Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The endoplasmic reticulum in apoptosis and autophagy: role of the BCL-2 protein family

Abstract

Apoptosis is essential for normal development and maintenance of homeostasis, and disruption of apoptotic pathways is associated with multiple disease states, including cancer. Although initially identified as central regulators of apoptosis at the level of mitochondria, an important role for BCL-2 proteins at the endoplasmic reticulum is now well established. Signaling pathways emanating from the endoplasmic reticulum (ER) are involved in apoptosis initiated by stimuli as diverse as ER stress, oncogene expression, death receptor (DR) ligation and oxidative stress, and the BCL-2 family is almost invariably implicated in the regulation of these pathways. This also includes Ca2+-mediated cross talk between ER and mitochondria during apoptosis, which contributes to the mitochondrial dynamics that support the core mitochondrial apoptosis pathway. In addition to the regulation of apoptosis, BCL-2 proteins at the ER also regulate autophagy, a survival pathway that limits metabolic stress, genomic instability and tumorigenesis. In cases where apoptosis is inhibited, however, prolonged autophagy can lead to cell death. This review provides an overview of ER-associated apoptotic and autophagic signaling pathways, with particular emphasis on the BCL-2 family proteins.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Adams JM, Cory S . (2007a). Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opin Immunol 19: 488–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams JM, Cory S . (2007b). The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26: 1324–1337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Annis MG, Zamzami N, Zhu W, Penn LZ, Kroemer G, Leber B et al. (2001). Endoplasmic reticulum localized Bcl-2 prevents apoptosis when redistribution of cytochrome c is a late event. Oncogene 20: 1939–1952.

    CAS  PubMed  Google Scholar 

  • Armstrong JL, Veal GJ, Redfern CP, Lovat PE . (2007). Role of Noxa in p53-independent fenretinide-induced apoptosis of neuroectodermal tumours. Apoptosis 12: 613–622.

    CAS  PubMed  Google Scholar 

  • Baliga BC, Read SH, Kumar S . (2004). The biochemical mechanism of caspase-2 activation. Cell Death Differ 11: 1234–1241.

    CAS  PubMed  Google Scholar 

  • Baltzis D, Pluquet O, Papadakis AI, Kazemi S, Qu LK, Koromilas AE . (2007). The eIF2alpha kinases PERK and PKR activate glycogen synthase kinase 3 to promote the proteasomal degradation of p53. J Biol Chem 282: 31675–31687.

    CAS  PubMed  Google Scholar 

  • Bassik MC, Scorrano L, Oakes SA, Pozzan T, Korsmeyer SJ . (2004). Phosphorylation of BCL-2 regulates ER Ca2+ homeostasis and apoptosis. EMBO J 23: 1207–1216.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bayir H, Fadeel B, Palladino MJ, Witasp E, Kurnikov IV, Tyurina YY et al. (2006). Apoptotic interactions of cytochrome c: redox flirting with anionic phospholipids within and outside of mitochondria. Biochim Biophys Acta 1757: 648–659.

    CAS  PubMed  Google Scholar 

  • Bhatt K, Feng L, Pabla N, Liu K, Smith S, Dong Z . (2008). Effects of targeted Bcl-2 expression in mitochondria or endoplasmic reticulum on renal tubular cell apoptosis. Am J Physiol Renal Physiol 294: F499–F507.

    CAS  PubMed  Google Scholar 

  • Boya P, Cohen I, Zamzami N, Vieira HL, Kroemer G . (2002). Endoplasmic reticulum stress-induced cell death requires mitochondrial membrane permeabilization. Cell Death Differ 9: 465–467.

    CAS  PubMed  Google Scholar 

  • Breckenridge DG, Germain M, Mathai JP, Nguyen M, Shore GC . (2003a). Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22: 8608–8618.

    CAS  PubMed  Google Scholar 

  • Breckenridge DG, Stojanovic M, Marcellus RC, Shore GC . (2003b). Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol 160: 1115–1127.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brewster JL, Linseman DA, Bouchard RJ, Loucks FA, Precht TA, Esch EA et al. (2006). Endoplasmic reticulum stress and trophic factor withdrawal activate distinct signaling cascades that induce glycogen synthase kinase-3 beta and a caspase-9-dependent apoptosis in cerebellar granule neurons. Mol Cell Neurosci 32: 242–253.

    CAS  PubMed  Google Scholar 

  • Buytaert E, Callewaert G, Hendrickx N, Scorrano L, Hartmann D, Missiaen L et al. (2006). Role of endoplasmic reticulum depletion and multidomain proapoptotic BAX and BAK proteins in shaping cell death after hypericin-mediated photodynamic therapy. FASEB J 20: 756–758.

    CAS  PubMed  Google Scholar 

  • Chae HJ, Kim HR, Xu C, Bailly-Maitre B, Krajewska M, Krajewski S et al. (2004). BI-1 regulates an apoptosis pathway linked to endoplasmic reticulum stress. Mol Cell 15: 355–366.

    CAS  PubMed  Google Scholar 

  • Chami M, Prandini A, Campanella M, Pinton P, Szabadkai G, Reed JC et al. (2004). Bcl-2 and Bax exert opposing effects on Ca2+ signaling, which do not depend on their putative pore-forming region. J Biol Chem 279: 54581–54589.

    CAS  PubMed  Google Scholar 

  • Chen G, Bower KA, Ma C, Fang S, Thiele CJ, Luo J . (2004a). Glycogen synthase kinase 3beta (GSK3beta) mediates 6-hydroxydopamine-induced neuronal death. FASEB J 18: 1162–1164.

    CAS  PubMed  Google Scholar 

  • Chen R, Valencia I, Zhong F, McColl KS, Roderick HL, Bootman MD et al. (2004b). Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate. J Cell Biol 166: 193–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung HH, Lynn Kelly N, Liston P, Korneluk RG . (2006). Involvement of caspase-2 and caspase-9 in endoplasmic reticulum stress-induced apoptosis: a role for the IAPs. Exp Cell Res 312: 2347–2357.

    CAS  PubMed  Google Scholar 

  • Chiang CW, Harris G, Ellig C, Masters SC, Subramanian R, Shenolikar S et al. (2001). Protein phosphatase 2A activates the proapoptotic function of BAD in interleukin- 3-dependent lymphoid cells by a mechanism requiring 14-3-3 dissociation. Blood 97: 1289–1297.

    CAS  PubMed  Google Scholar 

  • Chiang CW, Kanies C, Kim KW, Fang WB, Parkhurst C, Xie M et al. (2003). Protein phosphatase 2A dephosphorylation of phosphoserine 112 plays the gatekeeper role for BAD-mediated apoptosis. Mol Cell Biol 23: 6350–6362.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chipuk JE, Green DR . (2008). How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18: 157–164.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christen V, Treves S, Duong FH, Heim MH . (2007). Activation of endoplasmic reticulum stress response by hepatitis viruses up-regulates protein phosphatase 2A. Hepatology 46: 558–565.

    CAS  PubMed  Google Scholar 

  • Cipolat S, Rudka T, Hartmann D, Costa V, Serneels L, Craessaerts K et al. (2006). Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 126: 163–175.

    CAS  PubMed  Google Scholar 

  • Cribbs JT, Strack S . (2007). Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 8: 939–944.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dahmer MK . (2005). Caspases-2, -3, and -7 are involved in thapsigargin-induced apoptosis of SH-SY5Y neuroblastoma cells. J Neurosci Res 80: 576–583.

    CAS  PubMed  Google Scholar 

  • Danial NN, Gramm CF, Scorrano L, Zhang CY, Krauss S, Ranger AM et al. (2003). BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424: 952–956.

    CAS  PubMed  Google Scholar 

  • Danial NN, Korsmeyer SJ . (2004). Cell death: critical control points. Cell 116: 205–219.

    CAS  PubMed  Google Scholar 

  • Demaurex N, Distelhorst C . (2003). Cell biology. Apoptosis—the calcium connection. Science 300: 65–67.

    CAS  PubMed  Google Scholar 

  • Deniaud A, Sharaf el dein O, Maillier E, Poncet D, Kroemer G, Lemaire C et al. (2008). Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene 27: 285–299.

    CAS  PubMed  Google Scholar 

  • Di Sano F, Ferraro E, Tufi R, Achsel T, Piacentini M, Cecconi F . (2006). Endoplasmic reticulum stress induces apoptosis by an apoptosome-dependent but caspase 12-independent mechanism. J Biol Chem 281: 2693–2700.

    CAS  PubMed  Google Scholar 

  • Dimmeler S, Breitschopf K, Haendeler J, Zeiher AM . (1999). Dephosphorylation targets Bcl-2 for ubiquitin-dependent degradation: a link between the apoptosome and the proteasome pathway. J Exp Med 189: 1815–1822.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Q, He X, Hsu JM, Xia W, Chen CT, Li LY et al. (2007). Degradation of Mcl-1 by beta-TrCP mediates glycogen synthase kinase 3-induced tumor suppression and chemosensitization. Mol Cell Biol 27: 4006–4017.

    CAS  PubMed  Google Scholar 

  • Distelhorst CW, Shore GC . (2004). Bcl-2 and calcium: controversy beneath the surface. Oncogene 23: 2875–2880.

    CAS  PubMed  Google Scholar 

  • Dong Z, Saikumar P, Weinberg JM, Venkatachalam MA . (2006). Calcium in cell injury and death. Annu Rev Pathol 1: 405–434.

    CAS  PubMed  Google Scholar 

  • Dremina ES, Sharov VS, Kumar K, Zaidi A, Michaelis EK, Schoneich C . (2004). Anti-apoptotic protein Bcl-2 interacts with and destabilizes the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA). Biochem J 383: 361–370.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dremina ES, Sharov VS, Schoneich C . (2006). Displacement of SERCA from SR lipid caveolae-related domains by Bcl-2: a possible mechanism for SERCA inactivation. Biochemistry 45: 175–184.

    CAS  PubMed  Google Scholar 

  • Elyaman W, Terro F, Suen KC, Yardin C, Chang RC, Hugon J . (2002). BAD and Bcl-2 regulation are early events linking neuronal endoplasmic reticulum stress to mitochondria-mediated apoptosis. Brain Res Mol Brain Res 109: 233–238.

    CAS  PubMed  Google Scholar 

  • Fischer H, Koenig U, Eckhart L, Tschachler E . (2002). Human caspase 12 has acquired deleterious mutations. Biochem Biophys Res Commun 293: 722–726.

    CAS  PubMed  Google Scholar 

  • Foskett JK, White C, Cheung KH, Mak DO . (2007). Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87: 593–658.

    CAS  PubMed  Google Scholar 

  • Foyouzi-Youssefi R, Arnaudeau S, Borner C, Kelley WL, Tschopp J, Lew DP et al. (2000). Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc Natl Acad Sci USA 97: 5723–5728.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, Rudka T et al. (2006). OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126: 177–189.

    CAS  PubMed  Google Scholar 

  • Fujita E, Kouroku Y, Jimbo A, Isoai A, Maruyama K, Momoi T . (2002). Caspase-12 processing and fragment translocation into nuclei of tunicamycin-treated cells. Cell Death Differ 9: 1108–1114.

    CAS  PubMed  Google Scholar 

  • Gao G, Dou QP . (2000). N-terminal cleavage of bax by calpain generates a potent proapoptotic 18-kDa fragment that promotes bcl-2-independent cytochrome C release and apoptotic cell death. J Cell Biochem 80: 53–72.

    CAS  PubMed  Google Scholar 

  • Gao Z, Shao Y, Jiang X . (2005). Essential roles of the Bcl-2 family of proteins in caspase-2-induced apoptosis. J Biol Chem 280: 38271–38275.

    CAS  PubMed  Google Scholar 

  • Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G . (2006). Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 13: 1423–1433.

    CAS  PubMed  Google Scholar 

  • Germain M, Mathai JP, McBride HM, Shore GC . (2005). Endoplasmic reticulum BIK initiates DRP1-regulated remodelling of mitochondrial cristae during apoptosis. EMBO J 24: 1546–1556.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gil-Parrado S, Fernandez-Montalvan A, Assfalg-Machleidt I, Popp O, Bestvater F, Holloschi A et al. (2002). Ionomycin-activated calpain triggers apoptosis. A probable role for Bcl-2 family members. J Biol Chem 277: 27217–27226.

    CAS  PubMed  Google Scholar 

  • Gonzalvez F, Gottlieb E . (2007). Cardiolipin: setting the beat of apoptosis. Apoptosis 12: 877–885.

    CAS  PubMed  Google Scholar 

  • Groenendyk J, Lynch J, Michalak M . (2004). Calreticulin, Ca2+, and calcineurin - signaling from the endoplasmic reticulum. Mol Cells 17: 383–389.

    CAS  PubMed  Google Scholar 

  • Hacki J, Egger L, Monney L, Conus S, Rosse T, Fellay I et al. (2000). Apoptotic crosstalk between the endoplasmic reticulum and mitochondria controlled by Bcl-2. Oncogene 19: 2286–2295.

    CAS  PubMed  Google Scholar 

  • Hajnoczky G, Davies E, Madesh M . (2003). Calcium signaling and apoptosis. Biochem Biophys Res Commun 304: 445–454.

    CAS  PubMed  Google Scholar 

  • Hanson CJ, Bootman MD, Distelhorst CW, Wojcikiewicz RJ, Roderick HL . (2008). Bcl-2 suppresses Ca(2+) release through inositol 1,4,5-trisphosphate receptors and inhibits Ca(2+) uptake by mitochondria without affecting ER calcium store content. Cell Calcium.

  • Hassan M, Alaoui A, Feyen O, Mirmohammadsadegh A, Essmann F, Tannapfel A et al. (2008). The BH3-only member Noxa causes apoptosis in melanoma cells by multiple pathways. Oncogene 27: 4557–4568.

    CAS  PubMed  Google Scholar 

  • He Q, Lee DI, Rong R, Yu M, Luo X, Klein M et al. (2002). Endoplasmic reticulum calcium pool depletion-induced apoptosis is coupled with activation of the death receptor 5 pathway. Oncogene 21: 2623–2633.

    CAS  PubMed  Google Scholar 

  • Heath-Engel HM, Shore GC . (2006). Mitochondrial membrane dynamics, cristae remodelling and apoptosis. Biochim Biophys Acta 1763: 549–560.

    CAS  PubMed  Google Scholar 

  • Hetz C, Bernasconi P, Fisher J, Lee AH, Bassik MC, Antonsson B et al. (2006). Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science 312: 572–576.

    CAS  PubMed  Google Scholar 

  • Hetz C, Glimcher L . (2008). The daily job of night killers: alternative roles of the BCL-2 family in organelle physiology. Trends Cell Biol 18: 38–44.

    CAS  PubMed  Google Scholar 

  • Hetz C, Thielen P, Fisher J, Pasinelli P, Brown RH, Korsmeyer S et al. (2007). The proapoptotic BCL-2 family member BIM mediates motoneuron loss in a model of amyotrophic lateral sclerosis. Cell Death Differ 14: 1386–1389.

    CAS  PubMed  Google Scholar 

  • Hetz CA . (2007). ER stress signaling and the BCL-2 family of proteins: from adaptation to irreversible cellular damage. Antioxid Redox Signal 9: 2345–2355.

    CAS  PubMed  Google Scholar 

  • Hidvegi T, Schmidt BZ, Hale P, Perlmutter DH . (2005). Accumulation of mutant alpha1-antitrypsin Z in the endoplasmic reticulum activates caspases-4 and -12, NFkappaB, and BAP31 but not the unfolded protein response. J Biol Chem 280: 39002–39015.

    CAS  PubMed  Google Scholar 

  • Hitomi J, Katayama T, Eguchi Y, Kudo T, Taniguchi M, Koyama Y et al. (2004a). Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol 165: 347–356.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hitomi J, Katayama T, Taniguchi M, Honda A, Imaizumi K, Tohyama M . (2004b). Apoptosis induced by endoplasmic reticulum stress depends on activation of caspase-3 via caspase-12. Neurosci Lett 357: 127–130.

    CAS  PubMed  Google Scholar 

  • Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T et al. (2007). Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 25: 193–205.

    PubMed  Google Scholar 

  • Iizaka T, Tsuji M, Oyamada H, Morio Y, Oguchi K . (2007). Interaction between caspase-8 activation and endoplasmic reticulum stress in glycochenodeoxycholic acid-induced apoptotic HepG2 cells. Toxicology 241: 146–156.

    CAS  PubMed  Google Scholar 

  • Imai T, Kosuge Y, Ishige K, Ito Y . (2007). Amyloid beta-protein potentiates tunicamycin-induced neuronal death in organotypic hippocampal slice cultures. Neuroscience 147: 639–651.

    CAS  PubMed  Google Scholar 

  • Jiang CC, Chen LH, Gillespie S, Wang YF, Kiejda KA, Zhang XD et al. (2007). Inhibition of MEK sensitizes human melanoma cells to endoplasmic reticulum stress-induced apoptosis. Cancer Res 67: 9750–9761.

    CAS  PubMed  Google Scholar 

  • Jimbo A, Fujita E, Kouroku Y, Ohnishi J, Inohara N, Kuida K et al. (2003). ER stress induces caspase-8 activation, stimulating cytochrome c release and caspase-9 activation. Exp Cell Res 283: 156–166.

    CAS  PubMed  Google Scholar 

  • Jin S, White E . (2008). Tumor Suppression by Autophagy Through the Management of Metabolic Stress. Autophagy 4: 563–566.

    CAS  PubMed  Google Scholar 

  • Kalai M, Lamkanfi M, Denecker G, Boogmans M, Lippens S, Meeus A et al. (2003). Regulation of the expression and processing of caspase-12. J Cell Biol 162: 457–467.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamada S, Washida M, Hasegawa J, Kusano H, Funahashi Y, Tsujimoto Y . (1997). Involvement of caspase-4(-like) protease in Fas-mediated apoptotic pathway. Oncogene 15: 285–290.

    CAS  PubMed  Google Scholar 

  • Karantza-Wadsworth V, Patel S, Kravchuk O, Chen G, Mathew R, Jin S et al. (2007). Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev 21: 1621–1635.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karki P, Dahal GR, Park IS . (2007). Both dimerization and interdomain processing are essential for caspase-4 activation. Biochem Biophys Res Commun 356: 1056–1061.

    CAS  PubMed  Google Scholar 

  • Kieran D, Woods I, Villunger A, Strasser A, Prehn JH . (2007). Deletion of the BH3-only protein puma protects motoneurons from ER stress-induced apoptosis and delays motoneuron loss in ALS mice. Proc Natl Acad Sci USA 104: 20606–20611.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T . (2001). Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep 2: 330–335.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim BJ, Ryu SW, Song BJ . (2006a). JNK- and p38 kinase-mediated phosphorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. J Biol Chem 281: 21256–21265.

    CAS  PubMed  Google Scholar 

  • Kim KW, Mutter RW, Cao C, Albert JM, Freeman M, Hallahan DE et al. (2006b). Autophagy for cancer therapy through inhibition of pro-apoptotic proteins and mammalian target of rapamycin signaling. J Biol Chem 281: 36883–36890.

    CAS  PubMed  Google Scholar 

  • Kinnally KW, Antonsson B . (2007). A tale of two mitochondrial channels, MAC and PTP, in apoptosis. Apoptosis 12: 857–868.

    CAS  PubMed  Google Scholar 

  • Kitamura Y, Miyamura A, Takata K, Inden M, Tsuchiya D, Nakamura K et al. (2003). Possible involvement of both endoplasmic reticulum-and mitochondria-dependent pathways in thapsigargin-induced apoptosis in human neuroblastoma SH-SY5Y cells. J Pharmacol Sci 92: 228–236.

    CAS  PubMed  Google Scholar 

  • Kouroku Y, Fujita E, Jimbo A, Kikuchi T, Yamagata T, Momoi MY et al. (2002). Polyglutamine aggregates stimulate ER stress signals and caspase-12 activation. Hum Mol Genet 11: 1505–1515.

    CAS  PubMed  Google Scholar 

  • Kuo TH, Kim HR, Zhu L, Yu Y, Lin HM, Tsang W . (1998). Modulation of endoplasmic reticulum calcium pump by Bcl-2. Oncogene 17: 1903–1910.

    CAS  PubMed  Google Scholar 

  • Leber B, Lin J, Andrews DW . (2007). Embedded together: the life and death consequences of interaction of the Bcl-2 family with membranes. Apoptosis 12: 897–911.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lei K, Davis RJ . (2003). JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci USA 100: 2432–2437.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Letai AG . (2008). Diagnosing and exploiting cancer′s addiction to blocks in apoptosis. Nat Rev Cancer 8: 121–132.

    CAS  PubMed  Google Scholar 

  • Levine B, Klionsky DJ . (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6: 463–477.

    CAS  PubMed  Google Scholar 

  • Levine B, Kroemer G . (2008). Autophagy in the pathogenesis of disease. Cell 132: 27–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Fox CJ, Master SR, Bindokas VP, Chodosh LA, Thompson CB . (2002). Bcl-X(L) affects Ca(2+) homeostasis by altering expression of inositol 1,4,5-trisphosphate receptors. Proc Natl Acad Sci USA 99: 9830–9835.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Wang X, Vais H, Thompson CB, Foskett JK, White C . (2007). Apoptosis regulation by Bcl-x(L) modulation of mammalian inositol 1,4,5-trisphosphate receptor channel isoform gating. Proc Natl Acad Sci USA 104: 12565–12570.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Lee B, Lee AS . (2006). Endoplasmic reticulum stress-induced apoptosis: multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J Biol Chem 281: 7260–7270.

    CAS  PubMed  Google Scholar 

  • Li XD, Lankinen H, Putkuri N, Vapalahti O, Vaheri A . (2005). Tula hantavirus triggers pro-apoptotic signals of ER stress in Vero E6 cells. Virology 333: 180–189.

    CAS  PubMed  Google Scholar 

  • Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G et al. (1998). Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol 72: 8586–8596.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liao PC, Tan SK, Lieu CH, Jung HK . (2008). Involvement of endoplasmic reticulum in paclitaxel-induced apoptosis. J Cell Biochem 104: 1509–1523.

    CAS  PubMed  Google Scholar 

  • Lin CF, Chen CL, Chiang CW, Jan MS, Huang WC, Lin YS . (2007). GSK-3beta acts downstream of PP2A and the PI 3-kinase-Akt pathway, and upstream of caspase-2 in ceramide-induced mitochondrial apoptosis. J Cell Sci 120: 2935–2943.

    CAS  PubMed  Google Scholar 

  • Lin SS, Bassik MC, Suh H, Nishino M, Arroyo JD, Hahn WC et al. (2006). PP2A regulates BCL-2 phosphorylation and proteasome-mediated degradation at the endoplasmic reticulum. J Biol Chem 281: 23003–23012.

    CAS  PubMed  Google Scholar 

  • Linseman DA, Butts BD, Precht TA, Phelps RA, Le SS, Laessig TA et al. (2004). Glycogen synthase kinase-3beta phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J Neurosci 24: 9993–10002.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu N, Scofield VL, Qiang W, Yan M, Kuang X, Wong PK . (2006). Interaction between endoplasmic reticulum stress and caspase 8 activation in retrovirus MoMuLV-ts1-infected astrocytes. Virology 348: 398–405.

    CAS  PubMed  Google Scholar 

  • Lopez-Anton N, Rudy A, Barth N, Schmitz ML, Pettit GR, Schulze-Osthoff K et al. (2006). The marine product cephalostatin 1 activates an endoplasmic reticulum stress-specific and apoptosome-independent apoptotic signaling pathway. J Biol Chem 281: 33078–33086.

    CAS  PubMed  Google Scholar 

  • Luo X, He Q, Huang Y, Sheikh MS . (2005). Transcriptional upregulation of PUMA modulates endoplasmic reticulum calcium pool depletion-induced apoptosis via Bax activation. Cell Death Differ 12: 1310–1318.

    CAS  PubMed  Google Scholar 

  • Ma Y, Brewer JW, Diehl JA, Hendershot LM . (2002). Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol 318: 1351–1365.

    CAS  PubMed  Google Scholar 

  • Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P et al. (2007). Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. Embo J 26: 2527–2539.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malhotra JD, Kaufman RJ . (2007). The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol 18: 716–731.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R et al. (2004). CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 18: 3066–3077.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masud A, Mohapatra A, Lakhani SA, Ferrandino A, Hakem R, Flavell RA . (2007). Endoplasmic reticulum stress-induced death of mouse embryonic fibroblasts requires the intrinsic pathway of apoptosis. J Biol Chem 282: 14132–14139.

    CAS  PubMed  Google Scholar 

  • Mathai JP, Germain M, Marcellus RC, Shore GC . (2002). Induction and endoplasmic reticulum location of BIK/NBK in response to apoptotic signaling by E1A and p53. Oncogene 21: 2534–2544.

    CAS  PubMed  Google Scholar 

  • Mathai JP, Germain M, Shore GC . (2005). BH3-only BIK regulates BAX,BAK-dependent release of Ca2+ from endoplasmic reticulum stores and mitochondrial apoptosis during stress-induced cell death. J Biol Chem 280: 23829–23836.

    CAS  PubMed  Google Scholar 

  • Mathew R, Karantza-Wadsworth V, White E . (2007a). Role of autophagy in cancer. Nat Rev Cancer 7: 961–967.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathew R, Kongara S, Beaudoin B, Karp CM, Bray K, Degenhardt K et al. (2007b). Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev 21: 1367–1381.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maurer U, Charvet C, Wagman AS, Dejardin E, Green DR . (2006). Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell 21: 749–760.

    CAS  PubMed  Google Scholar 

  • McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ . (2001). Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21: 1249–1259.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morishima N, Nakanishi K, Takenouchi H, Shibata T, Yasuhiko Y . (2002). An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem 277: 34287–34294.

    CAS  PubMed  Google Scholar 

  • Morishima N, Nakanishi K, Tsuchiya K, Shibata T, Seiwa E . (2004). Translocation of Bim to the endoplasmic reticulum (ER) mediates ER stress signaling for activation of caspase-12 during ER stress-induced apoptosis. J Biol Chem 279: 50375–50381.

    CAS  PubMed  Google Scholar 

  • Murakami Y, Aizu-Yokota E, Sonoda Y, Ohta S, Kasahara T . (2007). Suppression of endoplasmic reticulum stress-induced caspase activation and cell death by the overexpression of Bcl-xL or Bcl-2. J Biochem 141: 401–410.

    CAS  PubMed  Google Scholar 

  • Muscarella DE, Bloom SE . (2008). The contribution of c-Jun N-terminal kinase activation and subsequent Bcl-2 phosphorylation to apoptosis induction in human B-cells is dependent on the mode of action of specific stresses. Toxicol Appl Pharmacol 228: 93–104.

    CAS  PubMed  Google Scholar 

  • Nakagawa T, Yuan J . (2000). Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150: 887–894.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA et al. (2000). Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403: 98–103.

    CAS  PubMed  Google Scholar 

  • Nawrocki ST, Carew JS, Dunner Jr K, Boise LH, Chiao PJ, Huang P et al. (2005). Bortezomib inhibits PKR-like endoplasmic reticulum (ER) kinase and induces apoptosis via ER stress in human pancreatic cancer cells. Cancer Res 65: 11510–11519.

    CAS  PubMed  Google Scholar 

  • Ng FW, Nguyen M, Kwan T, Branton PE, Nicholson DW, Cromlish JA et al. (1997). p28 Bap31, a Bcl-2/Bcl-XL- and procaspase-8-associated protein in the endoplasmic reticulum. J Cell Biol 139: 327–338.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen M, Breckenridge DG, Ducret A, Shore GC . (2000). Caspase-resistant BAP31 inhibits fas-mediated apoptotic membrane fragmentation and release of cytochrome c from mitochondria. Mol Cell Biol 20: 6731–6740.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nickson P, Toth A, Erhardt P . (2007). PUMA is critical for neonatal cardiomyocyte apoptosis induced by endoplasmic reticulum stress. Cardiovasc Res 73: 48–56.

    CAS  PubMed  Google Scholar 

  • Nieto-Miguel T, Fonteriz RI, Vay L, Gajate C, Lopez-Hernandez S, Mollinedo F . (2007). Endoplasmic reticulum stress in the proapoptotic action of edelfosine in solid tumor cells. Cancer Res 67: 10368–10378.

    CAS  PubMed  Google Scholar 

  • Novoa I, Zeng H, Harding HP, Ron D . (2001). Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J Cell Biol 153: 1011–1022.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nutt LK, Chandra J, Pataer A, Fang B, Roth JA, Swisher SG et al. (2002a). Bax-mediated Ca2+ mobilization promotes cytochrome c release during apoptosis. J Biol Chem 277: 20301–20308.

    CAS  PubMed  Google Scholar 

  • Nutt LK, Pataer A, Pahler J, Fang B, Roth J, McConkey DJ et al. (2002b). Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. J Biol Chem 277: 9219–9225.

    CAS  PubMed  Google Scholar 

  • Oakes SA, Lin SS, Bassik MC . (2006). The control of endoplasmic reticulum-initiated apoptosis by the BCL-2 family of proteins. Curr Mol Med 6: 99–109.

    CAS  PubMed  Google Scholar 

  • Oakes SA, Scorrano L, Opferman JT, Bassik MC, Nishino M, Pozzan T et al. (2005). Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc Natl Acad Sci USA 102: 105–110.

    CAS  PubMed  Google Scholar 

  • Obeng EA, Boise LH . (2005). Caspase-12 and caspase-4 are not required for caspase-dependent endoplasmic reticulum stress-induced apoptosis. J Biol Chem 280: 29578–29587.

    CAS  PubMed  Google Scholar 

  • Oberstein A, Jeffrey PD, Shi Y . (2007). Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein. J Biol Chem 282: 13123–13132.

    CAS  PubMed  Google Scholar 

  • Oda T, Kosuge Y, Arakawa M, Ishige K, Ito Y . (2008). Distinct mechanism of cell death is responsible for tunicamycin-induced ER stress in SK-N-SH and SH-SY5Y cells. Neurosci Res 60: 29–39.

    CAS  PubMed  Google Scholar 

  • Oh SH, Lee BH, Lim SC . (2004). Cadmium induces apoptotic cell death in WI 38 cells via caspase-dependent Bid cleavage and calpain-mediated mitochondrial Bax cleavage by Bcl-2-independent pathway. Biochem Pharmacol 68: 1845–1855.

    CAS  PubMed  Google Scholar 

  • Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA et al. (2005). An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435: 677–681.

    CAS  PubMed  Google Scholar 

  • Orrenius S . (2007). Reactive oxygen species in mitochondria-mediated cell death. Drug Metab Rev 39: 443–455.

    CAS  PubMed  Google Scholar 

  • Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S . (2002). Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci USA 99: 1259–1263.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ott M, Zhivotovsky B, Orrenius S . (2007). Role of cardiolipin in cytochrome c release from mitochondria. Cell Death Differ 14: 1243–1247.

    CAS  PubMed  Google Scholar 

  • Palmer AE, Jin C, Reed JC, Tsien RY . (2004). Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. Proc Natl Acad Sci USA 101: 17404–17409.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N et al. (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122: 927–939.

    CAS  PubMed  Google Scholar 

  • Pellegrini L, Scorrano L . (2007). A cut short to death: Parl and Opa1 in the regulation of mitochondrial morphology and apoptosis. Cell Death Differ 14: 1275–1284.

    CAS  PubMed  Google Scholar 

  • Petrosillo G, Ruggiero FM, Pistolese M, Paradies G . (2004). Ca2+-induced reactive oxygen species production promotes cytochrome c release from rat liver mitochondria via mitochondrial permeability transition (MPT)-dependent and MPT-independent mechanisms: role of cardiolipin. J Biol Chem 279: 53103–53108.

    CAS  PubMed  Google Scholar 

  • Pinton P, Ferrari D, Magalhaes P, Schulze-Osthoff K, Di Virgilio F, Pozzan T et al. (2000). Reduced loading of intracellular Ca(2+) stores and downregulation of capacitative Ca(2+) influx in Bcl-2-overexpressing cells. J Cell Biol 148: 857–862.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pinton P, Ferrari D, Rapizzi E, Di Virgilio F, Pozzan T, Rizzuto R . (2001). The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO J 20: 2690–2701.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pinton P, Rizzuto R . (2006). Bcl-2 and Ca2+ homeostasis in the endoplasmic reticulum. Cell Death Differ 13: 1409–1418.

    CAS  PubMed  Google Scholar 

  • Pizzo P, Pozzan T . (2007). Mitochondria-endoplasmic reticulum choreography: structure and signaling dynamics. Trends Cell Biol 17: 511–517.

    CAS  PubMed  Google Scholar 

  • Puthalakath H, O′Reilly LA, Gunn P, Lee L, Kelly PN, Huntington ND et al. (2007). ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129: 1337–1349.

    CAS  PubMed  Google Scholar 

  • Qu L, Huang S, Baltzis D, Rivas-Estilla AM, Pluquet O, Hatzoglou M et al. (2004). Endoplasmic reticulum stress induces p53 cytoplasmic localization and prevents p53-dependent apoptosis by a pathway involving glycogen synthase kinase-3beta. Genes Dev 18: 261–277.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahmani M, Davis EM, Crabtree TR, Habibi JR, Nguyen TK, Dent P et al. (2007). The kinase inhibitor sorafenib induces cell death through a process involving induction of endoplasmic reticulum stress. Mol Cell Biol 27: 5499–5513.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rao RV, Castro-Obregon S, Frankowski H, Schuler M, Stoka V, del Rio G et al. (2002a). Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. J Biol Chem 277: 21836–21842.

    CAS  PubMed  Google Scholar 

  • Rao RV, Hermel E, Castro-Obregon S, del Rio G, Ellerby LM, Ellerby HM et al. (2001). Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J Biol Chem 276: 33869–33874.

    CAS  PubMed  Google Scholar 

  • Rao RV, Niazi K, Mollahan P, Mao X, Crippen D, Poksay KS et al. (2006). Coupling endoplasmic reticulum stress to the cell-death program: a novel HSP90-independent role for the small chaperone protein p23. Cell Death Differ 13: 415–425.

    CAS  PubMed  Google Scholar 

  • Rao RV, Peel A, Logvinova A, del Rio G, Hermel E, Yokota T et al. (2002b). Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett 514: 122–128.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy RK, Mao C, Baumeister P, Austin RC, Kaufman RJ, Lee AS . (2003). Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: role of ATP binding site in suppression of caspase-7 activation. J Biol Chem 278: 20915–20924.

    CAS  PubMed  Google Scholar 

  • Reed JC . (2006). Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ 13: 1378–1386.

    CAS  PubMed  Google Scholar 

  • Reimertz C, Kogel D, Rami A, Chittenden T, Prehn JH . (2003). Gene expression during ER stress-induced apoptosis in neurons: induction of the BH3-only protein Bbc3/PUMA and activation of the mitochondrial apoptosis pathway. J Cell Biol 162: 587–597.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roderick HL, Cook SJ . (2008). Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer 8: 361–375.

    CAS  PubMed  Google Scholar 

  • Rong Y, Distelhorst CW . (2008). Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis. Annu Rev Physiol 70: 73–91.

    CAS  PubMed  Google Scholar 

  • Roy S, Sharom JR, Houde C, Loisel TP, Vaillancourt JP, Shao W et al. (2008). Confinement of caspase-12 proteolytic activity to autoprocessing. Proc Natl Acad Sci USA 105: 4133–4138.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rudner J, Lepple-Wienhues A, Budach W, Berschauer J, Friedrich B, Wesselborg S et al. (2001). Wild-type, mitochondrial and ER-restricted Bcl-2 inhibit DNA damage-induced apoptosis but do not affect death receptor-induced apoptosis. J Cell Sci 114: 4161–4172.

    CAS  PubMed  Google Scholar 

  • Ruiz-Vela A, Opferman JT, Cheng EH, Korsmeyer SJ . (2005). Proapoptotic BAX and BAK control multiple initiator caspases. EMBO Rep 6: 379–385.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruvolo PP, Clark W, Mumby M, Gao F, May WS . (2002). A functional role for the B56 alpha-subunit of protein phosphatase 2A in ceramide-mediated regulation of Bcl2 phosphorylation status and function. J Biol Chem 277: 22847–22852.

    CAS  PubMed  Google Scholar 

  • Ruvolo PP, Deng X, Ito T, Carr BK, May WS . (1999). Ceramide induces Bcl2 dephosphorylation via a mechanism involving mitochondrial PP2A. J Biol Chem 274: 20296–20300.

    CAS  PubMed  Google Scholar 

  • Saleh M, Vaillancourt JP, Graham RK, Huyck M, Srinivasula SM, Alnemri ES et al. (2004). Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 429: 75–79.

    CAS  PubMed  Google Scholar 

  • Sanges D, Marigo V . (2006). Cross-talk between two apoptotic pathways activated by endoplasmic reticulum stress: differential contribution of caspase-12 and AIF. Apoptosis 11: 1629–1641.

    CAS  PubMed  Google Scholar 

  • Schroder M, Kaufman RJ . (2005a). ER stress and the unfolded protein response. Mutat Res 569: 29–63.

    PubMed  Google Scholar 

  • Schroder M, Kaufman RJ . (2005b). The mammalian unfolded protein response. Annu Rev Biochem 74: 739–789.

    PubMed  Google Scholar 

  • Scorrano L, Ashiya M, Buttle K, Weiler S, Oakes SA, Mannella CA et al. (2002). A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell 2: 55–67.

    CAS  PubMed  Google Scholar 

  • Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T et al. (2003). BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300: 135–139.

    CAS  PubMed  Google Scholar 

  • Shi J, Parada LF, Kernie SG . (2005). Bax limits adult neural stem cell persistence through caspase and IP3 receptor activation. Cell Death Differ 12: 1601–1612.

    CAS  PubMed  Google Scholar 

  • Shibue T, Suzuki S, Okamoto H, Yoshida H, Ohba Y, Takaoka A et al. (2006). Differential contribution of Puma and Noxa in dual regulation of p53-mediated apoptotic pathways. EMBO J 25: 4952–4962.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB et al. (2004). Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6: 1221–1228.

    CAS  PubMed  Google Scholar 

  • Shiraishi H, Okamoto H, Yoshimura A, Yoshida H . (2006). ER stress-induced apoptosis and caspase-12 activation occurs downstream of mitochondrial apoptosis involving Apaf-1. J Cell Sci 119: 3958–3966.

    CAS  PubMed  Google Scholar 

  • Simizu S, Tamura Y, Osada H . (2004). Dephosphorylation of Bcl-2 by protein phosphatase 2A results in apoptosis resistance. Cancer Sci 95: 266–270.

    CAS  PubMed  Google Scholar 

  • Smith MI, Deshmukh M . (2007). Endoplasmic reticulum stress-induced apoptosis requires bax for commitment and Apaf-1 for execution in primary neurons. Cell Death Differ 14: 1011–1019.

    CAS  PubMed  Google Scholar 

  • Song L, De Sarno P, Jope RS . (2002). Central role of glycogen synthase kinase-3beta in endoplasmic reticulum stress-induced caspase-3 activation. J Biol Chem 277: 44701–44708.

    CAS  PubMed  Google Scholar 

  • Srinivasan S, Ohsugi M, Liu Z, Fatrai S, Bernal-Mizrachi E, Permutt MA . (2005). Endoplasmic reticulum stress-induced apoptosis is partly mediated by reduced insulin signaling through phosphatidylinositol 3-kinase/Akt and increased glycogen synthase kinase-3beta in mouse insulinoma cells. Diabetes 54: 968–975.

    CAS  PubMed  Google Scholar 

  • Srivastava RK, Sollott SJ, Khan L, Hansford R, Lakatta EG, Longo DL . (1999). Bcl-2 and Bcl-X(L) block thapsigargin-induced nitric oxide generation, c-Jun NH(2)-terminal kinase activity, and apoptosis. Mol Cell Biol 19: 5659–5674.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szegezdi E, Herbert KR, Kavanagh ET, Samali A, Gorman AM . (2008). Nerve growth factor blocks thapsigargin-induced apoptosis at the level of the mitochondrion via regulation of Bim. J Cell Mol Med.

  • Takadera T, Fujibayashi M, Kaniyu H, Sakota N, Ohyashiki T . (2007). Caspase-dependent apoptosis induced by thapsigargin was prevented by glycogen synthase kinase-3 inhibitors in cultured rat cortical neurons. Neurochem Res 32: 1336–1342.

    CAS  PubMed  Google Scholar 

  • Tamura Y, Simizu S, Osada H . (2004). The phosphorylation status and anti-apoptotic activity of Bcl-2 are regulated by ERK and protein phosphatase 2A on the mitochondria. FEBS Lett 569: 249–255.

    CAS  PubMed  Google Scholar 

  • Tan Y, Dourdin N, Wu C, De Veyra T, Elce JS, Greer PA . (2006). Ubiquitous calpains promote caspase-12 and JNK activation during endoplasmic reticulum stress-induced apoptosis. J Biol Chem 281: 16016–16024.

    CAS  PubMed  Google Scholar 

  • Tsuruta F, Sunayama J, Mori Y, Hattori S, Shimizu S, Tsujimoto Y et al. (2004). JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins. EMBO J 23: 1889–1899.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Upton JP, Austgen K, Nishino M, Coakley KM, Hagen A, Han D et al. (2008). Caspase-2 cleavage of BID is a critical apoptotic signal downstream of endoplasmic reticulum stress. Mol Cell Biol 28: 3943–3951.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP et al. (2000). Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287: 664–666.

    CAS  PubMed  Google Scholar 

  • Vanden Abeele F, Skryma R, Shuba Y, Van Coppenolle F, Slomianny C, Roudbaraki M et al. (2002). Bcl-2-dependent modulation of Ca(2+) homeostasis and store-operated channels in prostate cancer cells. Cancer Cell 1: 169–179.

    CAS  PubMed  Google Scholar 

  • Walter L, Hajnoczky G . (2005). Mitochondria and endoplasmic reticulum: the lethal interorganelle cross-talk. J Bioenerg Biomembr 37: 191–206.

    CAS  PubMed  Google Scholar 

  • Wang B, Heath-Engel H, Zhang D, Nguyen N, Thomas DY, Hanrahan JW et al. (2008). BAP31 interacts with Sec61 translocons and promotes retrotranslocation of CFTR[Delta]F508 via the Derlin-1 complex. Cell 133: 1080–1092.

    CAS  PubMed  Google Scholar 

  • Wang HG, Pathan N, Ethell IM, Krajewski S, Yamaguchi Y, Shibasaki F et al. (1999). Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284: 339–343.

    CAS  PubMed  Google Scholar 

  • Wasiak S, Zunino R, McBride HM . (2007). Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J Cell Biol 177: 439–450.

    CAS  PubMed  PubMed Central  Google Scholar 

  • White C, Li C, Yang J, Petrenko NB, Madesh M, Thompson CB et al. (2005). The endoplasmic reticulum gateway to apoptosis by Bcl-X(L) modulation of the InsP3R. Nat Cell Biol 7: 1021–1028.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wlodkowic D, Skommer J, Pelkonen J . (2007). Brefeldin A triggers apoptosis associated with mitochondrial breach and enhances HA14-1- and anti-Fas-mediated cell killing in follicular lymphoma cells. Leuk Res 31: 1687–1700.

    CAS  PubMed  Google Scholar 

  • Wood DE, Thomas A, Devi LA, Berman Y, Beavis RC, Reed JC et al. (1998). Bax cleavage is mediated by calpain during drug-induced apoptosis. Oncogene 17: 1069–1078.

    CAS  PubMed  Google Scholar 

  • Wuytack F, Raeymaekers L, Missiaen L . (2002). Molecular physiology of the SERCA and SPCA pumps. Cell Calcium 32: 279–305.

    CAS  PubMed  Google Scholar 

  • Xin M, Deng X . (2006). Protein phosphatase 2A enhances the proapoptotic function of Bax through dephosphorylation. J Biol Chem 281: 18859–18867.

    CAS  PubMed  Google Scholar 

  • Xu C, Xu W, Palmer AE, Reed JC . (2008). BI-1 regulates endoplasmic reticulum Ca2+ homeostasis downstream of Bcl-2 family proteins. J Biol Chem 283: 11477–11484.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Kong D, Zhu L, Zhu W, Andrews DW, Kuo TH . (2007). Suppression of IP3-mediated calcium release and apoptosis by Bcl-2 involves the participation of protein phosphatase 1. Mol Cell Biochem 295: 153–165.

    CAS  PubMed  Google Scholar 

  • Yamaguchi H, Bhalla K, Wang HG . (2003). Bax plays a pivotal role in thapsigargin-induced apoptosis of human colon cancer HCT116 cells by controlling Smac/Diablo and Omi/HtrA2 release from mitochondria. Cancer Res 63: 1483–1489.

    CAS  PubMed  Google Scholar 

  • Yamaguchi H, Wang HG . (2004). CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J Biol Chem 279: 45495–45502.

    CAS  PubMed  Google Scholar 

  • Yamamoto K, Ichijo H, Korsmeyer SJ . (1999). BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol Cell Biol 19: 8469–8478.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoneda T, Imaizumi K, Oono K, Yui D, Gomi F, Katayama T et al. (2001). Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem 276: 13935–13940.

    CAS  PubMed  Google Scholar 

  • Yorimitsu T, Klionsky DJ . (2005). Autophagy: molecular machinery for self-eating. Cell Death Differ 12 (Suppl 2): 1542–1552.

    CAS  PubMed  Google Scholar 

  • Youle RJ, Strasser A . (2008). The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9: 47–59.

    CAS  PubMed  Google Scholar 

  • Yue Z, Jin S, Yang C, Levine AJ, Heintz N . (2003). Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100: 15077–15082.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yukioka F, Matsuzaki S, Kawamoto K, Koyama Y, Hitomi J, Katayama T et al. (2008). Presenilin-1 mutation activates the signaling pathway of caspase-4 in endoplasmic reticulum stress-induced apoptosis. Neurochem Int 52: 683–687.

    CAS  PubMed  Google Scholar 

  • Zalk R, Lehnart SE, Marks AR . (2007). Modulation of the ryanodine receptor and intracellular calcium. Annu Rev Biochem 76: 367–385.

    CAS  PubMed  Google Scholar 

  • Zhang D, Armstrong JS . (2007). Bax and the mitochondrial permeability transition cooperate in the release of cytochrome c during endoplasmic reticulum-stress-induced apoptosis. Cell Death Differ 14: 703–715.

    CAS  PubMed  Google Scholar 

  • Zhang D, Lu C, Whiteman M, Chance B, Armstrong JS . (2008). The mitochondrial permeability transition regulates cytochrome c release for apoptosis during endoplasmic reticulum stress by remodeling the cristae junction. J Biol Chem 283: 3476–3486.

    CAS  PubMed  Google Scholar 

  • Zhao Y, Altman BJ, Coloff JL, Herman CE, Jacobs SR, Wieman HL et al. (2007). Glycogen synthase kinase 3alpha and 3beta mediate a glucose-sensitive antiapoptotic signaling pathway to stabilize Mcl-1. Mol Cell Biol 27: 4328–4339.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong F, Davis MC, McColl KS, Distelhorst CW . (2006). Bcl-2 differentially regulates Ca2+ signals according to the strength of T cell receptor activation. J Cell Biol 172: 127–137.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zong WX, Li C, Hatzivassiliou G, Lindsten T, Yu QC, Yuan J et al. (2003). Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 162: 59–69.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

NCC is a recipient of the Canadian Institutes of Health Research Canada Graduate Scholarships Doctoral award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G C Shore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heath-Engel, H., Chang, N. & Shore, G. The endoplasmic reticulum in apoptosis and autophagy: role of the BCL-2 protein family. Oncogene 27, 6419–6433 (2008). https://doi.org/10.1038/onc.2008.309

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.309

Keywords

This article is cited by

Search

Quick links