Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Glutathione depletion overcomes resistance to arsenic trioxide in arsenic-resistant cell lines

Abstract

Arsenic trioxide (As2O3) is an effective treatment for acute promyelocytic leukemia (APL), but is less effective against other leukemias. Although the response of APL cells to As2O3 has been linked to degradation of the PML/RARα fusion oncoprotein, there is evidence that PML/RARα expression is not the only mediator of arsenic sensitivity. Indeed, we found that exogenous expression of PML/RARα did not sensitize a non-APL leukemic line to As2O3. To evaluate possible other determinants of sensitivity of leukemic cells to As2O3, we derived two arsenic-resistant NB4 subclones. Despite being approximately 10-fold more resistant to arsenic than their parental cell line, PML/RARα protein was still degraded by As2O3 in these cells, providing further evidence that loss of expression of the oncoprotein does not confer arsenic sensitivity. Both arsenic-resistant clones contained high glutathione (GSH) levels, however, and we found that GSH depletion coupled with As2O3 treatment dramatically inhibited their growth. Annexin V-staining and TUNEL analysis confirmed a synergistic induction of apoptosis. In addition, these cells failed to accumulate ROS in response to arsenic treatment, in contrast to their arsenic-sensitive parental cells, unless cotreated with buthionine sulfoximine. While other malignant cells did not show a good correlation between arsenic sensitivity and GSH content, GSH depletion nevertheless sensitized all cell lines examined, regardless of their initial response to arsenic alone. These findings suggest that PML/RARα expression is not a determinant of arsenic sensitivity, and further support the coupling of GSH depletion and arsenic treatment as a novel treatment for human malignancies that are unresponsive to arsenic alone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Chen GQ, Shi XG, Tang W, Xiong SM, Zhu J, Cai X et al. Use of arsenic trioxide in the treatment of acute promyelocytic leukemia (APL): I. arsenic trioxide exerts dose-dependent dual effects on APL cells. Blood 1997; 89: 3345–3353.

    CAS  PubMed  Google Scholar 

  2. Shen ZX, Chen GQ, Ni JH, Li XS, Xiong SM, Qiu QY et al. Use of arsenic trioxide in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood 1997; 89: 3354–3360.

    CAS  PubMed  Google Scholar 

  3. Soignet SL, Maslak P, Wang Z, Jhanwar S, Calleja E, Dardashti LJ et al. Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med 1998; 339: 1341–1348.

    Article  CAS  PubMed  Google Scholar 

  4. Miller Jr WH, Warrell Jr RP, Frankel SR, Jakubowski A, Gabrilove JL, Muindi J et al. Novel retinoic acid receptor-α transcripts in acute promyelocytic leukemia responsive to all-trans-retinoic acid. J Natl Cancer Inst 1990; 32: 1932–1933.

    Article  Google Scholar 

  5. Kakizuka A, Miller Jr WH, Umesono K, Warrell Jr RP, Frankel SR, Murty VV et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell 1991; 66: 663–674.

    Article  CAS  PubMed  Google Scholar 

  6. Rosenauer A, Raelson JV, Nervi C, Eydoux P, DeBlasio A, Miller Jr WH . Alterations in expression, binding to ligand and DNA, and transcriptional activity of rearranged and wildtype retinoid receptors in retinoid-resistant acute promyelocytic leukemia cell lines. Blood 1996; 88: 2671–2682.

    CAS  PubMed  Google Scholar 

  7. de The H, Marchio A, Tiollais P, Dejean A . A novel steroid/thyroid hormone receptor-related gene inappropriately expressed in human hepatocellular carcinoma. Nature 1987; 330: 667–670.

    Article  CAS  PubMed  Google Scholar 

  8. Castaigne S, Chomienne C, Daniel MT, Berger R, Fenaux P, Degos L . All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I. Clinical results. Blood 1990; 76: 1704–1709.

    CAS  PubMed  Google Scholar 

  9. Chen ZX, Xue YQ, Zhang R, Tao RF, Xia XM, Li C et al. A clinical and experimental study on all-trans retinoic acid treated acute promyelocytic leukemia patients. Blood 1991; 78: 1413–1419.

    CAS  PubMed  Google Scholar 

  10. Raelson JV, Nervi C, Rosenauer A, Benedetti L, Monczak Y, Pearson M et al. The PML/RARα oncoprotein is a direct molecular target of retinoic acid in acute promyelocytic leukemia cells. Blood 1996; 88: 2826–2832.

    CAS  PubMed  Google Scholar 

  11. Shao W, Fanelli M, Ferrara FF, Riccioni R, Rosenauer A, Davison K et al. Arsenic trioxide as an inducer of apoptosis and loss of PML-RARα protein in acute promyelocytic leukemia cells. J Natl Cancer Inst 1998; 90: 124–133.

    Article  CAS  PubMed  Google Scholar 

  12. Chen G, Zhu J, Shi X, Ni J, Zhong H, Si G et al. In vitro studies on cellular and molecular mechanisms of arsenic trioxide in the treatment of acute promyelocytic leukemia: arsenic trioxide induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RARα/PML proteins. Blood 1996; 88: 1052–1061.

    CAS  PubMed  Google Scholar 

  13. Dai J, Weinberg RS, Waxman S, Jing Y . Malignant cells can be sensitized to undergo growth inhibition and apoptosis by arsenic trioxide through modulation of the glutathione redox system. Blood 1999; 93: 268–277.

    CAS  PubMed  Google Scholar 

  14. Wang H-F, Lee T-C . Glutathione S-transferase pi facilitates the excretion of arsenic from arsenic-resistant Chinese hamster ovary cells. Biochem Biophys Res Comm 1993; 192: 1093–1099.

    Article  CAS  PubMed  Google Scholar 

  15. Chen Z, Mutoh M, Sumizawa T, Furukawa T, Haraguchi M, Tani A et al. Reversal of heavy metal resistance in multidrug-resistant human KB carcinoma cells. Bioch Biophys Res Comm 1997; 236: 586–590.

    Article  CAS  Google Scholar 

  16. Lo J, Wang H, Tam M, Lee T . Glutathione S-transferase pi in an arsenic-resistant Chinese hamster ovary cell line. Biochem J 1992; 288: 977–981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ishikawa T, Ali-Osman F . Glutathione-associated cis-diamminedichloroplatinum(II) metabolism and ATP-dependent efflux from leukemia cells. J Biol Chem 1993; 268: 20116–20125.

    CAS  PubMed  Google Scholar 

  18. Zaman GJR, Lankelma J, van Tellingen O, Beijnen J, Dekker H, Paulusma C et al. Role of glutathione in the export of compounds from cells by the multidrug-resistance-associated protein. Proc Natl Acad Sci USA 1995; 92: 7690–7694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen Z-S, Mutoh M, Sumizawa T, Furukawa T, Haraguchi M, Tani A et al. An active efflux system for heavy metals in cisplatin-resistant human KB carcinoma cells. Exp Cell Res 1998; 240: 312–320.

    Article  CAS  PubMed  Google Scholar 

  20. Cole SPC, Sparks KE, Fraser K, Loe DW, Grant CE, Wilson GM et al. Pharmacological characterization of multidrug resistant MRP-transfected human tumor cells. Cancer Res 1994; 54: 5902–5910.

    CAS  PubMed  Google Scholar 

  21. Larochette N, Decaudin D, Jacotot E, Brenner C, Marzo I, Susin SA et al. Arsenite induces apoptosis via a direct effect on the mitochondrial permeability transition pore. Exp Cell Research 1999; 249: 413–421.

    Article  CAS  Google Scholar 

  22. Li YM, Broome JD . Arsenic targets tubulins to induce apoptosis in myeloid leukemia cells. Cancer Res 1999; 59: 776–780.

    CAS  PubMed  Google Scholar 

  23. Cavigelli M, Li WW, Lin A, Su B, Yoshioka K, Karin M . The tumor promoter arsenite stimulates AP-1 activity by inhibiting a JNK phosphatase. EMBO 1996; 15: 6269–6279.

    Article  CAS  Google Scholar 

  24. Hei TK, Liu SX, Waldren C . Mutagenicity of arsenic in mammalian cells: role of reactive oxygen species. Proc Natl Acad Sci USA 1998; 95: 8103–8107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang T, Kuo C, Jan K, Huang H . Arsenite induces apoptosis in Chinese hamster ovary cells by generation of reactive oxygen species. J Cell Physiol 1996; 169: 256–268.

    Article  CAS  PubMed  Google Scholar 

  26. Chen Y, Lin-Shiau S, Lin J . Involvement of reactive oxygen species and caspase 3 activation in arsenite-induced apoptosis. J Cell Physiol 1998; 177: 324–333.

    Article  CAS  PubMed  Google Scholar 

  27. Watson RWG, Redmond HP, Wang JH, Bouchier-Hayes D . Mechanisms involved in sodium arsenite-induced apoptosis of human neutrophils. J Leukocyte Biol 1996; 60: 625–632.

    Article  CAS  PubMed  Google Scholar 

  28. Liu SX, Athar M, Lippai I, Waldren C, Hei TK . Induction of oxyradicals by arsenic: implication for mechanism of genotoxicity. Proc Natl Acad Sci 2001; 98: 1643–1648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang TS, Shu YS, Liu KY, Huang H . Glutathione peroxidase and catalase modulate the genotoxicity of arsenite. Toxicology 1997; 121: 229–237.

    Article  CAS  PubMed  Google Scholar 

  30. Côté S, Zhou D, Bianchini A, Nervi C, Gallagher RE, Miller Jr WH . Altered ligand binding and transcriptional regulation by mutations in the PML/RAR ligand-binding domain arising in retinoic-acid-resistant patients with acute promyelocytic leukemia. Blood 2000; 96: 3200–3208.

    PubMed  Google Scholar 

  31. Ding W, Li Y, Nobile LM, Grills G, Carrera I, Paietta E et al. Leukemic cellular retinoic acid resistance and missense mutations in the PML-RARa fusion gene after relapse of acute promyelocytic leukemia from treatment with all-trans retinoic acid and intensive chemotherapy. Blood 1998; 92: 1172–1183.

    CAS  PubMed  Google Scholar 

  32. Shao W, Benedetti L, Lamph WW, Nervi C, Miller Jr WH . A retinoid-resistant acute promyelocytic leukemia subclone expresses a dominant negative PML-RARα mutation. Blood 1997; 89: 4282–4289.

    CAS  PubMed  Google Scholar 

  33. Imaizumi M, Suzuki H, Yoshinari M, Sato A, Saito T, Sugawara A et al. Mutations in the E-domain of RARα portion of the PML/RARα chimeric gene may confer clinical resistance to all-trans retinoic acid in acute promyelocytic leukemia. Blood 1998; 92: 374–382.

    CAS  PubMed  Google Scholar 

  34. Konig A, Wrazel L, Warrell Jr RP, Rivi R, Pandolfi PP,, Jakubowski A et al. Comparitive activity of melarsoprol and arsenic trioxide in chronic B-cell leukemia lines. Blood 1997; 90: 562–570.

    CAS  PubMed  Google Scholar 

  35. Wang Z, Rivi R, Delva L, Konig A, Scheinberg DA, Gambacorti-Passerini C et al. Arsenic trioxide and melarsoprol induce programmed cell death in myeloid leukemia cell lines and function in a PML and PML-RARa independent manner. Blood 1998; 92: 1497–1504.

    CAS  PubMed  Google Scholar 

  36. Gianni M, Koken MHM, Chelbi-Alix MK, Benoit G, Lanotte M, Chen Z et al. Combined arsenic and retinoic acid treatment enhances differentiation and apoptosis in arsenic-resistant NB4 cells. Blood 1998; 91: 4300–4310.

    CAS  PubMed  Google Scholar 

  37. Nason-Burchenal K, Takle G, Pace U, Flynn S, Allopenna J, Martin P et al. Targeting the PML/RARα translocation product triggers apoptosis in promyelocytic leukemia cells. Oncogene 1998; 17: 1759–1768.

    Article  CAS  PubMed  Google Scholar 

  38. Wang ZG, Ruggero D, Ronchetti S, Zhong S, Gaboli M, Rivi R et al. PML is essential for multiple apoptotic pathways. Nat Genet 1998; 20: 266–272.

    Article  CAS  PubMed  Google Scholar 

  39. Testa U, Grignani F, Samoggia P, Zanetti C, Riccioni R, Lo Coco F et al. The PML/RARα fusion protein inhibits tumor necrosis factor - alpha - induced apoptosis in U937 cells and acute promyelocytic leukemia blasts. J Clin Inv 1998; 101: 2278–2289.

    Article  CAS  Google Scholar 

  40. Jing Y, Wang L, Xia L, Chen GQ, Chen Z, Miller Jr WH et al. Combined effect of all-trans retinoic acid and arsenic trioxide in acute promyelocytic leukemia cells in vitro and in vivo. Blood 2001; 97: 264–269.

    Article  CAS  PubMed  Google Scholar 

  41. Lallemand-Breitenbach V, Guillemin MC, Janin A, Daniel MT, Degos L, Kogan SC et al. Retinoic acid and arsenic synergize to eradicate leukemic cells in a mouse model of acute promyelocytic leukemia. J Exp Med 1999; 189: 1043–1052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schecter RL, Alaoui-Jamali MA, Woo A, Fahl WE, Batist G . Expression of a rat glutathione-s-transferase complementary DNA in rat mammary carcinoma cells: impact upon alkylator-induced toxicity. Cancer Res 1993; 53: 4900–4906.

    CAS  PubMed  Google Scholar 

  43. Batist G, Schecter R, Woo A, Greene D, Lehnert S . Glutathione depletion in human and rat multi-drug resistant breast cancer cell lines. Biochem Pharma 1991; 41: 631–635.

    Article  CAS  Google Scholar 

  44. Batist G, Schecter RL, Alaoui-Jamali MA . The glutathione system and drug resistance. In: Schilsky RL, Milano GA, Ratain MJ, (eds). Principles of Antineoplastic Drug Development and Pharmacology. New York: Marcel Dekker, Inc., 1996, pp 503–521.

    Google Scholar 

  45. Chin K-C, Tanaka S, Darlington G, Pastan I, Gottesman MM . Heat shock and arsenite increase expression of the multidrug resistance (MDR1) gene in human renal carcinoma cells. J Biol Chem 1990; 265: 221–226.

    CAS  PubMed  Google Scholar 

  46. Ishikawa T, Bao J-J, Yamane Y, Akimaru K, Frindrich K, Wright CD et al. Coordinated induction of MRP/GS-X pump and gamma-glutamylcysteine synthetase by heavy metals in human leukemia cells. J Biol Chem 1996; 271: 14981–14988.

    Article  CAS  PubMed  Google Scholar 

  47. Tew KD . Glutathione-associated enzymes in anticancer drug resistance. Cancer Res 1994; 54: 4313–4320.

    CAS  PubMed  Google Scholar 

  48. O'Dwyer PJ, Hamilton TC, LaCreta FP, Gallo JM, Kilpatrick D, Halbherr T et al. Phase I trial of buthionine sulfoximine in combination with melphalan in patients with cancer. J Clin Oncol 1996; 14: 249–256.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Koren Mann for her input and critical review of the manuscript, as well as April Colosimo, Nancy St-Pierre, and Myrian Colombo for excellent technical help.

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Canadian Institutes for Health Research (CIHR) and the Samuel Waxman Foundation. Wilson H Miller Jr is an Investigator of the CIHR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davison, K., Côté, S., Mader, S. et al. Glutathione depletion overcomes resistance to arsenic trioxide in arsenic-resistant cell lines. Leukemia 17, 931–940 (2003). https://doi.org/10.1038/sj.leu.2402876

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402876

Keywords

This article is cited by

Search

Quick links