Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

hSMG-1 and ATM sequentially and independently regulate the G1 checkpoint during oxidative stress

Abstract

Genotoxic stress activates the phosphatidylinositol 3-kinase-like kinases (PIKKs) that phosphorylate proteins involved in cell cycle arrest, DNA repair and apoptosis. Previous work showed that the PIKK ataxia telangiectasia mutated (ATM) but not ATM and Rad3 related phosphorylates p53 (Ser15) during hyperoxia, a model of prolonged oxidative stress and DNA damage. Here, we show hSMG-1 is responsible for the rapid and early phosphorylation of p53 (Ser15) and that ATM helps maintain phosphorylation after 24 h. Despite reduced p53 phosphorylation and abundance in cells depleted of hSMG-1 or ATM, levels of the p53 target p21 were still elevated and the G1 checkpoint remained intact. Conditional overexpression of p21 in p53-deficient cells revealed that hyperoxia also stimulates wortmannin-sensitive degradation of p21. siRNA depletion of hSMG-1 or ATM restored p21 stability and the G1 checkpoint during hyperoxia. These findings establish hSMG-1 as a proximal regulator of DNA damage signaling and reveal that the G1 checkpoint is tightly regulated during prolonged oxidative stress by both PIKK-dependent synthesis and proteolysis of p21.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Abraham RT, Tibbetts RS . (2005). Cell biology. Guiding ATM to broken DNA. Science 308: 510–511.

    Article  CAS  Google Scholar 

  • Bakkenist CJ, Kastan MB . (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421: 499–506.

    Article  CAS  Google Scholar 

  • Bao S, Tibbetts RS, Brumbaugh KM, Fang Y, Richardson DA, Ali A et al. (2001). ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses. Nature 411: 969–974.

    Article  CAS  Google Scholar 

  • Bartek J, Lukas J . (2003). Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3: 421–429.

    Article  CAS  Google Scholar 

  • Bendjennat M, Boulaire J, Jascur T, Brickner H, Barbier V, Sarasin A et al. (2003). UV irradiation triggers ubiquitin-dependent degradation of p21(WAF1) to promote DNA repair. Cell 114: 599–610.

    Article  CAS  Google Scholar 

  • Blagosklonny MV, Wu GS, Omura S, El-Deiry WS . (1996). Proteasome-dependent regulation of p21WAF1/CIP1 expression. Biochem Biophys Res Commun 227: 564–569.

    Article  CAS  Google Scholar 

  • Brooks CL, Gu W . (2003). Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15: 164–171.

    Article  CAS  Google Scholar 

  • Brumbaugh KM, Otterness DM, Geisen C, Oliveira V, Brognard J, Li X et al. (2004). The mRNA surveillance protein hSMG-1 functions in genotoxic stress response pathways in mammalian cells. Mol Cell 14: 585–598.

    Article  CAS  Google Scholar 

  • Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K et al. (1998). Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281: 1677–1679.

    Article  CAS  Google Scholar 

  • Casper AM, Nghiem P, Arlt MF, Glover TW . (2002). ATR regulates fragile site stability. Cell 111: 779–789.

    Article  CAS  Google Scholar 

  • Chen MJ, Lin YT, Lieberman HB, Chen G, Lee EY . (2001). ATM-dependent phosphorylation of human Rad9 is required for ionizing radiation-induced checkpoint activation. J Biol Chem 276: 16580–16586.

    Article  CAS  Google Scholar 

  • Cortez D, Guntuku S, Qin J, Elledge SJ . (2001). ATR and ATRIP: partners in checkpoint signaling. Science 294: 1713–1716.

    Article  CAS  Google Scholar 

  • Cortez D, Wang Y, Qin J, Elledge SJ . (1999). Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286: 1162–1166.

    Article  CAS  Google Scholar 

  • Coulombe P, Rodier G, Bonneil E, Thibault P, Meloche S . (2004). N-Terminal ubiquitination of extracellular signal-regulated kinase 3 and p21 directs their degradation by the proteasome. Mol Cell Biol 24: 6140–6150.

    Article  CAS  Google Scholar 

  • Das KC, Dashnamoorthy R . (2004). Hyperoxia activates the ATR-Chk1 pathway and phosphorylates p53 at multiple sites. Am J Physiol Lung Cell Mol Physiol 286: L87–L97.

    Article  CAS  Google Scholar 

  • Denning G, Jamieson L, Maquat LE, Thompson EA, Fields AP . (2001). Cloning of a novel phosphatidylinositol kinase-related kinase: characterization of the human SMG-1 RNA surveillance protein. J Biol Chem 276: 22709–22714.

    Article  CAS  Google Scholar 

  • El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825.

    Article  CAS  Google Scholar 

  • Engel FB, Hauck L, Boehm M, Nabel EG, Dietz R, von Harsdorf R . (2003). p21(CIP1) Controls proliferating cell nuclear antigen level in adult cardiomyocytes. Mol Cell Biol 23: 555–565.

    Article  CAS  Google Scholar 

  • Gehen SC, Vitiello PF, Bambara RA, Keng PC, O’Reilly MA . (2007). Downregulation of PCNA potentiates p21-mediated growth inhibition in response to hyperoxia. Am J Physiol Lung Cell Mol Physiol 292: L716–L724.

    Article  CAS  Google Scholar 

  • Guo Z, Kumagai A, Wang SX, Dunphy WG . (2000). Requirement for Atr in phosphorylation of Chk1 and cell cycle regulation in response to DNA replication blocks and UV-damaged DNA in Xenopus egg extracts. Genes Dev 14: 2745–2756.

    Article  CAS  Google Scholar 

  • Helt CE, Cliby WA, Keng PC, Bambara RA, O’Reilly MA . (2005). Ataxia telangiectasia mutated (ATM) and ATM and Rad3-related protein exhibit selective target specificities in response to different forms of DNA damage. J Biol Chem 280: 1186–1192.

    Article  CAS  Google Scholar 

  • Helt CE, Staversky RJ, Lee YJ, Bambara RA, Keng PC, O’Reilly MA . (2004). The CDK and PCNA domains on p21 Cip1 both function to inhibit G1/S progression during hyperoxia. Am J Physiol Lung Cell Mol Physiol 286: L506–L513.

    Article  CAS  Google Scholar 

  • Lee JH, Paull TT . (2005). ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308: 551–554.

    Article  CAS  Google Scholar 

  • Maki CG, Howley PM . (1997). Ubiquitination of p53 and p21 is differentially affected by ionizing and UV radiation. Mol Cell Biol 17: 355–363.

    Article  CAS  Google Scholar 

  • O’Connor PM . (1997). Mammalian G1 and G2 phase checkpoints. Cancer Surv 29: 151–182.

    PubMed  Google Scholar 

  • O’Reilly MA, Staversky RJ, Watkins RH, Reed CK, De Mesy Jensen KL, Finkelstein JN et al. (2001). The cyclin-dependent kinase inhibitor p21 protects the lung from oxidative stress. Am J Respir Cell Mol Biol 24: 703–710.

    Article  Google Scholar 

  • Podust VN, Podust LM, Goubin F, Ducommun B, Hubscher U . (1995). Mechanism of inhibition of proliferating cell nuclear antigen-dependent DNA synthesis by the cyclin-dependent kinase inhibitor p21. Biochemistry 34: 8869–8875.

    Article  CAS  Google Scholar 

  • Sheaff RJ, Singer JD, Swanger J, Smitherman M, Roberts JM, Clurman BE . (2000). Proteasomal turnover of p21Cip1 does not require p21Cip1 ubiquitination. Mol Cell 5: 403–410.

    Article  CAS  Google Scholar 

  • Smith GC, Cary RB, Lakin ND, Hann BC, Teo SH, Chen DJ et al. (1999). Purification and DNA binding properties of the ataxia-telangiectasia gene product ATM. Proc Natl Acad Sci USA 96: 11134–11139.

    Article  CAS  Google Scholar 

  • Stiff T, O’Driscoll M, Rief N, Iwabuchi K, Lobrich M, Jeggo PA . (2004). ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res 64: 2390–2396.

    Article  CAS  Google Scholar 

  • Suzuki K, Kodama S, Watanabe M . (1999). Recruitment of ATM protein to double strand DNA irradiated with ionizing radiation. J Biol Chem 274: 25571–25575.

    Article  CAS  Google Scholar 

  • Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh SY et al. (1999). A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev 13: 152–157.

    Article  CAS  Google Scholar 

  • Touitou R, Richardson J, Bose S, Nakanishi M, Rivett J, Allday MJ . (2001). A degradation signal located in the C-terminus of p21WAF1/CIP1 is a binding site for the C8 alpha-subunit of the 20S proteasome. EMBO J 20: 2367–2375.

    Article  CAS  Google Scholar 

  • Vitiello PF, Staversky RJ, Gehen SC, Johnston CJ, Finkelstein JN, Wright TW et al. (2006). p21Cip1 protection against hyperoxia requires Bcl-XL and is uncoupled from its ability to suppress growth. Am J Pathol 168: 1838–1847.

    Article  CAS  Google Scholar 

  • Yamashita A, Ohnishi T, Kashima I, Taya Y, Ohno S . (2001). Human SMG-1, a novel phosphatidylinositol 3-kinase-related protein kinase, associates with components of the mRNA surveillance complex and is involved in the regulation of nonsense-mediated mRNA decay. Genes Dev 15: 2215–2228.

    Article  CAS  Google Scholar 

  • Yoshida K, Wang HG, Miki Y, Kufe D . (2003). Protein kinase Cdelta is responsible for constitutive and DNA damage-induced phosphorylation of Rad9. EMBO J 22: 1431–1441.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Peter Vitiello, Melissa Wu, and Jennifer Gewandter for critiquing this manuscript. This work was funded in part by National Institutes of Health Grants HL-67392 (MA O’Reilly) and ES-01247. NIH training grant ES-07026 supported S Gehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A O'Reilly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gehen, S., Staversky, R., Bambara, R. et al. hSMG-1 and ATM sequentially and independently regulate the G1 checkpoint during oxidative stress. Oncogene 27, 4065–4074 (2008). https://doi.org/10.1038/onc.2008.48

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.48

Keywords

This article is cited by

Search

Quick links