Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

Peroxisome proliferator-activated receptor-gamma agonists inhibit experimental allergic encephalomyelitis by blocking IL-12 production, IL-12 signaling and Th1 differentiation

Abstract

Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear receptor transcription factor that regulates adipocyte differentiation and glucose homeostasis. PPARγ agonists are potent therapeutic agents for the treatment of type 2 diabetes and obesity. PPARγ agonists also prevent inflammation in animal models, suggesting their use for the treatment of human inflammatory diseases. Experimental allergic encephalomyelitis (EAE) is a Th1 cell-mediated inflammatory demyelinating disease model of multiple sclerosis (MS) and IL-12 plays a crucial role in the pathogenesis of EAE and MS. In this study we have examined the effect of PPARγ agonists on the pathogenesis of EAE. In vivo treatment of SJL/J mice with PPARγ agonists, 15-deoxyΔ12,14 prostaglandin J2 or Ciglitazone, decreased the duration and clinical severity of active immunization and adoptive transfer models of EAE. PPARγ agonists inhibited EAE in association with a decrease in IL-12 production and differentiation of neural antigen-specific Th1 cells. In vitro treatment of activated T cells with PPARγ agonists inhibited IL-12-induced activation of JAK-STAT signaling pathway and Th1 differentiation. These findings highlight the fact that PPARγ agonists regulate central nervous system inflammation and demyelination by inhibiting IL-12 production, IL-12 signaling and Th1 differentiation in EAE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Evans RM . The steroid and thyroid hormone receptor superfamily Science 1988 240: 889–895

    Article  CAS  Google Scholar 

  2. Blumberg B, Evans RM . Orphan nuclear receptors: new ligands and new possibilities Genes Dev 1998 12: 3149–3155

    Article  CAS  Google Scholar 

  3. Desvergne B, Wahli W . Peroxisome proliferator-activated receptors: nuclear control of metabolism Endocr Rev 1999 20: 649–688

    CAS  Google Scholar 

  4. Elbrecht A, Chen Y, Cullinan CA et al. Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors gamma 1 and gamma 2 Biochem Biophys Res Commun 1996 224: 431–437

    Article  CAS  Google Scholar 

  5. Mukherjee R, Jow L, Croston GE, Paterniti JR . Identification, characterization and tissue distribution of human peroxisome proliferator activated receptor isoforms 1 and 2 and activation with retinoid x receptor agonists and antagonists J Biol Chem 1997 272: 18779–18789

    Article  Google Scholar 

  6. Barak Y, Nelson MC, Ong ES et al. PPAR gamma is required for placental, cardiac, and adipose tissue development Mol Cell 1999 4: 585–595

    Article  CAS  Google Scholar 

  7. Willson TM, Wahli W . Peroxisome proliferator activated receptor agonists Corr Opin Chem Biol 1997 1: 235–241

    Article  CAS  Google Scholar 

  8. Krey G, Braissant O, Horset FL et al. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay Mol Endocrinol 1997 11: 779–791

    Article  CAS  Google Scholar 

  9. Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman B, Evans RM . 15-Deoxy-12,14 prostaglandin J2 a ligand for the adipocyte determination factor PPAR Cell 1995 83: 803–812

    Article  CAS  Google Scholar 

  10. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA . An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPARγ) J Biol Chem 1995 270: 12953–12956

    Article  CAS  Google Scholar 

  11. Shao D, Rangwala SM, Bailey ST, Krakow SL, Reginato MJ, Lazar MA . Interdomain communication regulating ligand binding by PPARγ Nature 1998 396: 377–380

    Article  CAS  Google Scholar 

  12. Palmer CN, Hsu MH, Griffin HJ, Johnson EF . Novel sequence determinants in peroxisome proliferator signaling J Biol Chem 1995 270: 16114–16121

    Article  CAS  Google Scholar 

  13. Kliewer SA, Umesono K, Noonan DJ, Heyman RA, Evans RM . Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors Nature 1992 358: 771–774

    Article  CAS  Google Scholar 

  14. Kliewer SA, Willson TM . The nuclear receptor PPAR-bigger than fat Curr Opin Genet Dev 1998 8: 576–581

    Article  CAS  Google Scholar 

  15. Schwartz S, Raskin P, Fonseca V, Graveline JF . Effect of troglitazone in insulin-treated patients with type II diabetes mellitus. Troglitazone and Exogenous Insulin Study Group N Engl J Med 1998 338: 861–866

    Article  CAS  Google Scholar 

  16. Barroso I, Gurnell M, Crowley VE et al. Dominant negative mutations in human PPAr gamma associated with severe insulin resistance, diabetes mellitus and hypertension Nature 1999 402: 880–883

    Article  CAS  Google Scholar 

  17. Demetri GD, Fletcher CD, Mueller E et al. Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor-gamma ligand troglitazone in patients with liposarcoma Proc Natl Acad Sci USA 1999 196: 3951–3956

    Article  Google Scholar 

  18. Elstner E, Muller C, Koshizuka K et al. Ligands for peroxisome proliferator-activated receptor gamma and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice Proc Natl Acad Sci USA 1998 95: 8806–8811

    Article  CAS  Google Scholar 

  19. Asou H, Verbeek W, Williamson E et al. Growth inhibition of myeloid leukemia cells by troglitazone, a ligand for peroxisome proliferator activated receptor gamma, and retinoids Int J Oncol 1999 15: 1027–1037

    CAS  PubMed  Google Scholar 

  20. Tsubouchi Y, Sano H, Kawahito Y et al. Inhibition of human lung cancer cell growth by the PPARγ agonists through induction of apoptosis Biochem Biophys Res Commun 2000 270: 400–405

    Article  CAS  Google Scholar 

  21. Sarraf P, Mueller E, Smith WM et al. Loss-of-function mutations in PPAR gamma associated with human colon cancer Mol Cell 1999 3: 799–804

    Article  CAS  Google Scholar 

  22. Sarraf P, Mueller E, Jones D et al. Differentiation and reversal of malignant changes in colon cancer through PPARgamma Nat Med 1998 4: 1046–1052

    Article  CAS  Google Scholar 

  23. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK . The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation Nature 1998 391: 79–82

    Article  CAS  Google Scholar 

  24. Jiang C, Ting AT, Seed B . PPARγ agonists inhibit production of monocyte inflammatory cytokine Nature 199 391: 82–86

    Article  Google Scholar 

  25. Kawahito Y, Kondo M, Tsubouchi Y et al. 15-deoxy-delta(12,14)-PGJ(2) induces synoviocyte apoptosis and suppresses adjuvant-induced arthritis in rats J Clin Invest 2000 106: 189–197

    Article  CAS  Google Scholar 

  26. Neve BP, Fruchart JC, Staels B . Role of the peroxisome proliferator-activated receptors (PPAR) in atherosclerosis Biochem Pharmacol 2000 60: 1245–1250

    Article  CAS  Google Scholar 

  27. Chen Z, Ishibashi S, Perrey S et al. Troglitazone inhibits atherosclerosis in apolipoprotein E-knockout mice: pleiotropic effects on CD36 expression and HDL Arterioscler Thromb Vasc Biol 2001 21: 372–377

    Article  CAS  Google Scholar 

  28. Su CG, Wen X, Bailey ST et al. A novel therapy for colitis utilizing PPAR-gamma ligands to inhibit the epithelial inflammatory response J Clin Invest 1999 104: 383–389

    Article  CAS  Google Scholar 

  29. Pershadsingh HA, Sproul JA, Benjamin E, Finnegan J, Amin NM . Treatment of psoriasis with troglitazone therpay Arch Dermatol 1998 134: 1304–1305

    Article  CAS  Google Scholar 

  30. Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM . Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma Cell 1998 93: 229–40

    Article  CAS  Google Scholar 

  31. Spiegelman BM . PPARγ in monocytes-less pain, any gain? Cell 1998 93: 153–155

    Article  CAS  Google Scholar 

  32. Clark RB, Bishop-Bailey D, Estrada-Hernandez T, Hla T, Puddington L, Padula SJ . The nuclear receptor PPAR gamma and immunoregulation: PPAR gamma mediates inhibition of helper T cell responses J Immunol 2000 164: 1364–1371

    Article  CAS  Google Scholar 

  33. Harris SG, Phipps RP . The nuclear receptor PPAR gamma is expressed by mouse T lymphocytes and PPAR gamma agonists induce apoptosis Eur J Immunol 2001 4: 1098–1105

    Article  Google Scholar 

  34. Dean G . How many people in the world have MS? Neuroepidemiology 1994 13: 1–7

    Article  CAS  Google Scholar 

  35. Clegg A, Bryant J . Immunomodulatory drugs for multiple sclerosis: a systematic review of clinical and cost effectiveness Expert Opin Pharmacother 2001 2: 623–639

    Article  CAS  Google Scholar 

  36. Wingerchuk DM, Lucchinetti CF, Noseworthy JH . Multiple sclerosis: current pathophysiological concepts Lab Invest 2001 81: 263–281

    Article  CAS  Google Scholar 

  37. Raine CS . The Dale McFarlin lecture: Immunology of the MS lesion Ann Neurol 1994 36: 61–72

    Article  Google Scholar 

  38. Martin R, McFarland HF, McFarlin DE . Immunology of demyelinating disease Annu Rev Immunol 1992 10: 153–169

    Article  CAS  Google Scholar 

  39. O’Connor KC, Bar-Or A, Hafler DA . The neuroimmunology of multiple sclerosis: possible roles of T and B lymphocytes in immunopathogenesis J Clin Immunol 2001 21: 81–92

    Article  Google Scholar 

  40. Gold R, Hartung HP, Toyka KV . Animal models for autoimmune demyelinating disorders of the nervous system Mol Med Today 2000 6: 88–91

    Article  CAS  Google Scholar 

  41. Xiao BG, Link H . Antigen-specific T cells in autoimmune diseases with a focus on multiple sclerosis and experimental allergic encephalomyelitis Cell Mol Life Sci 1999 56: 5–21

    Article  CAS  Google Scholar 

  42. Owens T, Sriram S . The immunology of multiple sclerosis and its animal model, experimental allergic encephalomyelitis Neurol Clin 1995 13: 51–73

    Article  CAS  Google Scholar 

  43. Bettelli E, Nicholson E . The role of cytokines in experimental autoimmune encephalomyelitis Arch Immunol Ther Exp 2000 48: 389–398

    CAS  Google Scholar 

  44. Trinchieri G . Interleukin 12: a pro-inflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen specific adaptive immunity Annu Rev Immunol 1995 13: 247–251

    Article  Google Scholar 

  45. Bright JJ, Musuro BF, Du C, Sriram S . Expression of IL-12 in CNS and lymphoid organs of mice with experimental allergic encephalomyelitis J Neuroimmunol 1998 82: 22–30

    Article  CAS  Google Scholar 

  46. Bright JJ, Rodriguez M, Sriram S . Differential influence of interleukin-12 in the pathogenesis of autoimmune and virus-induced CNS demyelination J Virol 1999 73: 1637–1639

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Karp CL . Interleukin-12: amiss in MS Ann Neurol 1999 45: 689–692

    Article  CAS  Google Scholar 

  48. Leonard JP, Waldburger KE, Goldman SJ . Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin-12 J Exp Med 1995 181: 381–386

    Article  CAS  Google Scholar 

  49. Bright JJ, Du C, Coon M, Sriram S, Klaus SJ . Prevention of experimental allergic encephalomyelitis via inhibition of IL-12 signaling and IL-12-mediated Th1 differentiation: an effect of the novel anti-inflammatory drug lisofylline J Immunol 1998 161: 7015–7022

    CAS  PubMed  Google Scholar 

  50. Bright JJ, Du C, Sriram S . Tyrphostin B42 inhibits IL-12-induced tyrosine phosphorylation and activation of Janus kinase-2 and prevents experimental allergic encephalomyelitis J Immunol 1999 162: 6255–6262

    CAS  Google Scholar 

  51. Chung SW, Kang BY, Kim SH et al. Oxidized low density lipoprotein inhibits interleukin-12 production in lipopolysaccharide-activated mouse macrophages via direct interactions between peroxisome proliferator-activated receptor-gamma and nuclear factor-kappa B J Biol Chem 2000 275: 32681–32687

    Article  CAS  Google Scholar 

  52. Murphy TL, Cleveland MG, Kulesza P, Magram J, Murphy KM . Regulation of interleukin 12 p40 expression through an NF-kappa B half-site Mol Cell Biol 1995 15: 5258–5267

    Article  CAS  Google Scholar 

  53. Crabtree GR . Contingent genetic regulatory events in T lymphocyte activation Science 1989 243: 355–361

    Article  CAS  Google Scholar 

  54. Bacon CM, Petricoin EF III, Ortaldo JR, Rees RC, Larner AC, Johnston JA, O’Shea JJ . Interleukin 12 induces tyrosine phosphorylation and activation of Stat 4 in human lymphocytes Proc Natl Acad Sci USA 1995 92: 7307–7311

    Article  CAS  Google Scholar 

  55. Jacobson NG, Szabo SJ, Weber-Nordt RM et al. Interleukin-12 signaling in Th1 cells involves tyrosine phosphorylation of Stat3 and Stat4 J Exp Med 1995 181: 1755–1762

    Article  CAS  Google Scholar 

  56. Bright JJ, Sriram S . TGF-beta inhibits IL-12-induced activation of Jak-STAT pathway in T lymphocytes J Immunol 1998 161: 1772–1777

    CAS  PubMed  Google Scholar 

  57. Chawla A, Barak Y, Nagy L, Liao D, Tontonoz P, Evans RM . PPARγ dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation Nat Med 2001 7: 48–52

    Article  CAS  Google Scholar 

  58. Bright JJ, Kerr LD, Sriram S . TGF-beta inhibits IL-2-induced tyrosine phosphorylation and activation of Jak1 and Stat5 in T lymphocytes J Immunol 1997 159: 175–183

    CAS  PubMed  Google Scholar 

  59. Du C, Bright JJ, Sriram S . Inhibition of CD40 signaling pathway by tyrphostin A1 reduces secretion of IL-12 in macrophage Th1 cell development and experimental allergic encephalomyelitis in SJL/J mice J Neuroimmunol 2001 114: 69–79

    Article  CAS  Google Scholar 

  60. Walker WS, Gatewood J, Olivas E, Askew D, Havenith CE . Mouse microglial cell lines differing in constitutive and interferon-gamma-inducible antigen-presenting activities for naive and memory CD4+ and CD8+ T cells J Neuroimmunol 1995 63: 163–174

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J J Bright.

Additional information

This work was supported in part by National Multiple Sclerosis Society Grant RG 3069A2/1 and national Institutes of Health Grant R01 NS42257-01A1 (to J J B).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Natarajan, C., Bright, J. Peroxisome proliferator-activated receptor-gamma agonists inhibit experimental allergic encephalomyelitis by blocking IL-12 production, IL-12 signaling and Th1 differentiation. Genes Immun 3, 59–70 (2002). https://doi.org/10.1038/sj.gene.6363832

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6363832

Keywords

This article is cited by

Search

Quick links