Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural insights into binding specificity, efficacy and bias of a β2AR partial agonist

A Publisher Correction to this article was published on 30 November 2018

This article has been updated

Abstract

Salmeterol is a partial agonist for the β2 adrenergic receptor (β2AR) and the first long-acting β2AR agonist to be widely used clinically for the treatment of asthma and chronic obstructive pulmonary disease. Salmeterol’s safety and mechanism of action have both been controversial. To understand its unusual pharmacological action and partial agonism, we obtained the crystal structure of salmeterol-bound β2AR in complex with an active-state-stabilizing nanobody. The structure reveals the location of the salmeterol exosite, where sequence differences between β1AR and β2AR explain the high receptor-subtype selectivity. A structural comparison with the β2AR bound to the full agonist epinephrine reveals differences in the hydrogen-bond network involving residues Ser2045.43 and Asn2936.55. Mutagenesis and biophysical studies suggested that these interactions lead to a distinct active-state conformation that is responsible for the partial efficacy of G-protein activation and the limited β-arrestin recruitment for salmeterol.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structure of salmeterol-bound β2AR.
Fig. 2: Structural features of the β2AR–salmeterol–Nb71 complex.
Fig. 3: Salmeterol exosite and receptor-subtype-selectivity determinants.
Fig. 4: Hydrogen-bonding interactions in the orthosteric site and rearrangement of the ligand-binding pocket.
Fig. 5: Ligands and specific residues in the orthosteric site modulate hydrogen-bonding and signaling outcome.
Fig. 6: Spectroscopic interrogation of ligand-induced changes in TM6 conformation on detergent-solubilized, purified labeled receptor.

Similar content being viewed by others

Data availability

Atomic coordinates and structure factors for the crystal structure have been deposited in the Protein Data Bank under accession code PDB 6CSY. Other data and results are available upon request.

Change history

  • 30 November 2018

    In the version of this paper originally published, the structure for epinephrine shown in Figure 1a was redrawn with an extra carbon. The structure has been replaced in the HTML and PDF versions of the article. The original and corrected versions of the structure are shown below.

References

  1. Kenakin, T. Drug efficacy at G protein–coupled receptors. Annu. Rev. Pharmacol. Toxicol. 42, 349–379 (2002).

    Article  CAS  Google Scholar 

  2. Zhu, B. T. Rational design of receptor partial agonists and possible mechanisms of receptor partial activation: a theory. J. Theor. Biol. 181, 273–291 (1996).

    Article  CAS  Google Scholar 

  3. Cazzola, M. & Donner, C. F. Long-acting β2 agonists in the management of stable chronic obstructive pulmonary disease. Drugs 60, 307–320 (2000).

    Article  CAS  Google Scholar 

  4. Baker, J. G., Proudman, R. G. & Hill, S. J. Salmeterol’s extreme β2 selectivity is due to residues in both extracellular loops and transmembrane domains. Mol. Pharmacol. 87, 103–120 (2015).

    Article  Google Scholar 

  5. Ferguson, G. T., Funck-Brentano, C., Fischer, T., Darken, P. & Reisner, C. Cardiovascular safety of salmeterol in COPD. Chest 123, 1817–1824 (2003).

    Article  CAS  Google Scholar 

  6. Twentyman, O. P., Finnerty, J. P., Harris, A., Palmer, J. & Holgate, S. T. Protection against allergen-induced asthma by salmeterol. Lancet 336, 1338–1342 (1990).

    Article  CAS  Google Scholar 

  7. Ball, D. I. et al. Salmeterol, a novel, long-acting β2-adrenoceptor agonist: characterization of pharmacological activity in vitro and in vivo. Br. J. Pharmacol. 104, 665–671 (1991).

    Article  CAS  Google Scholar 

  8. Johnson, M. et al. The pharmacology of salmeterol. Life Sci. 52, 2131–2143 (1993).

    Article  CAS  Google Scholar 

  9. Calverley, P. M. et al. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N. Engl. J. Med. 356, 775–789 (2007).

    Article  CAS  Google Scholar 

  10. Wijesinghe, M., Perrin, K., Harwood, M., Weatherall, M. & Beasley, R. The risk of asthma mortality with inhaled long acting β-agonists. Postgrad. Med. J. 84, 467–472 (2008).

    Article  CAS  Google Scholar 

  11. Weatherall, M., Wijesinghe, M., Perrin, K., Harwood, M. & Beasley, R. Meta-analysis of the risk of mortality with salmeterol and the effect of concomitant inhaled corticosteroid therapy. Thorax 65, 39–43 (2010).

    Article  CAS  Google Scholar 

  12. Coleman, R. A., Johnson, M., Nials, A. T. & Vardey, C. J. Exosites: their current status, and their relevance to the duration of action of long-acting beta 2-adrenoceptor agonists. Trends Pharmacol. Sci. 17, 324–330 (1996).

    Article  CAS  Google Scholar 

  13. Clark, R. B., Allal, C., Friedman, J., Johnson, M. & Barber, R. Stable activation and desensitization of beta 2-adrenergic receptor stimulation of adenylyl cyclase by salmeterol: evidence for quasi-irreversible binding to an exosite. Mol. Pharmacol. 49, 182–189 (1996).

    CAS  PubMed  Google Scholar 

  14. Green, S. A., Spasoff, A. P., Coleman, R. A., Johnson, M. & Liggett, S. B. Sustained activation of a G protein-coupled receptor via “anchored” agonist binding: molecular localization of the salmeterol exosite within the 2-adrenergic receptor. J. Biol. Chem. 271, 24029–24035 (1996).

    Article  CAS  Google Scholar 

  15. Isogaya, M. et al. Identification of a key amino acid of the β2-adrenergic receptor for high affinity binding of salmeterol. Mol. Pharmacol. 54, 616–622 (1998).

    CAS  PubMed  Google Scholar 

  16. Rong, Y. et al. Probing the salmeterol binding site on the β2-adrenergic receptor using a novel photoaffinity ligand, [125I]iodoazidosalmeterol. Biochemistry 38, 11278–11286 (1999).

    Article  CAS  Google Scholar 

  17. Gimenez, L. E., Baameur, F., Vayttaden, S. J. & Clark, R. B. Salmeterol efficacy and bias in the activation and kinase-mediated desensitization of β2-adrenergic receptors. Mol. Pharmacol. 87, 954–964 (2015).

    Article  CAS  Google Scholar 

  18. van der Westhuizen, E. T., Breton, B., Christopoulos, A. & Bouvier, M. Quantification of ligand bias for clinically relevant β2-adrenergic receptor ligands: implications for drug taxonomy. Mol. Pharmacol. 85, 492–509 (2014).

    Article  Google Scholar 

  19. Tran, T. M. et al. Characterization of agonist stimulation of cAMP-dependent protein kinase and G protein-coupled receptor kinase phosphorylation of the β2-adrenergic receptor using phosphoserine-specific antibodies. Mol. Pharmacol. 65, 196–206 (2004).

    Article  CAS  Google Scholar 

  20. Drake, M. T. et al. β-arrestin-biased agonism at the β2-adrenergic receptor. J. Biol. Chem. 283, 5669–5676 (2008).

    Article  CAS  Google Scholar 

  21. Carter, A. A. & Hill, S. J. Characterization of isoprenaline- and salmeterol-stimulated interactions between β2-adrenoceptors and β-arrestin 2 using β-galactosidase complementation in C2C12 cells. J. Pharmacol. Exp. Ther. 315, 839–848 (2005).

    Article  CAS  Google Scholar 

  22. Moore, R. H. et al. Salmeterol stimulation dissociates β2-adrenergic receptor phosphorylation and internalization. Am. J. Respir. Cell Mol. Biol. 36, 254–261 (2007).

    Article  CAS  Google Scholar 

  23. Walker, J. K. & DeFea, K. A. Role for β-arrestin in mediating paradoxical β2AR and PAR2 signaling in asthma. Curr. Opin. Pharmacol. 16, 142–147 (2014).

    Article  CAS  Google Scholar 

  24. Billington, C. K., Penn, R. B. & Hall, I. P. β2 agonists. Handb. Exp. Pharmacol. 237, 23–40 (2017).

    Article  CAS  Google Scholar 

  25. Rasmussen, S. G. et al. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469, 175–180 (2011).

    Article  CAS  Google Scholar 

  26. Rasmussen, S. G. et al. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477, 549–555 (2011).

    Article  CAS  Google Scholar 

  27. Rosenbaum, D. M. et al. Structure and function of an irreversible agonist–β2 adrenoceptor complex. Nature 469, 236–240 (2011).

    Article  CAS  Google Scholar 

  28. Warne, T. et al. The structural basis for agonist and partial agonist action on a β1-adrenergic receptor. Nature 469, 241–244 (2011).

    Article  CAS  Google Scholar 

  29. Ring, A. M. et al. Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody. Nature 502, 575–579 (2013).

    Article  CAS  Google Scholar 

  30. Nygaard, R. et al. The dynamic process of β2-adrenergic receptor activation. Cell 152, 532–542 (2013).

    Article  CAS  Google Scholar 

  31. Manglik, A. et al. Structural insights into the dynamic process of β2-adrenergic receptor signaling. Cell 161, 1101–1111 (2015).

    Article  CAS  Google Scholar 

  32. Sounier, R. et al. Propagation of conformational changes during μ-opioid receptor activation. Nature 524, 375–378 (2015).

    Article  CAS  Google Scholar 

  33. Gregorio, G. G. et al. Single-molecule analysis of ligand efficacy in β2AR–G-protein activation. Nature 547, 68–73 (2017).

    Article  CAS  Google Scholar 

  34. Staus, D. P. et al. Regulation of β2-adrenergic receptor function by conformationally selective single-domain intrabodies. Mol. Pharmacol. 85, 472–481 (2014).

    Article  Google Scholar 

  35. Zou, Y., Weis, W. I. Kobilka, B. K. & Seifert, R. N-terminal T4 lysozyme fusion facilitates crystallization of a G protein coupled receptor. PLoS One 7, e46039 (2012).

  36. Caffrey, M. Crystallizing membrane proteins for structure determination: use of lipidic mesophases. Annu. Rev. Biophys. 38, 29–51 (2009).

    Article  CAS  Google Scholar 

  37. Baker, J. G. The selectivity of β-adrenoceptor agonists at human β1-, β2- and β3-adrenoceptors. Br. J. Pharmacol. 160, 1048–1061 (2010).

    Article  CAS  Google Scholar 

  38. Kruse, A. C. et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504, 101–106 (2013).

    Article  CAS  Google Scholar 

  39. Fronik, P., Gaiser, B. I. & Sejer Pedersen, D. Bitopic ligands and metastable binding sites: opportunities for G protein-coupled receptor (GPCR) medicinal chemistry. J. Med. Chem. 60, 4126–4134 (2017).

    Article  CAS  Google Scholar 

  40. Wieland, K., Zuurmond, H. M., Krasel, C., Ijzerman, A. P. & Lohse, M. J. Involvement of Asn-293 in stereospecific agonist recognition and in activation of the β2-adrenergic receptor. Proc. Natl. Acad. Sci. USA 93, 9276–9281 (1996).

    Article  CAS  Google Scholar 

  41. Liapakis, G., Chan, W. C., Papadokostaki, M. & Javitch, J. A. Synergistic contributions of the functional groups of epinephrine to its affinity and efficacy at the β2 adrenergic receptor. Mol. Pharmacol. 65, 1181–1190 (2004).

    Article  CAS  Google Scholar 

  42. Thomsen, A. R. B. et al. GPCR-G protein-β-arrestin super-complex mediates sustained G protein signaling. Cell 166, 907–919 (2016).

    Article  CAS  Google Scholar 

  43. Namkung, Y. et al. Monitoring G protein-coupled receptor and β-arrestin trafficking in live cells using enhanced bystander BRET. Nat. Commun. 7, 12178 (2016).

    Article  Google Scholar 

  44. Picard, L.-P., Schönegge, A. M., Lohse, M. J. & Bouvier, M. Bioluminescence resonance energy transfer-based biosensors allow monitoring of ligand- and transducer-mediated GPCR conformational changes. Commun. Biol. 1, 106 (2018).

    Article  Google Scholar 

  45. Yao, X. J. et al. The effect of ligand efficacy on the formation and stability of a GPCR-G protein complex. Proc. Natl. Acad. Sci. USA 106, 9501–9506 (2009).

    Article  CAS  Google Scholar 

  46. Dawaliby, R. et al. Allosteric regulation of G protein–coupled receptor activity by phospholipids. Nat. Chem. Biol. 12, 35–39 (2016).

    Article  CAS  Google Scholar 

  47. Schafer, C. T., Fay, J. F., Janz, J. M. & Farrens, D. L. Decay of an active GPCR: conformational dynamics govern agonist rebinding and persistence of an active, yet empty, receptor state. Proc. Natl. Acad. Sci. USA 113, 11961–11966 (2016).

    Article  CAS  Google Scholar 

  48. Fay, J. F. & Farrens, D. L. Purification of functional CB1 and analysis by site-directed fluorescence labeling methods. Methods Enzymol. 593, 343–370 (2017).

    Article  Google Scholar 

  49. Doose, S., Neuweiler, H. & Sauer, M. A close look at fluorescence quenching of organic dyes by tryptophan. Chemphyschem 6, 2277–2285 (2005).

    Article  CAS  Google Scholar 

  50. Cazzola, M., Calzetta, L. & Matera, M. G. β2-adrenoceptor agonists: current and future direction. Br. J. Pharmacol. 163, 4–17 (2011).

    Article  CAS  Google Scholar 

  51. Rosenbaum, D. M. et al. GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science 318, 1266–1273 (2007).

    Article  CAS  Google Scholar 

  52. Dror, R. O. et al. Identification of two distinct inactive conformations of the β2-adrenergic receptor reconciles structural and biochemical observations. Proc. Natl. Acad. Sci. USA 106, 4689–4694 (2009).

    Article  CAS  Google Scholar 

  53. Dror, R. O. et al. Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc. Natl. Acad. Sci. USA 108, 13118–13123 (2011).

    Article  CAS  Google Scholar 

  54. Shaw, D. E. et al. Millisecond-scale molecular dynamics simulations on Anton. Proc. Conf. High Perform. Comput. Netw. Storage Anal. (pp. 1–11. ACM, Portland, Oregon, USA, 2009).

    Google Scholar 

  55. Shaw, D. E. et al. Anton 2: raising the bar for performance and programmability in a special-purpose molecular dynamics supercomputer. Sc14: Int. Conf. High Perform. Comput., Netw. Storage Anal. (pp. 41–53. IEEE, Hoboken, New Jersey, USA, 2014).

    Google Scholar 

  56. Brunger, A. T. Version 1.2 of the Crystallography and NMR system. Nat. Protoc. 2, 2728–2733 (2007).

    Article  CAS  Google Scholar 

  57. Choi, U. B. et al. Single-molecule FRET-derived model of the synaptotagmin 1-SNARE fusion complex. Nat. Struct. Mol. Biol. 17, 318–324 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grant R01NS028471 (B.K.K.), Canadian Institute for Health Research foundation grant FDN-148431 (M.B.), an American Heart Association Postdoctoral fellowship (17POST33410958; M.M.) and Predoctoral Fellowship (13PRE17110027; J.P.M.), a studentship from the FRQ-S (L.-P.P.), the NIH Pharmacological Sciences Training Program (T32GM007767; J.P.M.) and the National Institutes of Health MIRA 1R35GM128641-01 (C.Z.). B.K.K. is supported by the Chan Zuckerberg Biohub. M.B. is supported as a Canada Research Chair in Signal Transduction and Molecular Pharmacology. The authors thank J. Gullingsrud for assistance with MD software.

Author information

Authors and Affiliations

Authors

Contributions

C.Z. and Y.Z. expressed and purified the receptor and nanobody for crystallography studies, collected X-ray diffraction data and solved the crystal structure. M.M. developed the Atto655 reporter system; purified and labeled receptors used in fluorescence studies; collected spectroscopic data; and performed radioactive ligand binding assays. L.-P.P. generated mutants of N293 and S204. E.v.d.W. and L.-P.P. performed Gs-activation and β-arrestin2-recruitment BRET assays under supervision from M.B. J.P.M. performed Octet RED experiments under supervision from R.K.S. J.P.G.L.M.R. performed modeling and sampling of the Atto655 dye on the receptor structures. T.J.M. and R.O.D. performed and analyzed MD-simulation studies. R.O.D. and D.E.S. oversaw MD simulations and analysis. E.P. generated the nanobody library and performed the initial selections. J.S. supervised nanobody production. W.I.W. supervised and assisted with the structure refinement. M.M., C.Z. and B.K.K. interpreted data, made figures and wrote the manuscript. B.K.K. provided overall project supervision.

Corresponding authors

Correspondence to Cheng Zhang or Brian K. Kobilka.

Ethics declarations

Competing interests

The BRET-based biosensors used in the present study are licensed to Domain Therapeutics but are freely available from M.B. for noncommercial academic use. M.B. is the chair of the Scientific Advisory Board of Domain Therapeutics. B.K.K. is a cofounder of and consultant for ConfometRx.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–3 and Supplementary Figures 1–11

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masureel, M., Zou, Y., Picard, LP. et al. Structural insights into binding specificity, efficacy and bias of a β2AR partial agonist. Nat Chem Biol 14, 1059–1066 (2018). https://doi.org/10.1038/s41589-018-0145-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0145-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing