Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Constitutive and chemokine-dependent internalization and recycling of CXCR7 in breast cancer cells to degrade chemokine ligands

Abstract

CXCR7 is a receptor for chemokines including CXCL12 (stromal-derived factor-1), a molecule that promotes tumor growth and metastasis in breast cancer and other malignancies. Building on the recent observation that CXCR7 sequesters CXCL12, we investigated mechanisms for CXCR7-dependent uptake of chemokines. Breast cancer cells expressing CXCR7 accumulated chemokines CXCL12 and CXC11 present at concentrations <1 ng/ml, unlike cells expressing CXCR4. CXCR7-dependent accumulation of chemokines was reduced by inhibitors of clathrin-mediated endocytosis. After CXCR7-mediated internalization, CXCL12 trafficked to lysosomes and was degraded, although levels of CXCR7 remained stable. CXCR7 reduced CXCL12 in the extracellular space, limiting the amounts of chemokine available to acutely stimulate signaling through CXCR4. CXCR7 constitutively internalized and recycled to the cell membrane even in the absence of ligand, and addition of chemokines did not significantly enhance receptor internalization. Chemokines at concentrations less than the Kd values for ligand–receptor binding did not alter levels of CXCR7 at the cell surface. Higher concentrations of chemokine ligands reduced the total cell surface expression of CXCR7 without affecting receptor internalization, indicating that receptor recycling was inhibited. CXCR7-dependent uptake of chemokines and receptor trafficking were regulated by β-arrestin 2. These studies establish mechanisms through which CXCR7 regulates the availability of chemokine ligands in the extracellular space.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domerci J, Huang H et al. (2004). Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6: 17–32.

    Article  CAS  Google Scholar 

  • Atanackovic D, Cao Y, Kim J, Brandl S, Thorn I, Faltz C et al. (2008). The local cytokine and chemokine milieu within malignant effusions. Tumour Biol 29: 93–104.

    Article  CAS  Google Scholar 

  • Balabanian K, Lagane B, Infantino S, Chow K, Harriague J, Moepps B et al. (2005). The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem 280: 35760–35766.

    Article  CAS  Google Scholar 

  • Balkwill F . (2004). Cancer and the chemokine network. Nat Rev Cancer 4: 540–550.

    Article  CAS  Google Scholar 

  • Boldajipour B, Mahabaleshwar S, Kardash E, Reichman-Fried M, Blaser H, Minina S et al. (2008). Control of chemokine-guided cell migration by ligand sequestration. Cell 132: 463–473.

    Article  CAS  Google Scholar 

  • Burns J, Summers B, Wang Y, Melikian A, Berahovich R, Miao Z et al. (2006). A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med 203: 2201–2213.

    Article  CAS  Google Scholar 

  • Cox J, Dean R, Roberts C, Overall C . (2008). Matrix metalloproteinase processing of CXCL11/I-TAC results in loss of chemoattractant activity and altered glycosaminoglycan binding. J Biol Chem 283: 19389–19399.

    Article  CAS  Google Scholar 

  • Dar A, Goichberg P, Shinder V, Kalinkovich A, Kollet O, Netzer N et al. (2005). Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nat Immunol 6: 1038–1046.

    Article  CAS  Google Scholar 

  • Fermas S, Gonnet F, Sutton A, Charnaux N, Mulloy B, Du Y et al. (2008). Sulfated oligosaccharides (heparin and fucoidan) binding and dimerization of stromal cell-derived factor-1 (SDF-1/CXCL 12) are coupled as evidenced by affinity CE-MS analysis. Glycobiology 18: 1054–1064.

    Article  CAS  Google Scholar 

  • Furuya M, Suyama T, Usui H, Kasuya Y, Nishiyama M, Tanaka N et al. (2007). Up-regulation of CXC chemokines and their receptors: implications for proinflammatory microenvironments of ovarian carcinomas and endometriosis. Hum Pathol 37: 1676–1687.

    Article  Google Scholar 

  • Galliera E, Venkatakrishna R, Trent J, Bonecchi R, Signorelli P, Lefkowitz R et al. (2004). b-Arrestin-dependent constitutive internalization of the human chemokine decoy receptor D6. J Biol Chem 279: 25590–25597.

    Article  CAS  Google Scholar 

  • Griesbeck O, Barid G, Campbell R, Zacharias D, Tsien R . (2001). Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276: 29188–29194.

    Article  CAS  Google Scholar 

  • Hansell C, Simpson C, Nibbs R . (2006). Chemokine sequestration by atypical chemokine receptors. Biochem Soc Trans 34: 1009–1013.

    Article  CAS  Google Scholar 

  • Heuser J, Anderson R . (1989). Hypertonic media inhibit receptor-mediated but not fluid-phase endocytosis by blocking clathrin-coated pit formation. J Cell Biol 108: 389–400.

    Article  CAS  Google Scholar 

  • Hoogewerf A, Kuschert G, Proudfoot A, Borlat F, Clark-Lewis I, Power C et al. (1997). Glycosaminoglycans mediate cell surface oligomerization of chemokine. Biochemistry 36: 13570–13578.

    Article  CAS  Google Scholar 

  • Kalatskaya I, Berchiche Y, Gravel S, Limberg B, Rosenbaum J, Heveker N . (2009). AMD3100 is a CXCR7 ligand with allosteric agonist properties. Mol Pharmacol 75: 1240–1247.

    Article  CAS  Google Scholar 

  • Kang Y, Siegel P, Shu W, Drobnjak M, Kakonen S, Cordon-Cardo C et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3: 537–549.

    Article  CAS  Google Scholar 

  • Kelly K, Narhendorf M, Yu A, Reynolds F, Weissleder R . (2006). in vivo phage display selection yields atherosclerotic plaque targeted peptides for imaging. Mol Imaging Biol 8: 1536–1632.

    Article  Google Scholar 

  • Kohout T, Lin F-T, Perry S, Conner D, Lefkowitz R . (2001). Arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking. Proc Natl Acad Sci USA 98: 1601–1606.

    CAS  PubMed  Google Scholar 

  • Kollmar O, Rupertus K, Scheuer C, Junker B, Tilton B, Schilling M et al. (2007). Stromal cell-derived factor-1 promotes cell migration and tumor growth of colorectal metastasis. Neoplasia 9: 862–870.

    Article  CAS  Google Scholar 

  • Laquri C, Sadir R, Rueda P, Baleux F, Gans P, Arenzana-Seisdedos F et al. (2007). The novel CXCL12gamma isoform encodes an unstructured cationic domain which regulates bioactivity and interaction with both glycosaminoglycans and CXCR4. PLoS One 2: e1110.

    Article  Google Scholar 

  • Levoye A, Balabanian K, Baleux F, Bachelerie F, Lagane B . (2009). CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling. Blood 113: 6085–6093.

    Article  CAS  Google Scholar 

  • Lois C, Hong E, Pease S, Brown E, Baltimore D . (2002). Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295: 868–872.

    Article  CAS  Google Scholar 

  • Luker G, Pica C, Song J, Luker K, Piwnica-Worms D . (2003). Imaging 26S proteasome activity and inhibition in living mice. Nat Med 9: 969–973.

    Article  CAS  Google Scholar 

  • Luker K, Gupta M, Luker G . (2008). Imaging CXCR4 signaling with firefly luciferase complementation. Anal Chem 80: 5565–5573.

    Article  CAS  Google Scholar 

  • Luker K, Gupta M, Luker G . (2009a). Bioluminescent CXCL12 fusion protein for cellular studies of CXCR4 and CXCR7. Biotechniques 47: 625–632.

    Article  CAS  Google Scholar 

  • Luker K, Gupta M, Luker G . (2009b). Imaging chemokine receptor dimerization with firefly luciferase complementation. FASEB J 23: 823–834.

    Article  CAS  Google Scholar 

  • Luker K, Gupta M, Steele J, Foerster B, Luker G . (2009c). Imaging ligand-dependent activation of CXCR7. Neoplasia 11: 1022–1035.

    Article  CAS  Google Scholar 

  • Luker K, Luker G . (2006). Functions of CXCL12 and CXCR4 in breast cancer. Cancer Lett 238: 30–41.

    Article  CAS  Google Scholar 

  • Macia E, Ehrlich M, Massol R, Boucrot E, Brunner C, Kirchhausen T . (2006). Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell 10: 839–850.

    Article  CAS  Google Scholar 

  • Marchese A, Benovic J . (2001). Agonist-promoted ubiquitination of the G protein-coupled receptor CXCR4 mediates lysosomal sorting. J Biol Chem 276: 45509–45512.

    Article  CAS  Google Scholar 

  • Miao Z, Luker K, Summers B, Berahovich R, Bhojani M, Rehemtulla A et al. (2007). CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature. Proc Natl Acad Sci USA 104: 15735–15740.

    Article  CAS  Google Scholar 

  • Muller A, Homey B, Soto H, Ge N, Catron D, Buchanon M et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature 410: 50–56.

    Article  CAS  Google Scholar 

  • Naumann U, Cameroni E, Pruenster M, Mahabaleshwar S, Raz E, Zerwes H et al. (2010). CXCR7 functions as a scavenger for CXCL12 and CXCL11. PLoS One 5: e9175.

    Article  Google Scholar 

  • Orimo A, Gupta P, Sgroi D, Arenzana-Seisdedos F, Delaunay T, Naeem R et al. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121: 335–348.

    Article  CAS  Google Scholar 

  • Proost P, Schutyser E, Menten P, Struyf S, Wuyts A, Opdenakker G et al. (2001). Amino-terminal truncation of CXCR3 agonists impairs receptor signaling and lymphocyte chemotaxis, while preserving antiangiogenic properties. Blood 98: 3554–3561.

    Article  CAS  Google Scholar 

  • Pruenster M, Mudde L, Bombosi P, Dimitrova S, Zsak M, Middleton J et al. (2009). The Duffy antigen receptor for chemokines transports chemokines and supports their promigratory activity. Nat Immunol 10: 101–108.

    Article  CAS  Google Scholar 

  • Raggo C, Ruhl R, McAllister S, Koon H, Dezube B, Fruh K et al. (2005). Novel cellular genes essential for transformation of endothelial cells by Kaposi's sarcoma-associated herpesvirus. Cancer Res 65: 5084–5095.

    Article  CAS  Google Scholar 

  • Sadir R, Imberty A, Baleux F, Lortat-Jacob H . (2004). Heparan sulfate/heparin oligosaccharides protect stromal cell-derived factor-1 (SDF-1)/CXCL12 against proteolysis induced by CD26/dipeptidyl peptidase IV. J Biol Chem 279: 43854–43860.

    Article  CAS  Google Scholar 

  • Sharma V, Crankshaw C, Piwnica-Worms D . (1996). Effects of multidrug resistance (MDR1) P-glycoprotein expression levels and coordination metal on the cytotoxic potency of multidentate (N4O2) (ethylenediamine)bis[propyl(R-benzylimino)]metal(III) cations. J Med Chem 39: 3483–3490.

    Article  CAS  Google Scholar 

  • Shenoy S, Lefkowitz R . (2003). Multifaceted roles of beta-arrestins in the regulation of seven-membrane-spanning receptor trafficking and signalling. Biochem J 375: 503–515.

    Article  CAS  Google Scholar 

  • Sierro F, Biben C, Martinez-Munoz L, Mellado M, Rashohoff R, Li M et al. (2007). Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. Proc Natl Acad Sci USA 104: 14759–14764.

    Article  CAS  Google Scholar 

  • Smith M, Luker K, Garbow J, Prior J, Jackson E, Piwnica-Worms D et al. (2004). CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res 64: 8604–8612.

    Article  CAS  Google Scholar 

  • Strieter R, Burdick M, Mestas J, Gomperts B, Keane M, Belperio J . (2006). Cancer CXC chemokine networks and tumour angiogenesis. Eur J Cancer 42: 768–778.

    Article  CAS  Google Scholar 

  • van Weert A, Geuze H, Groothuis B, Stoorvogel W . (2000). Primaquine interferes with membrane recycling from endosomes to the plasma membrane through a direction intearction with endosomes which does not involve neutralisation of endosomal pH nor osmotic swelling of endosomes. Eur J Cell Biol 79: 394–399.

    Article  CAS  Google Scholar 

  • Vandercappellen J, Van Damme J, Struyf S . (2008). The role of CXC chemokines and their receptors in cancer. Cancer Lett 267: 226–244.

    Article  CAS  Google Scholar 

  • Wang J, Shiozawa Y, Wang J, Wang Y, Jung Y, Pienta K et al. (2008). The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer. J Biol Chem 283: 4283–4294.

    Article  CAS  Google Scholar 

  • Weber M, Blair E, Simpson C, O'Hara M, Blackburn P, Rot A et al. (2004). The chemokine receptor D6 constitutively traffics to and from the cell surface to internalize and degrade chemokines. Mol Biol Cell 15: 2492–2508.

    Article  CAS  Google Scholar 

  • Wu F, Ou Z, Feng L, Luo J, Wang L, Shen Z et al. (2008). Chemokine decoy receptor d6 plays a negative role in human breast cancer. Mol Cancer Res 6: 1276–1288.

    Article  CAS  Google Scholar 

  • Yang X, Chu Y, Wang Y, Guo Q, Xiong S . (2005). Vaccination with IFN-inducible T cell alpha chemoattractant (ITAC) gene-modified tumor cell attenuates disseminated metastases of circulating tumor cells. Vaccine 24: 2966–2974.

    Article  Google Scholar 

  • Zabel B, Wang Y, Lewen S, Berahovich R, Penfold M, Zhang P et al. (2009). Elucidation of CXCR7-mediated signaling events and inhibition of CXCR4-mediated tumor cell transendothelial migration by CXCR7 ligands. J Immunol 183: 3204–3211.

    Article  CAS  Google Scholar 

  • Zhang L, Yeger H, Das B, Irwin M, Baruchel S . (2007). Tissue microenvironment modulates CXCR4 expression and tumor metastasis in neuroblastoma. Neoplasia 9: 36–46.

    Article  CAS  Google Scholar 

  • Zhao M, Mueller B, DiScipio R, Schraufstatter I . (2008). Akt plays an important role in breast cancer cell chemotaxis to CXCL12. Breast Cancer Res Treat 110: 211–222.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research was supported by NIH grants R01CA136553, R01CA136829 and P50CA093990. We thank ChemoCentryx for mAb 11G8 and CCX733.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G D Luker.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luker, K., Steele, J., Mihalko, L. et al. Constitutive and chemokine-dependent internalization and recycling of CXCR7 in breast cancer cells to degrade chemokine ligands. Oncogene 29, 4599–4610 (2010). https://doi.org/10.1038/onc.2010.212

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.212

Keywords

This article is cited by

Search

Quick links