Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Review

Positive and negative regulation of apoptotic pathways by cytotoxic agents in hematological malignancies

Abstract

Most chemotherapeutic drugs can induce tumor cell death by apoptosis. Analysis of the molecular mechanisms that regulate apoptosis has indicated that anticancer agents simultaneously activate several pathways that either positively or negatively regulate the death process. The main pathway from specific damage induced by the drug to apoptosis involves activation of caspases in the cytosol by pro-apoptotic molecules such as cytochrome c released from the mitochondrial intermembrane space. At least in some cell types, anticancer drugs also upregulate the expression of death receptors and sensitize tumor cells to their cognate ligands. The Fas-mediated pathway could contribute to the early steps of drug-induced apoptosis while sensitization to the cytokine TRAIL could be used to amplify the response to cytotoxic drugs. The Bcl-2 family of proteins, that includes anti- and pro-apoptotic molecules, regulates cell sensitivity mainly at the mitochondrial level. Anticancer drugs modulate their expression (eg through p53-dependent gene transcription), their activity (eg by phosphorylating Bcl-2) and their subcellular localization (eg by inducing the translocation of specific BH3-only pro-apoptotic proteins). Very early after interacting with tumor cells, anticancer drugs also activate lipid-dependent signaling pathways that either increase or decrease cell ability to die by apoptosis. In addition, cytotoxic agents can activate protective pathways that involve activation of NFκB transcription factor, accumulation of heat shock proteins such as Hsp27 and activation of proteins involved in cell cycle regulation. This review discusses how modulation of the balance between noxious and protective signals that regulate drug-induced apoptosis could be used to improve the efficacy of current therapeutic regimens in hematological malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ross DD . Novel mechanisms of drug resistance in leukemia Leukemia 2000 14: 467–473

    Article  CAS  PubMed  Google Scholar 

  2. Wattel E, Solary E, Hecquet B, Caillot D, Ifrah N, Brion A, Mahé B, Milpied N, Janvier M, Guerci A, Rochant H, Cordonnier C, Dreyfus F, Buzyn A, Hoang-Ngoc L, Stoppa AM, Gratecos N, Sadoun A, Stamatoulas A, Tilly H, Brice P, Maloisel F, Lioure B, Desablens B, Pignon B, Abgrall JF, Leporrier M, Dupriez B, Guyotat D, Lepelley P, Fenaux P . Quinine improves the results of intensive chemotherapy in myelodysplatic syndromes expressing P-glycoprotein: results of a randomized study Br J Haematol 1998 102: 1015–1024

    Article  CAS  PubMed  Google Scholar 

  3. Solary E, Witz F, Caillot D, Moreau P, Desablens B, Cahn JY, Sadoun A, Berthou C, Maloisel F, Guyotat D, Casassus P, Ifrah N, Lamy B, Audhuy B, Colombat P, Harousseau JL . Combination of quinine as a potential reversing agent with mitoxantrone and cytarabine for the treatment of acute leukemias: a randomised multicentric study Blood 1996 88: 1198–1205

    CAS  PubMed  Google Scholar 

  4. Martins LM, Mesner PW, Kottke TJ, Basi GS, Sinha S, Tung JS, Svingen PA, Madden BJ, Takahashi A, McCormick DJ, Earnshaw WC, Kaufmann SH . Comparison of caspase activation and subcellular localization in HL-60 and K562 cells undergoing etoposide-induced apoptosis Blood 1997 90: 4283–4296

    CAS  PubMed  Google Scholar 

  5. Kroemer G, Reed JC . Mitochondrial control of cell death Nature Med 2000 6: 513–519

    Article  CAS  PubMed  Google Scholar 

  6. Zamzami N, Marchetti P, Castedo M, Zanin C, Vayssiere JL, Petit PX, Kroemer G . Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo J Exp Med 1995 181: 1661–1672

    Article  CAS  PubMed  Google Scholar 

  7. Antonsson B, Conti F, Ciavatta A, Montessuit S, Lewis S, Martinou I, Bernasconi L, Bernard A, Mermod JJ, Mazzei G, Maundrell K, Gambale F, Sadoul R, Martinou JC . Inhibition of Bax channel-forming activity by Bcl-2 Science 1997 277: 370–372

    Article  CAS  PubMed  Google Scholar 

  8. Crompton M . The mitochondrial permeability transition pore and its role in cell death Biochem J 1999 341: 233–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schlesinger PH, Gross A, Yin XM, Yamamoto K, Saito M, Waksman G, Korsmeyer SJ . Comparison of the ion channel characteristics of proapoptotic BAX and antiapoptotic BCL-2 Proc Natl Acad Sci USA 1997 94: 11357–11362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marzo I, Brenner C, Zamzami N, Jurgensmeier JM, Susin SA, Vieira HL, Prevost MC, Xie Z, Matsuyama S, Reed JC, Kroemer G . Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis Science 1998 281: 2027–2031

    Article  CAS  PubMed  Google Scholar 

  11. Hu Y, Benedict MA, Ding L, Nunez, G . Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis EMBO J 1999 18: 3586–3595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X . Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade Cell 1997 91: 479–489

    Article  CAS  PubMed  Google Scholar 

  13. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G . Molecular characterization of mitochondrial apoptosis-inducing factor Nature 1999 397: 441–446

    Article  CAS  PubMed  Google Scholar 

  14. Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, Daugas E, Geuskens M, Kroemer G . Bcl-2 inhibits the mitochondrial release of an apoptogenic protease J Exp Med 1996 184: 1331–1341

    Article  CAS  PubMed  Google Scholar 

  15. Yang J, Liu XS, Bhalla K, Kim CN, Ibrado AM, Cai JY, Peng TI, Jones DP, Wang XD . Prevention of apoptosis by Bcl-2. Release of cytochrome c from mitochondria blocked Science 1997 275: 1129–1132

    Article  CAS  PubMed  Google Scholar 

  16. Eskes R, Desagher S, Antonsson B, Martinou JC . Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane Mol Cell Biol 2000 20: 929–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pinkoski MJ, Green DR . Fas ligand, death gene Cell Death Differ 1999 6: 1174–1181

    Article  CAS  PubMed  Google Scholar 

  18. Chinnaiyan AM, O'Rourke K, Tewari M, Dixit VM . FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis Cell 1995 81: 505–512

    Article  CAS  PubMed  Google Scholar 

  19. Medema JP, Scaffidi C, Kischkel FC, ShevchenkonA, Mann M, Krammer PH, Peter ME . FLICE is activated by association with the CD95 death-inducing signaling complex (DISC) EMBO J 1997 16: 2794–2804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Scaffidi C, Schmitz I, Zha J, Korsmeyer SJ, Krammer PH, Peter ME . Differential modulation of apoptosis sensitivity in CD95 type I and type II cells J Biol Chem 1999 274: 22532–22538

    Article  CAS  PubMed  Google Scholar 

  21. Li H, Zhu H, Xu CJ, Yuan J . Cleavage of Bid by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis Cell 1998 94: 491–501

    Article  CAS  PubMed  Google Scholar 

  22. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X . Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors Cell 1998 94: 481–490

    Article  CAS  PubMed  Google Scholar 

  23. Albanese J, Dainiak N . Ionizing radiation alters Fas antigen ligand at the cell surface and on exfoliated plasma membrane-derived vesicles: implications for apoptosis and intercellular signaling Radiat Res 2000 153: 49–61

    Article  CAS  PubMed  Google Scholar 

  24. Friesen C, Herr I, Krammer PH, Debatin KM . Involvement of the CD95 (APO-1/FAS) receptor/ligand system in drug-induced apoptosis in leukemia cells Nature Med 1996 2: 574–577

    Article  CAS  PubMed  Google Scholar 

  25. Fulda S, Strauss G, Meyer E, Debatin KM . Functional CD95 ligand and CD95 death-inducing signaling complex in activation-induced cell death and doxorubicin-induced apoptosis in leukemic T cells Blood 2000 95: 301–308

    CAS  PubMed  Google Scholar 

  26. Muller M, Wilder S, Bannasch D, Israeli D, Lehlbach K, Li-Weber M, Friedman SL, Galle PR, Stremmel W, Oren M, Krammer PH . p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs J Exp Med 1998 188: 2033–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ogawa Y, Nishioka A, Hamada N, Terashima M, Inomata T, Yoshida S, Seguchi H, Kishimoto S . Expression of fas (CD95/APO-1) antigen induced by radiation therapy for diffuse B-cell lymphoma: immunohistochemical study Clin Cancer Res 1997 3: 2211–2216

    CAS  PubMed  Google Scholar 

  28. Teitz T, Wei T, Valentine MB, Vanin EF, Grenet J, Valentine VA, Behm FG, Look AT, Lahti JM, Kidd VJ . Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN Nature Med 2000 6: 529–535

    Article  CAS  PubMed  Google Scholar 

  29. Yeh WC, Pompa JL, McCurrach ME, Shu HB, Elia AJ, Shahinian A, Ng M, Wakeham A, Khoo W, Mitchell K, El-Deiry WS, Lowe SW, Goeddel DV, Mak TW . FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis Science 1998 279: 1954–1958

    Article  CAS  PubMed  Google Scholar 

  30. Varfolomeev EE, Schuchmann M, Luria V, Chiannilkulchai N, Beckmann JS, Mett IL, Rebrikov D, Brodianski VM, Kemper OC, Kollet O, Lapidot T, Soffer D, Sobe T, Avraham KB, Goncharov T, Holtmann H, Lonai P, Wallach D . Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally Immunity 1998 9: 267–276

    Article  CAS  PubMed  Google Scholar 

  31. Micheau O, Solary E, Hammann A, Dimanche-Boitrel MT . Fas ligand-independent, FADD-mediated activation of the Fas death pathway by anticancer drugs J Biol Chem 1999 274: 7987–7992

    Article  CAS  PubMed  Google Scholar 

  32. Rieux-Laucat F, Blachere S, Danielan S, de Villartay JP, Oleastro M, Solary E, Badre Meunier B, Arkwright P, Pondaré C, Bernaudin F, Chapel H, Nielsen S, Berah M, Fisher A, Le Deist F . Lymphoproliferative syndrome with autoimmunity: a possible genetic basis for dominant expression of the clinical manifestations Blood 1999 94: 1192–1199

    Google Scholar 

  33. Landowski TH, Qu N, Buyuksal I, Painter JS, Dalton WS . Mutations in the Fas antigen in patients with multiple myeloma Blood 1997 90: 4266–4270

    CAS  PubMed  Google Scholar 

  34. Beltinger C, Kurz E, Bohler T, Schrappe M, Ludwig WD, Debatin KM . CD95 (APO-1/Fas) mutations in childhood T-lineage acute lymphoblastic leukemia Blood 1998 91: 3943–3951

    CAS  PubMed  Google Scholar 

  35. Tamiya S, Etoh K, Suzushima H, Takatsuki K, Matsuoka M . Mutation of CD95 (Fas/Apo-1) gene in adult T cell leukemia cells Blood 1998 91: 3935–3942

    CAS  PubMed  Google Scholar 

  36. Maeda T, Yamada Y, Moriuchi R, Sugahara K, Tsuruda K, Joh T, Atogami S, Tsukasaki K, Tomonaga M, Kamihira S . Fas gene mutation in the progression of adult T cell leukemia J Exp Med 1999 189: 1063–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang J, Zheng L, Lobito A, Chan FK, Dale J, Sneller M, Yao X, Puck JM, Straus SE, Lenardo MJ . Inherited human caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II Cell 1999 98: 47–58

    Article  CAS  PubMed  Google Scholar 

  38. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X . Biochemical pathways of caspase activation during apoptosis Annu Rev Cell Dev Biol 1999 15: 269–290

    Article  CAS  PubMed  Google Scholar 

  39. Nicholson DW . Caspase structure, proteolytic substrates, and function during apoptotic cell death Cell Death Differ 1999 6: 1028–1042

    Article  CAS  PubMed  Google Scholar 

  40. Walker NP, Talanian RV, Brady KD, Dang LC, Bump NJ, Ferenz CR, Franklin S, Ghayur T, Hackett MC, Hammill LD, Herzog L, Hugunin M, Houy W, Mankovich JA, McGuiness L, Orlewicz E, Paskind M, Pratt CA, Reis P, Summani A, Terranova M, Welch JP, Xiong L, Möller A, Tracey DE, Kamen R, Wong WW . Crystal structure of the cysteine protease interleukin-1 beta-converting enzyme: a (p20/p10)2 homodimer Cell 1994 78: 343–352

    Article  CAS  PubMed  Google Scholar 

  41. Rotonda J, Nicholson DW, Fazil KM, Gallant M, Gareau Y, Labelle M, Peterson EP, Rasper DM, Ruel R, Vaillancourt JP, Thornberry NA, Becker JW . The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis Nat Struct Biol 1996 3: 619–625

    Article  CAS  PubMed  Google Scholar 

  42. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X . Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3 Cell 1997 90: 405–413

    Article  CAS  PubMed  Google Scholar 

  43. Duan H, Dixit VM . RAIDD is a new ‘death’ adaptor molecule Nature 1997 385: 86–89

    Article  CAS  PubMed  Google Scholar 

  44. Ahmad M, Srinivasula SM, Wang L . CRADD, a novel human apoptotic adaptor molecule for caspase-2, and FasL/tumor necrosis factor receptor-interacting protein RIP Cancer Res 1997 57: 615–619

    CAS  PubMed  Google Scholar 

  45. Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang HG, Reed JC, Nicholson DW, Alnemri ES, Green DR, Martin SJ . Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner J Cell Biol 1999 144: 281–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dubrez L, Savoy I, Hamman A, Solary E . Pivotal role of a DEVD-sensitive step in etoposide-induced and Fas-mediated apoptotic pathways EMBO J 1996 15: 5504–5512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dubrez L, Eymin B, Sordet O, Droin N, Turhan AG, Solary E . BCR-ABL delays apoptosis upstream of procaspase-3 activation Blood 1998 91: 2415–2422

    CAS  PubMed  Google Scholar 

  48. Droin N, Dubrez L, Eymin B, Renvoize C, Breard J, Dimanche-Boitrel MT, Solary E . Upregulation of CASP genes in human tumor cells undergoing etoposide-induced apoptosis Oncogene 1998 16: 2885–2894

    Article  CAS  PubMed  Google Scholar 

  49. Sordet O, Bettaieb A, Bruey JM, Eymin B, Droin N, Ivarsson M, Garrido C, Solary E . Selective inhibition of apoptosis by TPA-induced differentiation of U937 leukemic cells Cell Death Differ 1999 6: 351–361

    Article  CAS  PubMed  Google Scholar 

  50. Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H, Su MS, Rakic P, Flavell RA . Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase-9 Cell 1998 94: 325–337

    Article  CAS  PubMed  Google Scholar 

  51. Hakem R, Hakem A, Duncan GS, Henderson JT, Woo M, Soengas MS, Elia A, de la Pompa JL, Kagi D, Khoo W, Potter J, Yoshida R, Kaufman SA, Lowe SW, Penninger JM, Mak TW . Differential requirement for caspase-9 in apoptotic pathways in vivo Cell 1998 94: 339–352

    Article  CAS  PubMed  Google Scholar 

  52. Cecconi F, Alvarez-Bolado G, Meyer BI, Roth KA, Gruss P . Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development Cell 1998 94: 727–737

    Article  CAS  PubMed  Google Scholar 

  53. Yoshida H, Kong YY, Yoshida R, Elia AJ, Hakem A, Hakem R, Penninger JM, Mak TW . Apaf1 is required for mitochondrial pathways of apoptosis and brain development Cell 1998 94: 739–750

    Article  CAS  PubMed  Google Scholar 

  54. Sakahira H, Enari M, Nagata S . Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis Nature 1998 391: 96–99

    Article  CAS  PubMed  Google Scholar 

  55. Sahara S, Aoto M, Eguchi Y, Imamoto N, Yoneda Y, Tsujimoto Y . Acinus is a caspase-3-activated protein required for apoptotic chromatin condensation Nature 1999 401: 168–173

    Article  CAS  PubMed  Google Scholar 

  56. Samali A, Cai J, Zhivotovsky B, Jones DP, Orrenius S . Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of jurkat cells EMBO J 1999 18: 2040–2048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xanthoudakis S, Roy S, Rasper D, Hennessay T, Aubin Y, Cassady R, Tawa P, Ruel R, Rosen A, Nicholson DW . Hsp60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during apoptosis EMBO J 1999 18: 2049–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Brenner C, Larochette N, Prevost MC, Alzari PM, Kroemer G . Mitochondrial release of caspase-2 and-9 during the apoptotic process J Exp Med 1999 189: 381–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Krajewski S, Krajewska M, Ellerby LM, Welsh K, Xie Z, Deveraux QL, Salvesen GS, Bredesen DE, Rosenthal RE, Fiskum G, Reed JC . Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia Proc Natl Acad Sci USA 1999 96: 5752–5757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chandler JM, Cohen GM, MacFarlane M . Different subcellular distribution of caspase-3 and caspase-7 following Fas-induced apoptosis in mouse liver J Biol Chem 1998 273: 10815–10818

    Article  CAS  PubMed  Google Scholar 

  61. Kumar A, Commane M, Flickinger TW, Horvath CM, Stark GR . Defective TNFa-induced apoptosis in STAT1-null cells due to low constitutive levels of caspases Science 1997 278: 1630–1632

    Article  CAS  PubMed  Google Scholar 

  62. Micheau O, Hammann A, Solary E, Dimanche-Boitrel MT . STAT-1-independent upregulation of FADD and procaspase-3 and -8 in cancer cells treated with cytotoxic drugs Biochem Biophys Res Commun 1999 256: 603–607

    Article  CAS  PubMed  Google Scholar 

  63. Wang L, Miura M, Bergeron L, Zhu H, Yuan J . Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death Cell 1994 78: 739–750

    Article  CAS  PubMed  Google Scholar 

  64. Srinivasula SM, Ahmad M, Guo Y, Zhan Y, Lazebnik Y, Fernandes-Alnemri T, Alnemri ES . Identification of an endogenous dominant-negative short isoform of caspase-9 that can regulate apoptosis Cancer Res 1999 59: 999–1002

    CAS  PubMed  Google Scholar 

  65. Seol DW, Billiar TR . A caspase-9 variant missing the catalytic site is an endogenous inhibitor of apoptosis J Biol Chem 1999 274: 2072–2076

    Article  CAS  PubMed  Google Scholar 

  66. Dimmeler S, Haendeler J, Nehls M, Zeiher AM . Suppression of apoptosis by nitric oxide via inhibition of interleukin-1beta-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases J Exp Med 1997 185: 601–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mannick JB, Hausladen A, Liu L, Hess DT, Zeng M, Miao QX, Kane LS, Gow AJ, Stamler JS . Fas-induced caspase denitrosylation Science 1999 284: 651–654

    Article  CAS  PubMed  Google Scholar 

  68. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC . Regulation of cell death protease caspase-9 by phosphorylation Science 1998 282: 1318–1321

    Article  CAS  PubMed  Google Scholar 

  69. Schurmann A, Mooney AF, Sanders LC, Sells MA, Wang HG, Reed JC, Bokoch GM . p21-activated kinase 1 phosphorylates the death agonist Bad and protects cells from apoptosis Mol Cell Biol 2000 20: 453–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Deveraux QL, Stennicke HR, Salvesen GS, Reed JC . Endogenous inhibitors of caspases J Clin Immunol 1999 19: 388–398

    Article  CAS  PubMed  Google Scholar 

  71. Ambrosini G, Adida C, Altieri DC . A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma Nature Med 1997 3: 917–921

    Article  CAS  PubMed  Google Scholar 

  72. Tamm I, Wang Y, Sausville E, Scudiero DA, Vigna N, Oltersdorf T, Reed JC . IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs Cancer Res 1998 58: 5315–5320

    CAS  PubMed  Google Scholar 

  73. Ambrosini G, Adida C, Sirugo G, Altieri DC . Induction of apoptosis and inhibition of cell proliferation by survivin gene targeting J Biol Chem 1998 273: 11177–11182

    Article  CAS  PubMed  Google Scholar 

  74. Kobayashi K, Hatano M, Otaki M, Ogasawara T, Tokuhisa T . Expression of a murine homologue of the inhibitor of apoptosis protein is related to cell proliferation Proc Natl Acad Sci USA 1999 96: 1457–1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li F, Ambrosini G, Chu EY, Plescia J, Tognin S, Marchisio PC, Altieri DC . Control of apoptosis and mitotic spindle checkpoint by survivin Nature 1998 396: 580–584

    Article  CAS  PubMed  Google Scholar 

  76. Li F, Ackermann EJ, Bennett CF, Rothermel AL, Plescia J, Tognin S, Villa A, Marchisio PC, Altieri DC . Pleiotropic cell-division defects and apoptosis induced by interference with survivin function Nat Cell Biol 1999 1: 461–466

    Article  CAS  PubMed  Google Scholar 

  77. Tschopp J, Irmler M, Thome M . Inhibition of Fas death signals by FLIPs Curr Opin Immunol 1998 10: 552–558

    Article  CAS  PubMed  Google Scholar 

  78. Bakhshi A, Jensen JP, Goldman P, Wright JJ, McBride OW, Epstein AL, Korsmeyer SJ . Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18 Cell 1985 41: 899–906

    Article  CAS  PubMed  Google Scholar 

  79. Cleary ML, Smith SD, Sklar J . Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation Cell 1986 47: 19–28

    Article  CAS  PubMed  Google Scholar 

  80. Zamzami N, Brenner C, Marzo I, Susin SA, Kroemer G . Subcellular and submitochondrial mode of action of Bcl-2-like oncoproteins Oncogene 1998 16: 2265–2282

    Article  CAS  PubMed  Google Scholar 

  81. Gross A, McDonnell JM, Korsmeyer SJ . BCL-2 family members and the mitochondria in apoptosis Genes Dev 1999 13: 1899–1911

    Article  CAS  PubMed  Google Scholar 

  82. Strasser A, Harris AW, Bath ML, Cory S . Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2 Nature 1990 348: 331–333

    Article  CAS  PubMed  Google Scholar 

  83. McDonnell TJ, Deane N, Platt FM, Nunez G, Jaeger U, McKearn JP, Korsmeyer SJ . bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation Cell 1989 57: 79–88

    Article  CAS  PubMed  Google Scholar 

  84. McDonnell TJ, Korsmeyer SJ . Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14;18) Nature 1991 349: 254–256

    Article  CAS  PubMed  Google Scholar 

  85. Meijerink JP, Mensink EJ, Wang K, Sedlak TW, Sloetjes AW, de Witte T, Waksman G, Korsmeyer SJ . Hematopoietic malignancies demonstrate loss-of-function mutations of BAX Blood 1998 91: 2991–2997

    CAS  PubMed  Google Scholar 

  86. Reed JC . Bcl-2 family proteins: relative importance as determinants of chemoresistance in cancer. In: Hickman JA, Dive C (eds) Apoptosis and Cancer Chemotherapy Humana Press: Totowa, NJ 1999 99–116

    Chapter  Google Scholar 

  87. Kornblau SM, Thall PF, Estrov Z, Walterscheid M, Patel S, Theriault A, Keating MJ, Kantarjian H, Estey E, Andreeff M . The prognostic impact of BCL2 protein expression in acute myelogenous leukemia varies with cytogenetics Clin Cancer Res 1999 5: 1758–1766

    CAS  PubMed  Google Scholar 

  88. Kaufmann SH, Karp JE, Svingen PA, Krajewski S, Burke PJ, Gore SD, Reed JC . Elevated expression of the apoptotic regulator Mcl-1 at the time of leukemic relapse Blood 1998 91: 991–1000

    CAS  PubMed  Google Scholar 

  89. Hogarth LA, Hall AG . Increased BAX expression is associated with an increased risk of relapse in childhood acute lymphocytic leukemia Blood 1999 93: 2671–2678

    CAS  PubMed  Google Scholar 

  90. Houghton JA . Apoptosis and drug response Curr Opin Oncol 1999 11: 475–481

    Article  CAS  PubMed  Google Scholar 

  91. Vander Heiden MG, Thompson CB . Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nature Cell Biol 1999 1: E209–E216

    Article  CAS  PubMed  Google Scholar 

  92. Antonsson B, Conti F, Ciavatta A, Montessuit S, Lewis S, Martinou I, Bernasconi L, Bernard A, Mermod JJ, Mazzei G, Maundrell K, Gambale F, Sadoul R, Martinou JC . Inhibition of Bax channel-forming activity by Bcl-2 Science 1997 277: 370–372

    Article  CAS  PubMed  Google Scholar 

  93. Shibasaki F, Kondo E, Akagi T, McKeon F . Suppression of signalling through transcription factor NF-AT by interactions between calcineurin and Bcl-2 Nature 1997 386: 728–731

    Article  CAS  PubMed  Google Scholar 

  94. Miyashita T, Reed JC . Bcl-2 oncoproteins blocks chemotherapy-induced apoptosis in a human leukemia cell line Blood 1993 81: 151–157

    CAS  PubMed  Google Scholar 

  95. Schmitt E, Cimoli G, Steyaert A, Bertrand R . Bcl-xL modulates apoptosis induced by anticancer drugs and delays DEVDase and DNA fragmentation-promoting activities Exp Cell Res 1998 240: 107–121

    Article  CAS  PubMed  Google Scholar 

  96. Kitada S, Takayama S, De Riel K, Tanaka S, Reed JC . Reversal of chemoresistance of lymphoma cells by antisense-mediated reduction of bcl-2-gene expression Antisense Res Dev 1994 4: 71–79

    Article  CAS  PubMed  Google Scholar 

  97. Jansen B, Schlagbauer-Wald H, Brown BD, Bryan RN, Van Elsas A, Müller M, Wolff K, Eichler H-G, Pehamberger H . Bcl-2 antisense therapy chemosensitizes human melanoma in SCID mice Nature Med 1998 4: 232–234

    Article  CAS  PubMed  Google Scholar 

  98. Tai YT, Strobel T, Kufe D, Cannistra SA . In vivo cytotoxicity of ovarian cancer cells through tumor-selective expression of the BAX gene Cancer Res 1999 59: 2121–2126

    CAS  PubMed  Google Scholar 

  99. Haldar S, Jena N, Croce CM . Inactivation of Bcl-2 by phosphorylation Proc Natl Acad Sci USA 1995 92: 4507–4511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Blagosklonny MV, Schulte T, Phuongmai N, Trepel J, Neckers LM . Taxol-induced apoptosis and phosphorylation of Bcl-2 protein involves c-Raf-1 and represents a novel c-Raf-1 signal tranduction pathway Cancer Res 1996 56: 1851–1854

    CAS  PubMed  Google Scholar 

  101. Basu A, Haldar S . Microtubule-damaging drugs triggered Bcl2 phosphorylation-requirement of phosphorylation on both serine-70 and serine-87 residues of bcl2 protein Int J Oncol 1998 13: 659–664

    CAS  PubMed  Google Scholar 

  102. Blagosklonny MV, Giannakakou P, El-Deiry W, Kingston DGI, Higgs PI, Neckers L, Fojo T . Raf-1/bcl-2 phosphorylation: a step from microtubule damage to cell death Cancer Res 1997 57: 130–135

    CAS  PubMed  Google Scholar 

  103. Wang LG, Liu XM, Kreis W, Budman DR . The effect of antimicrotubule agents on signal transduction pathways of apoptosis Cancer Chemother Pharmacol 1999 44: 355–361

    Article  CAS  PubMed  Google Scholar 

  104. Srivastava RK, Srivastava AR, Korsmeyer SJ, Nesterova M, Cho-Chung YS, Longo DL . Involvement of microtubules in the regulation of Bcl2 phosphorylation and apoptosis through cyclic AMP-dependent protein kinase Mol Cell Biol 1998 18: 3509–3517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Blagosklonny MV, Chuman Y, Bergan RC, Fojo T . Mitogen-activated protein kinase pathway is dispensable for microtubule-active drug-induced Raf-1/Bcl-2 phosphorylation and apoptosis in leukemia cells Leukemia 1999 13: 1028–1036

    Article  CAS  PubMed  Google Scholar 

  106. Basu A, You SA, Haldar S . Regulation of Bcl2 phosphorylation by stress response kinase pathway Int J Oncol 2000 16: 497–500

    CAS  PubMed  Google Scholar 

  107. Attala H, Westberg JA, Andersson LC, Adlercreutz H, Makela TP . 2-Methyoxyestradiol-induced phosphorylation of bcl-2: uncoupling from JNK/SAPK activation Biochem Biophys Res Commun 1998 247: 616–621

    Article  Google Scholar 

  108. Nagata S . Biddable death Nat Cell Biol 1999 1: E143–E145

    Article  CAS  PubMed  Google Scholar 

  109. Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, Maundrell K, Antonsson B, Martinou JC . Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis J Cell Biol 1999 144: 891–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Downward J . How BAD phosphorylation is good for survival Nat Cell Biol 1999 1: E33–E35

    Article  CAS  PubMed  Google Scholar 

  111. Wang HG, Pathan N, Ethell IM, Krajewski S, Yamaguchi Y, Shibasaki F, McKeon F, Bobo T, Franke TF, Reed JC . Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD Science 1999 284: 339–343

    Article  CAS  PubMed  Google Scholar 

  112. Puthalakath H, Huang DC, O'Reilly LA, King SM, Strasser A . The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex Mol Cell 1999 3: 287–296

    Article  CAS  PubMed  Google Scholar 

  113. Bouillet P, Metcalf D, Huang DC, Tarlinton DM, Kay TW, Kontgen F, Adams JM, Strasser A . Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity Science 1999 286: 1735–1738

    Article  CAS  PubMed  Google Scholar 

  114. Cheng EH, Kirsch DG, Clem RJ, Ravi R, Kastan MB, Bedi A, Ueno K, Hardwick JM . Conversion of Bcl-2 to a Bax-like death effector by caspases Science 1997 278: 1966–1968

    Article  CAS  PubMed  Google Scholar 

  115. Selvakumaran M, Lin HK, Miyashita T, Wang HG, Krajewski S, Reed JC, Hoffman B, Liebermann D . Immediate early up-regulation of bax expression by p53 but not TGF beta 1: a paradigm for distinct apoptotic pathways Oncogene 1994 9: 1791–1798

    CAS  PubMed  Google Scholar 

  116. Basu A, Haldar S . The relationship between Bcl-2, Bax and p53: consequences for cell cycle progression and cell death Mol Hum Reprod 1998 4: 1099–1109

    Article  CAS  PubMed  Google Scholar 

  117. Inohara N, Ding L, Chen S, Nunez G . Harakiri, a novel regulator of cell death, encodes a protein that activates apoptosis and interacts selectively with survival-promoting proteins Bcl-2 and Bcl-X(L) EMBO J 1997 16: 1686–1694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Jaattela M . Heat shock proteins as cellular lifeguards Ann Med 1999 31: 261–271

    Article  CAS  PubMed  Google Scholar 

  119. Samali A, Holmberg CI, Sistonen L, Orrenius S . Thermotolerance and cell death are distinct cellular responses to stress: dependence on heat shock proteins FEBS Lett 1999 461: 306–310

    Article  CAS  PubMed  Google Scholar 

  120. Galea-Lauri J, Richardson AJ, Latchman DS, Katz DR . Increased heat shock protein 90 (hsp90) expression leads to increased apoptosis in the monoblastoid cell line U937 following induction with TNF-alpha and cycloheximide: a possible role in immunopathology J Immunol 1996 157: 4109–4118

    CAS  PubMed  Google Scholar 

  121. Jaattela M, Wissing D, Kokholm K, Kallunki T, Egeblad M . Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases EMBO J 1998 17: 6124–6134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Stuart JK, Myszka DG, Joss L, Mitchell RS, McDonald SM, Xie Z, Takayama S, Reed JC, Ely KR . Characterization of interactions between the anti-apoptotic protein BAG-1 and Hsc70 molecular chaperones J Biol Chem 1998 273: 22506–22514

    Article  CAS  PubMed  Google Scholar 

  123. Gabai VL, Meriin AB, Mosser DD, Caron AW, Rits S, Shifrin VI, Sherman MY . Hsp70 prevents activation of stress kinases. A novel pathway of cellular thermotolerance J Biol Chem 1997 272: 18033–18037

    Article  CAS  PubMed  Google Scholar 

  124. Mosser DD, Caron AW, Bourget L, Denis-Larose C, Massie B . Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis Mol Cell Biol 1997 17: 5317–5327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Buzzard KA, Giaccia AJ, Killender M, Anderson RL . Heat shock protein 72 modulates pathways of stress-induced apoptosis J Biol Chem 1998 273: 17147–17153

    Article  CAS  PubMed  Google Scholar 

  126. Garrido C, Fromentin A, Bonnotte B, Favre N, Moutet M, Arrigo AP, Mehlen P, Solary E . Heat shock protein 27 enhances the tumorigenicity of immunogenic rat colon carcinoma cell clones Cancer Res 1998 58: 5495–5499

    CAS  PubMed  Google Scholar 

  127. Mehlen P, Schulze-Osthoff K, Arrigo AP . Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1- and staurosporine-induced cell death J Biol Chem 1996 271: 16510–16514

    Article  CAS  PubMed  Google Scholar 

  128. Garrido C, Ottavi P, Fromentin A, Hammann A, Arrigo AP, Chauffert B, Mehlen P . HSP27 as a mediator of confluence-dependent resistance to cell death induced by anticancer drugs Cancer Res 1997 57: 2661–2667

    CAS  PubMed  Google Scholar 

  129. Mehlen P, Kretz-Remy C, Preville X, Arrigo AP . Human hsp27, Drosophila hsp27 and human alphaB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNFalpha-induced cell death EMBO J 1996 15: 2695–2706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lavoie JN, Lambert H, Hickey E, Weber LA, Landry J . Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure of heat shock protein 27 Mol Cell Biol 1995 15: 505–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Konishi H, Matsuzaki H, Tanaka M, Takemura Y, Kuroda S, Ono Y, Kikkawa U . Activation of protein kinase B (Akt/RAC-protein kinase) by cellular stress and its association with heat shock protein Hsp27 FEBS Lett 1997 410: 493–498

    Article  CAS  PubMed  Google Scholar 

  132. Garrido C, Bruey JM, Fromentin A, Hammann A, Arrigo AP, Solary E . HSP27 inhibits cytochrome c-dependent activation of procaspase-9 FASEB J 1999 13: 2061–2070

    Article  CAS  PubMed  Google Scholar 

  133. Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-Latoud C, Gurbuxani S, Arrigo AP, Kroemer G, Solary E, Garrido C . Hsp27 negatively regulates cell death by interacting with cytochrome c Nature Cell Biol 2000 (in press

  134. Kim SH, Kim D, Han JS, Jeong CS, Chung BS, Kang CD, Li GC . Ku autoantigen affects the susceptibility to anticancer drugs Cancer Res 1999 59: 4012–4017

    CAS  PubMed  Google Scholar 

  135. Martinez-Lorenzo MJ, Gamen S, Etxeberria J, Lasierra P, Larrad L, Pineiro A, Anel A, Naval J, Alava MA . Resistance to apoptosis correlates with a highly proliferative phenotype and loss of Fas and CPP32 (caspase-3) expression in human leukemia cells Int J Cancer 1998 75: 473–481

    Article  CAS  PubMed  Google Scholar 

  136. von Reyher U, Strater J, Kittstein W, Gschwendt M, Krammer PH, Moller P . Colon carcinoma cells use different mechanisms to escape CD95-mediated apoptosis Cancer Res 1998 58: 526–534

    CAS  PubMed  Google Scholar 

  137. Algeciras-Schimnich A, Griffith TS, Lynch DH, Paya CV . Cell cycle-dependent regulation of FLIP levels and susceptibility to Fas-mediated apoptosis J Immunol 1999 162: 5205–5211

    CAS  PubMed  Google Scholar 

  138. Micheau O, Solary E, Hammann A, Martin F, Dimanche-Boitrel MT . Sensitization of cancer cells treated with cytotoxic drugs to fas-mediated cytotoxicity J Natl Cancer Inst 1997 89: 783–789

    Article  CAS  PubMed  Google Scholar 

  139. Sheard MA, Krammer PH, Zaloudik J . Fractionated gamma-irradiation renders tumour cells more responsive to apoptotic signals through CD95 Br J Cancer 1999 80: 1689–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Posovszky C, Friesen C, Herr I, Debatin KM . Chemotherapeutic drugs sensitize pre-B ALL cells for CD95- and cytotoxic T-lymphocyte-mediated apoptosis Leukemia 1999 13: 400–409

    Article  CAS  PubMed  Google Scholar 

  141. Morimoto H, Yonehara S, Bonavida B . Overcoming tumor necrosis factor and drug resistance of human tumor cell lines by combination treatment with anti-Fas antibody and drugs or toxins Cancer Res 1993 53: 2591–2596

    CAS  PubMed  Google Scholar 

  142. Lee KL, Spielmann J, Zhao DJ, Olsen KJ, Podack ER . Perforin, Fas ligand, and tumor necrosis factor are the major cytotoxic molecules used by lymphokine-activated killer cells J Immunol 1996 157: 1919–1925

    CAS  PubMed  Google Scholar 

  143. Knight CRL, Rees RC, Platts A, Johnson T, Griffin M . Interleukin-2-activated human effector lymphocytes mediate cytotoxicity by inducing apoptosis in human leukaemia and solid tumour target cells Immunology 1993 79: 535–541

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Kondo T, Suda T, Fukuyama H, Adachi M, Nagata S . Essential roles of the Fas ligand in the development of hepatitis Nature Med 1997 3: 409–413

    Article  CAS  PubMed  Google Scholar 

  145. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, Sutherland GR, Smith TD, Rauch C, Smith CA, Goodwin RG . Identification and characterization of a new member of the TNF family that induces apoptosis Immunity 1995 3: 673–682

    Article  CAS  PubMed  Google Scholar 

  146. Pitti RM, Marters SA, Ruppert TS, Donahue CJ, Moore A, Ashkenazi A . Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor family J Biol Chem 1996 271: 12687–12690

    Article  CAS  PubMed  Google Scholar 

  147. Bodmer JL, Holler N, Reynard S, Vinciguerra P, Schneider P, Juo P, Blenis J, Tschopp J . TRAIL receptor-2 signals apoptosis through FADD and caspase-8 Nat Cell Biol 2000 2: 241–243

    Article  CAS  PubMed  Google Scholar 

  148. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, Chin W, Jones J, Woodward A, Le T, Smith C, Smolak P, Goodwin RG, Rauch CT, Schuh JC, Lynch DH . Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo Nature Med 1999 5: 157–163

    Article  CAS  PubMed  Google Scholar 

  149. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, Blackie C, Chang L, McMurtrey AE, Hebert A, DeForge L, Koumenis IL, Lewis D, Harris L, Bussiere J, Koeppen H, Shahrokh Z, Schwall RH . Safety and antitumor activity of recombinant soluble Apo2 ligand J Clin Invest 1999 104: 155–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Jo M, Kim TH, Seol DW, Esplen JE, Dorko K, Billiar TR, Strom SC . Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis inducing ligand Nature Med 2000 6: 564–567

    Article  CAS  PubMed  Google Scholar 

  151. Griffith TS, Lynch, DH . TRAIL: a molecule with multiple receptors and control mechanisms Curr Opin Immunol 1998 10: 559–563

    Article  CAS  PubMed  Google Scholar 

  152. Ashkenazi A, Dixit VM . Apoptosis control by death and decoy receptors Curr Opin Cell Biol 1999 11: 255–260

    Article  CAS  PubMed  Google Scholar 

  153. Mizutani Y, Yoshida O, Miki T, Bonavida B . Synergistic cytotoxicity and apoptosis by Apo-2 ligand and adriamycin against bladder cancer cells Clin Cancer Res 1999 5: 2605–2612

    CAS  PubMed  Google Scholar 

  154. Bonavida B, Ng CP, Jazirehi A, Schiller G, Mizutani Y . Selectivity of TRAIL-mediated apoptosis of cancer cells and synergy with drugs: the trail to non-toxic cancer therapeutics Int J Oncol 1999 15: 793–802

    CAS  PubMed  Google Scholar 

  155. Gibson SB, Oyer R, Spalding AC, Anderson SM, Johnson GL . Increased expression of death receptors 4 and 5 synergizes the apoptosis response to combined treatment with etoposide and TRAIL Mol Cell Biol 2000 20: 205–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhang XD, Franco A, Myers K, Gray C, Nguyen T, Hersey P . Relation of TNF-related apoptosis-inducing ligand (TRAIL) receptor and FLICE-inhibitory protein expression to TRAIL-induced apoptosis of melanoma Cancer Res 1999 59: 2747–2753

    CAS  PubMed  Google Scholar 

  157. Woo RA, McLure KG, Lees-Miller SP, Rancourt DE, Lee PMK . DNA-dependent kinase acts upstream of p53 in response to DNA damage Nature 1998 394: 700–704

    Article  CAS  PubMed  Google Scholar 

  158. Waterman MJ, Stavridi ES, Waterman JL, Halazonetis TD . ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins Nat Genet 1998 19: 175–178

    Article  CAS  PubMed  Google Scholar 

  159. White E, Prives C . DNA damage enables p73 Nature 1999 399: 734–535

    Article  CAS  PubMed  Google Scholar 

  160. Gong JG, Costanzo A, Yang HQ, Melino G, Kaelin WG Jr, Levrero M, Wang JY . The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage Nature 1999 399: 806–809

    Article  CAS  PubMed  Google Scholar 

  161. Agami R, Blandino G, Oren M, Shaul Y . Interaction of c-Abl and p73 alpha and their collaboration to induce apoptosis Nature 1999 399: 809–813

    Article  CAS  PubMed  Google Scholar 

  162. Yuan ZM, Shioya H, Ishiko T, Sun X, Gu J, Huang YY, Lu H, Kharbanda S, Weichselbaum R, Kufe D . p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage Nature 1999 399: 814–817

    Article  CAS  PubMed  Google Scholar 

  163. Miyashita T, Harigal M, Hanada M, Reed JC . Identification of p53-dependent negative responsive element in the bcl-2 gene Cancer Res 1994 54: 3131–3135

    CAS  PubMed  Google Scholar 

  164. Miyashita T, Reed JC . Tumor suppressor p53 is a direct transcriptional activator of the human bax gene Cell 1995 80: 293–299

    Article  CAS  PubMed  Google Scholar 

  165. Tanaka H, Arakawa H, Yamaguchi T, Shiraishi K, Fukuda S, Matsui K, Takei Y, Nakamura Y . A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage Nature 2000 404: 42–49

    Article  CAS  PubMed  Google Scholar 

  166. Sugiyama K, Shimizu M, Akiyama T, Tamaoki T, Yamaguchi K, Takahashi R, Eastman A, Akinaga S . UCN-01 selectively enhances mitomycin C cytotoxicity in p53 defective cells which is mediated through S and/or G(2) checkpoint abrogation Int J Cancer 2000 85: 703–709

    Article  CAS  PubMed  Google Scholar 

  167. Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B . 14–3–3σ is required to prevent mitotic catastrophe after DNA damage Nature 1999 401: 616–620

    Article  CAS  PubMed  Google Scholar 

  168. Lowe SW, Ruley HE, Jacks T, Housman DE . p53-dependent apoptosis modulates the cytotoxicity of anticancer agents Cell 1993 74: 957–967

    Article  CAS  PubMed  Google Scholar 

  169. Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE, Housman DE, Jacks T . p53 status and the efficacy of cancer therapy in vivo Science 1994 266: 807–810

    Article  CAS  PubMed  Google Scholar 

  170. Weinstein JN, Myers TG, O'Connor PM, Friend SH, Fornace AJ Jr, Kohn KW, Fojo T, Bates SE, Rubinstein LV, Anderson NL, Buolamwini JK, van Osdol WW, Monks AP, Scudiero DA, Sausville EA, Zaharevitz DW, Bunow B, Viswanadhan VN, Johnson GS, Wittes RE, Paull KD . An information-intensive approach to the molecular pharmacology of cancer Science 1997 275: 343–349

    Article  CAS  PubMed  Google Scholar 

  171. Waldman T, Zhang Y, Dillehay L, Yu J, Kinzler K, Vogelstein B, Williams J . Cell-cycle arrest versus cell death in cancer therapy Nature Med 1997 3: 1034–1036

    Article  CAS  PubMed  Google Scholar 

  172. Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ, Roussel MF . Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization Genes Dev 1998 12: 2424–2433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Bissonnette RP, Echeverri F, Mahboubi A, Green DR . Apoptotic cell death induced by c-myc is inhibited by bcl-2 Nature 1992 359: 552–554

    Article  CAS  PubMed  Google Scholar 

  174. Brown JM, Wouters BG . Apoptosis, p53 and tumor cell sensitivity to anticancer agents Cancer Res 1999 59: 1391–1399

    CAS  PubMed  Google Scholar 

  175. Komarov PG, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, Chernov MV, Gudkov AV . A chemical inhibitor of p53 that protects mice from the side-effects of cancer therapy Science 1999 285: 1733–1737

    Article  CAS  PubMed  Google Scholar 

  176. Rayet B, Gelinas C . Aberrant rel/NF-κB genes and activity in human cancer Oncogene 1999 18: 6938–6947

    Article  CAS  PubMed  Google Scholar 

  177. Beg AA, Baltimore D . An essential role for NF-κB in preventing TNF-a-induced apoptosis by NF-κB Science 1996 274: 787–789

    Article  Google Scholar 

  178. Wang CY, Mayo MW, Baldwin AS Jr . TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-κB Science 1996 274: 784–787

    Article  CAS  PubMed  Google Scholar 

  179. Furman RR, Asgary Z, Mascarenhas JO, Liou HC, Schattner EJ . Modulation of NF-Kappa B activity and apoptosis in chronic lymphocytic leukemia B cells J Immunol 2000 164: 2200–2206

    Article  CAS  PubMed  Google Scholar 

  180. Kordes U, Krappmann D, Heissmeyer V, Ludwig WD, Scheidereit C . Transcription factor NF-kappaB is constitutively activated in acute lymphoblastic leukemia cells Leukemia 2000 14: 399–402

    Article  CAS  PubMed  Google Scholar 

  181. Luque I, Gelinas C . Rel/NF-κB and I-κB factors in oncogenesis Semin Cancer Biol 1997 8: 103–111

    Article  CAS  PubMed  Google Scholar 

  182. LaCasse EC, Baird S, Korneluk RG, MacKenzie AE . The inhibitors of apoptosis (IAPs) and their emerging role in cancer Oncogene 1998 17: 3247–3259

    Article  PubMed  Google Scholar 

  183. Chu ZL, McKinsey TA, Liu L, Gentry JJ, Malim MH, Ballard DW . Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-iap2 is under NF-κB control Proc Natl Acad Sci USA 1997 94: 10057–10062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Stehlik C, de Martin R, Kumabashiri I, Schmid JA, Binder BR, Lipp J . Nuclear factor (NF)-κB-regulated X-chromosome-linked iap gene expression protects endothelial cells from tumor necrosis factor-a-induced apoptosis J Exp Med 1998 188: 211–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Bargou RC, Emmerich F, Krappmann D, Bommert K, Mapara MY, Arnold W, Royer HD, Grinstein E, Greiner A, Scheidereit C, Dorken B . Constitutive nuclear factor-κB-RelA activation is required for proliferation and survival of Hodgkin's disease tumor cells J Clin Invest 1997 100: 2961–2969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Messineo C, Jamerson MH, Hunter E, Braziel R, Bagg A, Irving SG, Cossman J . Gene expression by single Reed–Sternberg cells: pathways of apoptosis and activation Blood 1998 91: 2443–2451

    CAS  PubMed  Google Scholar 

  187. Kuhnel F, Zender L, Paul Y, Tietze MK, Trautwein C, Manns M, Kubicka S . NKkappaB mediated apoptosis through transcriptional activation of Fas (CD95) in adenoviral hepatitis J Biol Chem 2000 275: 6421–6427

    Article  CAS  PubMed  Google Scholar 

  188. Quignon F, De Bels F, Koken M, Feunteun J, Ameisen JC, de Thé H . PML induces a novel caspase-independent death process Nat Genet 1998 20: 259–265

    Article  CAS  PubMed  Google Scholar 

  189. Wang ZG, Ruggero D, Ronchetti S, Zhong S, Gaboli M, Rivi R, Pandolfi PP . PML is essential for multiple apoptotic pathways Nat Genet 1998 20: 266–272

    Article  CAS  PubMed  Google Scholar 

  190. Nason-Burchenal K, Gandini D, Botto M, Allopenna J, Seale JR, Cross NC, Goldman JM, Dmitrovsky E, Pandolfi PP . Interferon augments PML and PML/RAR alpha expression in normal myeloid and acute promyelocytic cells and cooperates with all-trans retinoic acid to induce maturation of a retinoid-resistant promyelocytic cell line Blood 1996 88: 3926–3936

    CAS  PubMed  Google Scholar 

  191. Dyck JA, Maul GG, Miller WH Jr, Chen JD, Kakizuka A, Evans RM . A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein Cell 1994 76: 333–343

    Article  CAS  PubMed  Google Scholar 

  192. Hodges M, Tissot C, Howe K, Grinwade D, Freemont PS . Structure, organization, and dynamics of promyelocytic leukemia protein nuclear bodies Am J Hum Genet 1998 63: 297–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. He LZ, Guidez F, Tribioli C, Peruzzi D, Ruthardt M, Zelent A, Pandolfi PP . Distinct interactions of PML-RARalpha and PLZF-RARalpha with co-repressors determine differential responses to RA in APL Nat Genet 1998 18: 126–135

    Article  CAS  PubMed  Google Scholar 

  194. Koken MH, Puvion-Dutilleul F, Guillemin MC, Viron A, Linares-Cruz G, Stuurman N, de Jong L, Szostecki C, Calvo F, Chomienne C et al. The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion EMBO J 1994 13: 1073–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M, Fanelli M, Ruthardt M, Ferrara FF, Zamir I, Seiser C, Grignani F, Lazar MA, Minucci S, Pelicci PG . Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia Nature 1998 391: 815–818

    Article  CAS  PubMed  Google Scholar 

  196. Lin RJ, Nagy L, Inoue S, Shao W, Miller WH Jr, Evans RM . Role of the histone deacetylase complex in acute promyelocytic leukaemia Nature 1998 391: 811–814

    Article  CAS  PubMed  Google Scholar 

  197. Sternsdorf T, Puccetti E, Jensen K, Hoelzer D, Will H, Ottmann OG, Ruthardt M . PIC-1/SUMO-1-modified PML-retinoic acid receptor alpha mediates arsenic trioxide-induced apoptosis in acute promyelocytic leukemia Mol Cell Biol 1999 19: 5170–5178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Nervi C, Ferrara FF, Fanelli M, Rippo MR, Tomassini B, Ferrucci PF, Ruthardt M, Gelmetti V, Gambacorti-Passerini C, Diverio D, Grignani F, Pelicci PG, Testi R . Caspases mediate retinoic acid-induced degradation of the acute promyelocytic leukemia PML/RARalpha fusion protein Blood 1998 92: 2244–2251

    CAS  PubMed  Google Scholar 

  199. Zu J, Koken MH, Quignon F, Chelbi-Alix MK, Degos L, Wang ZY, Chen Z, de Thé H . Arsenic-induced PML targeting on to nuclear bodies: implications for the treatment of acute promyelocytic leukemia Proc Natl Acad Sci USA 1997 94: 3978–3983

    Article  Google Scholar 

  200. Wang ZG, Delva L, Gaboli M, Rivi R, Giorgio M, Cordon-Cardo C, Grosveld F, Pandolfi PP . Role of PML in cell growth and the retinoic acid pathway Science 1998 279: 1547–1551

    Article  CAS  PubMed  Google Scholar 

  201. Eymin B, Haugg M, Droin N, Sordet O, Dimanche-Boitrel MT, Solary E . P27Kip1 induces drug resistance by preventing apoptosis upstream of cytochrome c release from mitochondria and procaspase-3 activation Oncogene 1999 18: 1411–1418

    Article  CAS  PubMed  Google Scholar 

  202. Torii S, Egan DA, Evans RA, Reed JC . Human Daxx regulates Fas-induced apoptosis from nuclear PML oncogenic domains (PODs) EMBO J 1999 18: 6037–6049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Hannun YA . Functions of ceramide in coordinating cellular responses to stress Science 1996 274: 1855–1859

    Article  CAS  PubMed  Google Scholar 

  204. Jarvis WD, Grant S, Kolesnick RN . Ceramide and the induction of apoptosis Clin Cancer Res 1996 2: 1–6

    CAS  PubMed  Google Scholar 

  205. Liu G, Kleine L, Hebert RL . Advances in the signal transduction of ceramide and related sphingolipids Crit Rev Clin Lab Sci 1999 36: 511–573

    Article  CAS  PubMed  Google Scholar 

  206. Jaffrezou JP, Levade T, Bettaieb A, Andrieu N, Bezombes C, Maestre N, Vermeersch S, Rousse A, Laurent G . Daunorubicin-induced apoptosis: triggering of ceramide generation through sphingomyelin hydrolysis EMBO J 1996 15: 2417–2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Bettaieb A, Plo I, Mansat-De Mas V, Quillet-Mary A, Levade T, Laurent G, Jaffrezou JP . Daunorubicin- and mitoxantrone-triggered phosphatidylcholine hydrolysis: implication in drug-induced ceramide generation and apoptosis Mol Pharmacol 1999 55: 118–125

    Article  CAS  PubMed  Google Scholar 

  208. Zhang J, Alter N, Reed JC, Borner C, Obeid LM, Hannun YA . Bcl-2 interrupts the ceramide-mediated pathway of cell death Proc Natl Acad Sci USA 1996 93: 5325–5328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Strum JC, Small GW, Pauig SB, Daniel LW . 1-beta-D-arabinofuranosylcytosine stimulates ceramide and diglyceride formation in HL-60 cells J Biol Chem 1994 269: 15493–15497

    CAS  PubMed  Google Scholar 

  210. Quintans J, Kilkus J, McShan CL, Gottschalk AR, Dawson G . Ceramide mediates the apoptotic response of WEHI 231 cells to anti-immunoglobulin, corticosteroids and irradiation Biochem Biophys Res Commun 1994 202: 710–714

    Article  CAS  PubMed  Google Scholar 

  211. Tepper CG, Jayadev S, Liu B, Bielawska A, Wolff R, Yonehara S, Hannun YA, Seldin MF . Role of ceramide as an endogenous mediator of Fas-induced cytotoxicity Proc Natl Acad Sci USA 1995 92: 8443–8447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Bettaieb A, Record M, Come MG, Bras AC, Chap H, Laurent G, Jaffrezou JP . Opposite effects of tumor necrosis factor alpha on the sphingomyelin-ceramide pathway in two myeloid leukemia cell lines: role of transverse sphingomyelin distribution in the plasma membrane Blood 1996 88: 1465–1472

    CAS  PubMed  Google Scholar 

  213. Verheij M, Bose R, Lin XH, Yao B, Jarvis WD, Grant S, Birrer MJ, Szabo E, Zon LI, Kyriakis JM, Haimovitz-Friedman A, Fuks Z, Kolesnick RN . Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis Nature 1996 380: 75–79

    Article  CAS  PubMed  Google Scholar 

  214. Mansat V, Laurent G, Bettaieb A, Levade T, Jaffrézou JP . The protein kinase C activators phorbol esters and phosphatidylserines inhibit neutral sphingomyelinase activation, ceramide and apoptosis triggered by daunorubicin Cancer Res 1997 57: 5300–5304

    CAS  PubMed  Google Scholar 

  215. Grant S, Jarvis WD . Modulation of drug-induced by interruption of the protein kinase C signal transduction pathway: a new therapeutic strategy Clin Cancer Res 1996 2: 1915–1920

    CAS  PubMed  Google Scholar 

  216. Jaffrézou JP, Bettaieb A, Levade T, Laurent G . Antitumor-agent-induced apoptosis in myeloid leukemia cells: a controlled suicide Leuk Lymphoma 1998 29: 453–463

    Article  PubMed  Google Scholar 

  217. Plo I, Bettaieb A, Payrastre B, Mansat-De Mas V, Bordier C, Rousse A, Kowalski-Chauvel A, Laurent G, Lautier D . The phosphoinositide 3-kinase/Akt pathway is activated by daunorubicin in human acute myeloid leukemia cell lines FEBS Lett 1999 452: 150–154

    Article  CAS  PubMed  Google Scholar 

  218. Takeda H, Matozaki T, Takada T, Noguchi T, Yamao T, Tsuda M, Ochi F, Fukunaga K, Inagaki K, Kasuga M . PI 3-kinase γ and protein kinase ξ mediate RAS-independent activation of MAP kinase by a Gi protein-coupled receptor EMBO J 1999 18: 386–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Moscat J, Diaz-Meco MT . Zeta protein kinase C: a new target for antiproliferative interactions Anti-cancer drugs 1996 7: 143–148

    Google Scholar 

  220. Creagh EM, Sheehan D, Cotter TG . Heat shock proteins – modulators of apoptosis in tumor cells Leukemia 2000 14: 1161–1173

    Article  CAS  PubMed  Google Scholar 

  221. Azuma T, Koths K, Flanagan L, Kwiatkowski D . Gelsolin in complex with phosphatidylinositol 4,5-bisphosphate inhibits caspase-3 and -9 to retard apoptotic progression J Biol Chem 2000 275: 3761–3766

    Article  CAS  PubMed  Google Scholar 

  222. Eymin B, Sordet O, Droin N, Munsch B, Haugg M, Van de Craen M, Vandenabeele P, Solary E . Caspase-induced proteolysis of the cyclin-dependent kinase inhibitor p27Kip1 mediates its anti-apoptotic activity Oncogene 1999 18: 4839–4847

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our group is supported by grants from INSERM, the Ligue Nationale Contre le Cancer (comittees: Côte d'Or, Saône et Loire, Nièvre), the Association pour la Recherche sur le Cancer (No. 9567), the Association pour la Recherche sur la Transfusion (ART) and the Association Régionale pour l'Enseignement et la Recherche Scientifique et Technologique en Champagne-Ardenne (ARERS). ND is the recipient of a grant from the Société Française d'Hématologie.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solary, E., Droin, N., Bettaieb, A. et al. Positive and negative regulation of apoptotic pathways by cytotoxic agents in hematological malignancies. Leukemia 14, 1833–1849 (2000). https://doi.org/10.1038/sj.leu.2401902

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401902

Keywords

This article is cited by

Search

Quick links