Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for dipeptide amide isoform-selective inhibition of neuronal nitric oxide synthase

Abstract

Three nitric oxide synthase (NOS) isoforms, eNOS, nNOS and iNOS, generate nitric oxide (NO) crucial to the cardiovascular, nervous and host defense systems, respectively. Development of isoform-selective NOS inhibitors is of considerable therapeutic importance. Crystal structures of nNOS-selective dipeptide inhibitors in complex with both nNOS and eNOS were solved and the inhibitors were found to adopt a curled conformation in nNOS but an extended conformation in eNOS. We hypothesized that a single-residue difference in the active site, Asp597 (nNOS) versus Asn368 (eNOS), is responsible for the favored binding in nNOS. In the D597N nNOS mutant crystal structure, a bound inhibitor switches to the extended conformation and its inhibition of nNOS decreases >200-fold. Therefore, a single-residue difference is responsible for more than two orders of magnitude selectivity in inhibition of nNOS over eNOS by L-Nω-nitroarginine-containing dipeptide inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ribbon diagram of the eNOS heme domain, the active site and the dipeptide inhibitors used in this study.
Figure 2: Stereo diagrams of the FoFc omit electron density maps contoured at 3 σ of the three dipeptide amide or peptidomimetic inhibitors bound, respectively, to nNOS and eNOS.
Figure 3: Stereo diagrams of dipeptide amide I binding.
Figure 4: Stereo diagrams of the FoFc omit electron density maps contoured at 3 σ of inhibitor I binding.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Moncada, S., Palmer, R.M.J. & Higgs, E.A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109–142 (1991).

    CAS  PubMed  Google Scholar 

  2. Dinerman, J.L., Lowenstein, C.J. & Snyder, S.H. Molecular mechanisms of nitric oxide prodiction. Potential relevance to cardiovascular disease. Circ. Res. 73, 217–222 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Kerwin, J.F. Jr., Lancaster, J.R. Jr. & Feldman, P.L. Nitric oxide: A new paradigm for second messengers. J. Med. Chem. 38, 4343–4362 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Salerno, J.C. et al. An autoinhibitory control element defines calcium-regulated isoforms of nitric oxide synthase. J. Biol. Chem. 272, 29769–29777 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Nichida, C.R. & Ortiz de Montellano, P.R. Control of electron transfer in nitric-oxide synthases. J. Biol. Chem. 276, 20116–20124 (2001).

    Article  Google Scholar 

  6. Daff, S., Sagami, I. & Shimizu, T. The 42-amino acid insert in the FMN domain of neuronal nitric-oxide synthase exerts control over Ca2+/calmodulin-dependent electron transfer. J. Biol. Chem. 274, 30589–30595 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Panda, K., Ghosh, S. & Stuehr, D.J. Calmodulin activates intersubunit electron transfer in the neuronal nitric-oxide synthase dimer. J. Biol. Chem. 276, 23349–23356 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Siddhanta, U. et al. Domain swapping in inducible nitric-oxide synthase. Electron transfer occurs between flavin and heme groups located on adjacent subunits in the dimer. J. Biol. Chem. 273, 18950–18958 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Dawson, V.L. & Dawson, T.M. Nitric oxide in neurodegeneration. Prog. Brain Res. 118, 215–229 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Bingham, C.O. III. The pathogenesis of rheumatoid arthritis: pivotal cytokines involved in bone degradation and inflammation. J. Rheumatol. Suppl. 65, 3–9 (2002).

    CAS  PubMed  Google Scholar 

  11. Cho, C.H. Current roles of nitric oxide in gastrointestinal diorders. J. Physiol. Paris 95, 253–256 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Hobbs, A.J., Higgs, A. & Moncada, S. Inhibition of nitric oxide synthase as a potential therapeutic target. Annu. Rev. Pharmacol. Toxicol. 39, 191–220 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Taddei, S., Virdis, A., Ghiadoni, L., Sudano, I. & Salvetti, A. Endothelial dysfunction in hypertension. J. Cardiovasc. Pharmacol. 38 (suppl. 2), S11–S14 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Sachais, B.S. Platelet-endothelial interactions in atherosclerosis. Curr. Atheroscler. Rep. 3, 412–416 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Rekka, E.A. & Chrysselis, N.C. Nitric oxide in atherosclerosis. Mini Rev. Med. Chem. 2, 433–445 (2002).

    Article  Google Scholar 

  16. Crane, B.R. et al. Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Science 279, 2121–2126 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Raman, C.S. et al. Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center. Cell 95, 939–950 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Fischmann, T.O. et al. Structural characterization of nitric oxide synthase isoforms reveals striking active-site conservation. Nature Struct. Biol. 6, 233–242 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Li, H. et al. The novel binding mode of N-alkyl-N′-hydroxguanidine to neuronal nitric oxide synthase provides mechanistic insights into NO biosynthesis. Biochemistry 41, 13868–13875 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Southan, G.J. & Szabo, C. Selective pharmacological inhibition of distinct nitric oxide synthase isoforms. Biochem. Pharmacol. 51, 383–394 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Babu, B.R. & Griffith, O.W. Design of isoform-selective inhibitors of nitric oxide synthase. Curr. Opin. Chem. Biol. 2, 491–500 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Alberton, W.K., Cooper, C.E. & Knowles, R.G. Nitric oxide synthase: structure, function and inhibition. Biochem. J. 357, 593–615 (2001).

    Article  Google Scholar 

  23. Huang, H., Martasek, P., Roman, L.J., Masters, B.S. & Silverman, R.B. N(ω)-nitroarginine-containing dipeptide amides. Potent and highly selective inhibitors of neuronal nitric oxide synthase. J. Med. Chem. 42, 3147–3153 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Hah, J.-M., Roman, L.J., Martasek, P. & Silverman, R.B. Reduced amide bond peptidomimetica. (4S)-N-(4-amino-5-[aminoalkyl]aminopentyl)-N′-nitroguanidines, potent and highly selective inhibitors of neuronal nitric oxide synthase. J. Med. Chem. 44, 2667–2670 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Hah, J.-M., Martasek, P., Roman, L.J. & Silverman, R.B. Aromatic reduced amide bond peptidomimetics as selective inhibitors of neuronal nitric oxide synthase. J. Med. Chem. 44, 2667–2675 (2003).

    Article  Google Scholar 

  26. Raman, C.S. et al. Crystal structure of nitric oxide synthase bound to nitro indazole reveals a novel inactivation mechanism. Biochemistry 40, 13448–13455 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Reif, D.W. & McCreedy, S.A. N-nitro-L-arginine and N-monomethyl-L-arginine exhibit a different pattern of inactivation toward the three nitric oxide synthases. Arch. Biochem. Biophys. 320, 170–176 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Babu, B.R., Frey, C. & Griffith, O.W. L-arginine binding to nitric-oxide synthase. The role of H-bonds to the nonreactive guanidinium nitrogens. J. Biol. Chem. 274, 25218–25226 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Li, H. et al. Mapping the active site polarity in structures of endothelial nitric oxide synthase heme domain complexed with isothioureas. J. Inorg. Biochem. 81, 133–139 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Li, H., Raman, C.S., Martasek, P., Masters, B.S.S. & Poulos, T.L. Crystallographic studies on endothelial nitric oxide synthase complexed with nitric oxide and mechanism-based inhibitors. Biochemistry 40, 5399–5406 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. & Pease, L.R. Site-directed muta-genesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. Gerber, N.C. & Ortiz de Montellano, P.R. Neuronal nitric oxide synthase, expression in Escherichia coli, irreversible inhibition by phenyldiazene, and active site topology. J. Biol. Chem. 270, 17791–17796 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Rodriguez-Crespo, I., Gerber, N.C. & Ortiz de Montellano, P.R. Endothelial nitric-oxide synthase expression in Escherichia coli, spectroscopic characterization, and role of tetrahydrobiopterin in dimer formation. J. Biol. Chem. 271, 11462–11467 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Brunger, A.T. et al. Crystallography & NMR System: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building models in electron density and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the beamline staff at SSRL and ALS for their assistance during synchrotron data collection. This research was supported by US National Institutes of Health grants GM57353 (T.L.P) and GM49725 (R.B.S.). J.A.G. acknowledges NATO and the Spanish Ministry of Science and Technology for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas L Poulos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flinspach, M., Li, H., Jamal, J. et al. Structural basis for dipeptide amide isoform-selective inhibition of neuronal nitric oxide synthase. Nat Struct Mol Biol 11, 54–59 (2004). https://doi.org/10.1038/nsmb704

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb704

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing