortical malformations in inbred mice. Cereb. Cortex 18, 2614–2628 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Loerch, P. M. et al. Evolution of the aging brain transcriptome and synaptic regulation. PLoS ONE 3, e3329 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sun, Y. G. et al. Involvement of P311 in the affective, but not in the sensory component of pain. Mol. Pain 4, 23 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kim, D. S. et al. Identification of molecular markers of bipolar cells in the murine retina. J. Comp. Neurol. 507, 1795–1810 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang, Y. et al. Comparative analysis of selenocysteine machinery and selenoproteome gene expression in mouse brain identifies neurons as key functional sites of selenium in mammals. J. Biol. Chem. 283, 2427–2438 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Uhl, G. R. et al. Molecular genetics of addiction and related heritable phenotypes: genome-wide association approaches identify “connectivity constellation” and drug target genes with pleiotropic effects. Ann. NY Acad. Sci. 1141, 318–381 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Lee, A. M. & Messing, R. O. Protein kinases and addiction. Ann. NY Acad. Sci. 1141, 22–57 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Hishimoto, A. et al. Neurexin 3 polymorphisms are associated with alcohol dependence and altered expression of specific isoforms. Hum. Mol. Genet. 16, 2880–2891 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Hu, W. et al. Genomic insights into acute alcohol tolerance. J. Pharmacol. Exp. Ther. 326, 792–800 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. McKay, B. E., Placzek, A. N. & Dani, J. A. Regulation of synaptic transmission and plasticity by neuronal nicotinic acetylcholine receptors. Biochem. Pharmacol. 74, 1120–1133 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Inestrosa, N. C. & Toledo, E. M. The role of Wnt signaling in neuronal dysfunction in Alzheimer's disease. Mol. Neurodegener. 3, 9 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Reiman, E. M. et al. GAB2 alleles modify Alzheimer's risk in APOE epsilon4 carriers. Neuron 54, 713–720 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Muhammad, A. et al. Retromer deficiency observed in Alzheimer's disease causes hippocampal dysfunction, neurodegeneration, and Aβ accumulation. Proc. Natl Acad. Sci. USA 105, 7327–7332 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Small, S. A. Retromer sorting: a pathogenic pathway in late-onset Alzheimer disease. Arch. Neurol. 65, 323–328 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hamamichi, S. et al. Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson's disease model. Proc. Natl Acad. Sci. USA 105, 728–733 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Park, J. W., Park, E. S., Choi, E. N., Park, H. Y. & Jung, S. C. Altered brain gene expression profiles associated with the pathogenesis of phenylketonuria in a mouse model. Clin. Chim. Acta 401, 90–99 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Saxe, J. P. et al. A phenotypic small-molecule screen identifies an orphan ligand-receptor pair that regulates neural stem cell differentiation. Chem. Biol. 14, 1019–1030 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Belichenko, N. P., Belichenko, P. V., Li, H. H., Mobley, W. C. & Francke, U. Comparative study of brain morphology in Mecp2 mutant mouse models of Rett syndrome. J. Comp. Neurol. 508, 184–195 (2008).

    Article  PubMed  Google Scholar 

  77. Liu, C., Wang, Y., Smallwood, P. M. & Nathans, J. An essential role for Frizzled5 in neuronal survival in the parafascicular nucleus of the thalamus. J. Neurosci. 28, 5641–5653 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sandoz, G. et al. Mtap2 is a constituent of the protein network that regulates twik-related K+ channel expression and trafficking. J. Neurosci. 28, 8545–8552 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sakurai, K. & Osumi, N. The neurogenesis-controlling factor, Pax6, inhibits proliferation and promotes maturation in murine astrocytes. J. Neurosci. 28, 4604–4612 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gatchel, J. R. et al. The insulin-like growth factor pathway is altered in spinocerebellar ataxia type 1 and type 7. Proc. Natl Acad. Sci. USA 105, 1291–1296 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Glazov, E. A., McWilliam, S., Barris, W. C. & Dalrymple, B. P. Origin, evolution, and biological role of miRNA cluster in DLK-DIO3 genomic region in placental mammals. Mol. Biol. Evol. 25, 939–948 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Negrete, O. A., Chu, D., Aguilar, H. C. & Lee, B. Single amino acid changes in the Nipah and Hendra virus attachment glycoproteins distinguish ephrinB2 from ephrinB3 usage. J. Virol. 81, 10804–10814 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Letellier, M., Willson, M. L., Gautheron, V., Mariani, J. & Lohof, A. M. Normal adult climbing fiber monoinnervation of cerebellar Purkinje cells in mice lacking MHC class I molecules. Dev. Neurobiol. 68, 997–1006 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Rodgers, B. D. & Garikipati, D. K. Clinical, agricultural, and evolutionary biology of myostatin: a comparative review. Endocr. Rev. 29, 513–534 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  86. Ng, L. et al. NeuroBlast: a 3D spatial homology search tool for gene expression. BMC Neurosci. 8, 11 (2007).

    Article  Google Scholar 

  87. Dong, H. W. The Allen Reference Atlas: A Digital Color Brain Atlas of the C57BL/6J Male Mouse (Wiley, Hoboken, New Jersey, 2008).

    Google Scholar 

Download references

Acknowledgements

This work was sponsored by the Allen Institute for Brain Science. The authors wish to thank the Allen Institute founders, Paul G. Allen and Jody Allen, for their vision, encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan R. Jones.

Supplementary information

Supplementary information S1 (box)

Top 1,000 genes analysis (PDF 745 kb)

Supplementary information S2 (figure)

Genes viewed in the Allen Brain Atlas. (PDF 172 kb)

Related links

Related links

FURTHER INFORMATION

Allen Brain Atlas portal

Allen Developing Mouse Brain Atlas

Allen Institute for Brain Science

Allen Institute Human Cortex Study

Allen Institute Mouse Diversity Study

Allen Institute Sleep Study

Allen Institute Transgenic Mouse Study

ALLENMINER

Allen Mouse Brain Atlas (original ABA)

Allen Spinal Cord Atlas

Brain Explorer self-guided tutorial for education

EURExpress

GENSAT

International Neuroinformatics Coordinating Facility

Mouse BIRN Atlasing Toolkit

Mutant Mouse Regional Resource Centers (MMRRC)

Neurocommons project

Neuroscience Information Framework

Pathalizer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, A., Overly, C. & Sunkin, S. The Allen Brain Atlas: 5 years and beyond. Nat Rev Neurosci 10, 821–828 (2009). https://doi.org/10.1038/nrn2722

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2722

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing