Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of heroin and cocaine metabolism by a promiscuous human drug-processing enzyme

A Corrigendum to this article was published on 01 July 2003

Abstract

We present the first crystal structures of a human protein bound to analogs of cocaine and heroin. Human carboxylesterase 1 (hCE1) is a broad-spectrum bioscavenger that catalyzes the hydrolysis of heroin and cocaine, and the detoxification of organophosphate chemical weapons, such as sarin, soman and tabun. Crystal structures of the hCE1 glycoprotein in complex with the cocaine analog homatropine and the heroin analog naloxone provide explicit details about narcotic metabolism in humans. The hCE1 active site contains both specific and promiscuous compartments, which enable the enzyme to act on structurally distinct chemicals. A selective surface ligand-binding site regulates the trimer-hexamer equilibrium of hCE1 and allows each hCE1 monomer to bind two narcotic molecules simultaneously. The bioscavenger properties of hCE1 can likely be used to treat both narcotic overdose and chemical weapon exposure.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cocaine and heroin metabolism.
Figure 2: The hCE1 trimer as observed in the homatropine complex, viewed down the three-fold axis of symmetry and into the active site gorge of each molecule.
Figure 3: Cocaine metabolism by hCE1.
Figure 4: Heroin metabolism by hCE1.
Figure 5: Trimer-hexamer equilibrium.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Satoh, T. & Hosokawa, M. The mammalian carboxylesterases: from molecules to functions. Annu. Rev. Pharmacol. Toxicol. 38, 257–288 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Satoh, T. et al. Current progress on esterases: from molecular structure to function. Drug Metab. Dispos. 30, 488–493 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Brzezinski, M.R. et al. Human liver carboxylesterase hCE-1: binding specificity for cocaine, heroin, and their metabolites and analogs. Drug Metab. Dispos. 25, 1089–1096 (1997).

    CAS  PubMed  Google Scholar 

  4. Brzezinski, M.R., Abraham, T.R., Stone, C.L., Dean, R.A. & Bosron, W.F. Purification and characterization of a human liver cocaine carboxylesterase that catalyzes the production of benzoylecgonine and the formation of cocaethylene from alcohol and cocaine. Biochem. Pharmacol. 48, 1747–1755 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Tang, B.K. & Kalow, W. Variable activation of lovastatin by hydrolytic enzymes in human plasma and liver. Eur. J. Clin. Pharmacol. 47, 449–451 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Alexson, S.E., Diczfalusy, M., Halldin, M. & Swedmark, S. Involvement of liver carboxylesterases in the in vitro metabolism of lidocaine. Drug Metab. Dispos. 30, 643–647 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Takai, S. et al. Hydrolytic profile for ester- or amide-linkage by carboxylesterases pI 5.3 and 4.5 from human liver. Biol. Pharm. Bull. 20, 869–873 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Ellgaard, L., Molinari, M. & Helenius, A. Setting the standards: quality control in the secretory pathway. Science 286, 1882–1888 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Sweeney, R.E. & Maxwell, D.M. A theoretical model of the competition between hydrolase and carboxylesterase in protection against organophosphorus poisoning. Math. Biosci. 160, 175–190 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Broomfield, C.A. & Kirby, S.D. Progress on the road to new nerve agent treatments. J. Appl. Toxicol. 21 Suppl. 1, S43–S46 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Maxwell, D.M. & Brecht, K.M. Carboxylesterase: specificity and spontaneous reactivation of an endogenous scavenger for organophosphorus compounds. J. Appl. Toxicol. 21 Suppl. 1, S103–S107 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Pindel, E.V. et al. Purification and cloning of a broad substrate specificity human liver carboxylesterase that catalyzes the hydrolysis of cocaine and heroin. J. Biol. Chem. 272, 14769–14775 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Kamendulis, L.M., Brzezinski, M.R., Pindel, E.V., Bosron, W.F. & Dean, R.A. Metabolism of cocaine and heroin is catalyzed by the same human liver carboxylesterases. J. Pharmacol. Exp. Ther. 279, 713–717 (1996).

    CAS  PubMed  Google Scholar 

  14. Sun, H., Shen, M.L., Pang, Y.P., Lockridge, O. & Brimijoin, S. Re-engineering butyrylcholinesterase as a cocaine hydrolase. J. Pharmacol. Exp. Ther. 302, 710–716 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Pennings, E.J., Leccese, A.P. & Wolff, F.A. Effects of concurrent use of alcohol and cocaine. Addiction 97, 773–783 (2002).

    Article  PubMed  Google Scholar 

  16. Bencharit, S. et al. Structural insights into CPT-11 activation by mammalian carboxylesterases. Nat. Struct. Biol. 9, 337–342 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Leszczynski, J.F. & Rose, G.D. Loops in globular proteins: a novel category of secondary structure. Science 234, 849–855 (1986).

    Article  CAS  PubMed  Google Scholar 

  18. Kryger, G. et al. Structures of recombinant native and E202Q mutant human acetylcholinesterase complexed with the snake-venom toxin fasciculin-II. Acta Crystallogr. D 56, 1385–1394 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Mori, M., Hosokawa, M., Ogasawara, Y., Tsukada, E. & Chiba, K. cDNA cloning, characterization and stable expression of novel human brain carboxylesterase. FEBS Lett. 458, 17–22 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Dean, R.A., Zhang, J., Brzezinski, M.R. & Bosron, W.F. Tissue distribution of cocaine methyl esterase and ethyl transferase activities: correlation with carboxylesterase protein. J. Pharmacol. Exp. Ther. 275, 965–971 (1995).

    CAS  PubMed  Google Scholar 

  21. Kalasinsky, K.S. et al. Regional distribution of cocaine in postmortem brain of chronic human cocaine users. J. Forensic Sci. 45, 1041–1048 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Larsen, N.A. et al. Crystal structure of a bacterial cocaine esterase. Nat. Struct. Biol. 9, 17–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Larsen, N.A. et al. Crystal structure of a cocaine-binding antibody. J. Mol. Biol. 311, 9–15 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Bosron, W.F. & Hurley, T.D. Lessons from a bacterial cocaine esterase. Nat. Struct. Biol. 9, 4–5 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Kroetz, D.L., McBride, O.W. & Gonzalez, F.J. Glycosylation-dependent activity of baculovirus-expressed human liver carboxylesterases: cDNA cloning and characterization of two highly similar enzyme forms. Biochemistry 32, 11606–11617 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Suzuki-Kurasaki, M., Yoshioka, T. & Uematsu, T. Purification and characterization of guinea-pig liver microsomal deacetylase involved in the deacetylation of the O-glucoside of N-hydroxyacetanilide. Biochem. J. 325, 155–161 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Broomfield, C.A. et al. Protection by butyrylcholinesterase against organophosphorus poisoning in nonhuman primates. J. Pharmacol. Exp. Ther. 259, 633–638 (1991).

    CAS  PubMed  Google Scholar 

  28. Morton, C.L. & Potter, P.M. Comparison of Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, Spodoptera frugiperda, and COS7 cells for recombinant gene expression: application to a rabbit liver carboxylesterase. Mol. Biotechnol. 16, 193–202 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Danks, M.K. et al. Comparison of activation of CPT-11 by rabbit and human carboxylesterases for use in enzyme/prodrug therapy. Clin. Cancer Res. 5, 917–924 (1999).

    CAS  PubMed  Google Scholar 

  30. Collaborative Computing Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  31. Otwinowski, Z. & Minor, W. Data collection and processing (Daresbury Laboratories, Warrington; 1993).

    Google Scholar 

  32. Navaza, J. Implementation of molecular replacement in AMoRe. Acta Crystallogr. D 57, 1367–1372 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  35. Read, R.J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

  36. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  37. Esnouf, R.M. Further additions to MolScript version 1. 4, including reading and contouring of electron-density maps. Acta Crystallogr. D 55, 938–940 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Merritt, E.A. & Murphy, M.E.P. Raster3D version 2. 0 — a program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1991).

    Article  Google Scholar 

  39. Ratcliff, G.C. & Erie, D.A. A novel single-molecule study to determine protein-protein association constants. J. Am. Chem. Soc. 123, 5632–5635 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Pielak, L. Spremulli, B. Bernstein and C. Kuhn for critical comments on the manuscript; P. Kuhn and J. Chrzas for help with data collection; D. Erie for access to AFM equipment; and members of the Redinbo Laboratory, including J. Chrencik, E. Howard-Williams, T. Lesher, S. Sakai and R. Watkins, for discussions and experimental assistance. The reseach was supported by the N.I.H. and a Burroughs Wellcome Career Award in the Biomedical Sciences (M.R.R), and by the N.I.H. (including a Core Grant) and the American Lebanese Syrian Associated Charities (P.M.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew R. Redinbo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bencharit, S., Morton, C., Xue, Y. et al. Structural basis of heroin and cocaine metabolism by a promiscuous human drug-processing enzyme. Nat Struct Mol Biol 10, 349–356 (2003). https://doi.org/10.1038/nsb919

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb919

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing