Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Notch and Wnt signaling in T-lymphocyte development and acute lymphoblastic leukemia

Abstract

Many acute lymphoblastic leukemias can be considered as malignant counterparts of cells in the various stages of normal lymphoid development in bone marrow and thymus. T-cell development in the thymus is an ordered and tightly controlled process. Two evolutionary conserved signaling pathways, which were first discovered in Drosophila, control the earliest steps of T-cell development. These are the Notch and Wnt-signaling routes, which both are deregulated in several types of leukemias. In this review we discuss both pathways, with respect to their signaling mechanisms, functions during T-cell development and their roles in development of leukemias, especially T-cell acute lymphoblastic leukemia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Artavanis-Tsakonas S, Rand MD, Lake RJ . Notch signaling: cell fate control and signal integration in development. Science 1999; 284: 770–776.

    Article  CAS  PubMed  Google Scholar 

  2. Sharma RP, Chopra VL . Effect of the Wingless (wg1) mutation on wing and haltere development in Drosophila melanogaster. Dev Biol 1976; 48: 461–465.

    CAS  PubMed  Google Scholar 

  3. Nusse R, Varmus HE . Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 1982; 31: 99–109.

    CAS  PubMed  Google Scholar 

  4. Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991; 66: 649–661.

    CAS  PubMed  Google Scholar 

  5. Anderson G, Jenkinson EJ . Lymphostromal interactions in thymic development and function. Nat Rev Immunol 2001; 1: 31–40.

    CAS  PubMed  Google Scholar 

  6. Bhandoola A, Sambandam A, Allman D, Meraz A, Schwarz B . Early T lineage progenitors: new insights, but old questions remain. J Immunol 2003; 171: 5653–5658.

    CAS  PubMed  Google Scholar 

  7. Weerkamp F, Baert MR, Brugman MH, Dik WA, de Haas EF, Visser TP et al. The human thymus contains multipotent progenitors with T/B-lymphoid, myeloid and erythroid lineage potential. Blood 2006; 107: 3131–3137.

    CAS  PubMed  Google Scholar 

  8. Scollay R, Bartlett P, Shortman K . T cell development in the adult murine thymus: changes in the expression of the surface antigens Ly2, L3T4 and B2A2 during development from early precursor cells to emigrants. Immunol Rev 1984; 82: 79–103.

    CAS  PubMed  Google Scholar 

  9. Weerkamp F, de Haas EF, Naber BA, Comans-Bitter WM, Bogers AJ, van Dongen JJ et al. Age-related changes in the cellular composition of the thymus in children. J Allergy Clin Immunol 2005; 115: 834–840.

    PubMed  Google Scholar 

  10. Godfrey DI, Kennedy J, Suda T, Zlotnik A . A developmental pathway involving four phenotypically and functionally distinct subsets of CD3-CD4-CD8- triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J Immunol 1993; 150: 4244–4252.

    CAS  PubMed  Google Scholar 

  11. Dik WA, Pike-Overzet K, Weerkamp F, de Ridder D, de Haas EF, Baert MR et al. New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling. J Exp Med 2005; 201: 1715–1723.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mori S, Shortman K, Wu L . Characterization of thymus-seeding precursor cells from mouse bone marrow. Blood 2001; 98: 696–704.

    CAS  PubMed  Google Scholar 

  13. Aifantis I, Buer J, von Boehmer H, Azogui O . Essential role of the pre-T cell receptor in allelic exclusion of the T cell receptor beta locus. Immunity 1997; 7: 601–607.

    CAS  PubMed  Google Scholar 

  14. Kisielow P, von Boehmer H . Development and selection of T cells: facts and puzzles. Adv Immunol 1995; 58: 87–209.

    CAS  PubMed  Google Scholar 

  15. Surh CD, Sprent J . T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature 1994; 372: 100–103.

    CAS  PubMed  Google Scholar 

  16. Rothenberg EV, Taghon T . Molecular genetics of T cell development. Annu Rev Immunol 2005; 23: 601–649.

    CAS  PubMed  Google Scholar 

  17. Haltiwanger RS, Stanley P . Modulation of receptor signaling by glycosylation: fringe is an O-fucose-beta1,3-N-acetylglucosaminyltransferase. Biochim Biophys Acta 2002; 1573: 328–335.

    CAS  PubMed  Google Scholar 

  18. Brou C, Logeat F, Gupta N, Bessia C, LeBail O, Doedens JR et al. A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol Cell 2000; 5: 207–216.

    CAS  PubMed  Google Scholar 

  19. Struhl G, Greenwald I . Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 1999; 398: 522–525.

    CAS  PubMed  Google Scholar 

  20. Tamura K, Taniguchi Y, Minoguchi S, Sakai T, Tun T, Furukawa T et al. Physical interaction between a novel domain of the receptor Notch and the transcription factor RBP-J kappa/Su(H). Curr Biol 1995; 5: 1416–1423.

    CAS  PubMed  Google Scholar 

  21. Anderson G, Pongracz J, Parnell S, Jenkinson EJ . Notch ligand-bearing thymic epithelial cells initiate and sustain Notch signaling in thymocytes independently of T cell receptor signaling. Eur J Immunol 2001; 31: 3349–3354.

    CAS  PubMed  Google Scholar 

  22. Harman BC, Jenkinson EJ, Anderson G . Entry into the thymic microenvironment triggers Notch activation in the earliest migrant T cell progenitors. J Immunol 2003; 170: 1299–1303.

    CAS  PubMed  Google Scholar 

  23. Harman BC, Jenkinson WE, Parnell SM, Rossi SW, Jenkinson EJ, Anderson G . T/B lineage choice occurs prior to intrathymic notch signalling. Blood 2005; 106: 886–892.

    CAS  PubMed  Google Scholar 

  24. Felli MP, Maroder M, Mitsiadis TA, Campese AF, Bellavia D, Vacca A et al. Expression pattern of notch1, 2 and 3 and Jagged1 and 2 in lymphoid and stromal thymus components: distinct ligand–receptor interactions in intrathymic T cell development. Int Immunol 1999; 11: 1017–1025.

    CAS  PubMed  Google Scholar 

  25. Li L, Milner LA, Deng Y, Iwata M, Banta A, Graf L et al. The human homolog of rat Jagged1 expressed by marrow stroma inhibits differentiation of 32D cells through interaction with Notch1. Immunity 1998; 8: 43–55.

    CAS  PubMed  Google Scholar 

  26. Varnum-Finney B, Purton LE, Yu M, Brashem-Stein C, Flowers D, Staats S et al. The Notch ligand, Jagged-1, influences the development of primitive hematopoietic precursor cells. Blood 1998; 91: 4084–4091.

    CAS  PubMed  Google Scholar 

  27. Vercauteren SM, Sutherland HJ . Constitutively active Notch4 promotes early human hematopoietic progenitor cell maintenance while inhibiting differentiation and causes lymphoid abnormalities in vivo. Blood 2004; 104: 2315–2322.

    CAS  PubMed  Google Scholar 

  28. Milner LA, Kopan R, Martin DI, Bernstein ID . A human homologue of the Drosophila developmental gene, Notch, is expressed in CD34+ hematopoietic precursors. Blood 1994; 83: 2057–2062.

    CAS  PubMed  Google Scholar 

  29. Saito T, Chiba S, Ichikawa M, Kunisato A, Asai T, Shimizu K et al. Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity 2003; 18: 675–685.

    CAS  PubMed  Google Scholar 

  30. Hasserjian RP, Aster JC, Davi F, Weinberg DS, Sklar J . Modulated expression of notch1 during thymocyte development. Blood 1996; 88: 970–976.

    CAS  PubMed  Google Scholar 

  31. Radtke F, Wilson A, Stark G, Bauer M, van Meerwijk J, MacDonald HR et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 1999; 10: 547–558.

    CAS  PubMed  Google Scholar 

  32. Wilson A, MacDonald HR, Radtke F . Notch 1-deficient common lymphoid precursors adopt a B cell fate in the thymus. J Exp Med 2001; 194: 1003–1012.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Han H, Tanigaki K, Yamamoto N, Kuroda K, Yoshimoto M, Nakahata T et al. Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int Immunol 2002; 14: 637–645.

    CAS  PubMed  Google Scholar 

  34. Martinez Arias A, Zecchini V, Brennan K . CSL-independent Notch signalling: a checkpoint in cell fate decisions during development? Curr Opin Genet Dev 2002; 12: 524–533.

    PubMed  Google Scholar 

  35. Pui JC, Allman D, Xu L, DeRocco S, Karnell FG, Bakkour S et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 1999; 11: 299–308.

    CAS  PubMed  Google Scholar 

  36. De Smedt M, Reynvoet K, Kerre T, Taghon T, Verhasselt B, Vandekerckhove B et al. Active form of Notch imposes T cell fate in human progenitor cells. J Immunol 2002; 169: 3021–3029.

    CAS  PubMed  Google Scholar 

  37. de La Coste A, Six E, Fazilleau N, Mascarell L, Legrand N, Mailhe MP et al. In vivo and in absence of a thymus, the enforced expression of the Notch ligands delta-1 or delta-4 promotes T cell development with specific unique effects. J Immunol 2005; 174: 2730–2737.

    CAS  PubMed  Google Scholar 

  38. Dorsch M, Zheng G, Yowe D, Rao P, Wang Y, Shen Q et al. Ectopic expression of Delta4 impairs hematopoietic development and leads to lymphoproliferative disease. Blood 2002; 100: 2046–2055.

    CAS  PubMed  Google Scholar 

  39. Jaleco AC, Neves H, Hooijberg E, Gameiro P, Clode N, Haury M et al. Differential effects of Notch ligands Delta-1 and Jagged-1 in human lymphoid differentiation. J Exp Med 2001; 194: 991–1002.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. La Motte-Mohs RN, Herer E, Zuniga-Pflucker JC . Induction of T-cell development from human cord blood hematopoietic stem cells by Delta-like 1 in vitro. Blood 2005; 105: 1431–1439.

    CAS  PubMed  Google Scholar 

  41. Lehar SM, Dooley J, Farr AG, Bevan MJ . Notch ligands Delta 1 and Jagged1 transmit distinct signals to T-cell precursors. Blood 2005; 105: 1440–1447.

    CAS  PubMed  Google Scholar 

  42. Schmitt TM, Zuniga-Pflucker JC . Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 2002; 17: 749–756.

    CAS  PubMed  Google Scholar 

  43. Jiang R, Lan Y, Chapman HD, Shawber C, Norton CR, Serreze DV et al. Defects in limb, craniofacial, and thymic development in Jagged2 mutant mice. Genes Dev 1998; 12: 1046–1057.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. DeHart SL, Heikens MJ, Tsai S . Jagged2 promotes the development of natural killer cells and the establishment of functional natural killer cell lines. Blood 2005; 105: 3521–3527.

    CAS  PubMed  Google Scholar 

  45. Schmitt TM, Ciofani M, Petrie HT, Zuniga-Pflucker JC . Maintenance of T cell specification and differentiation requires recurrent notch receptor-ligand interactions. J Exp Med 2004; 200: 469–479.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dallas MH, Varnum-Finney B, Delaney C, Kato K, Bernstein ID . Density of the Notch ligand Delta1 determines generation of B and T cell precursors from hematopoietic stem cells. J Exp Med 2005; 201: 1361–1366.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hicks C, Johnston SH, diSibio G, Collazo A, Vogt TF, Weinmaster G . Fringe differentially modulates Jagged1 and Delta1 signalling through Notch1 and Notch2. Nat Cell Biol 2000; 2: 515–520.

    CAS  PubMed  Google Scholar 

  48. Koch U, Lacombe TA, Holland D, Bowman JL, Cohen BL, Egan SE et al. Subversion of the T/B lineage decision in the thymus by lunatic fringe-mediated inhibition of Notch-1. Immunity 2001; 15: 225–236.

    CAS  PubMed  Google Scholar 

  49. Iso T, Sartorelli V, Chung G, Shichinohe T, Kedes L, Hamamori Y . HERP, a new primary target of Notch regulated by ligand binding. Mol Cell Biol 2001; 21: 6071–6079.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A . Signalling downstream of activated mammalian Notch. Nature 1995; 377: 355–358.

    CAS  PubMed  Google Scholar 

  51. Kawamata S, Du C, Li K, Lavau C . Overexpression of the Notch target genes Hes in vivo induces lymphoid and myeloid alterations. Oncogene 2002; 21: 3855–3863.

    CAS  PubMed  Google Scholar 

  52. Kaneta M, Osawa M, Sudo K, Nakauchi H, Farr AG, Takahama Y . A role for pref-1 and HES-1 in thymocyte development. J Immunol 2000; 164: 256–264.

    CAS  PubMed  Google Scholar 

  53. Tomita K, Hattori M, Nakamura E, Nakanishi S, Minato N, Kageyama R . The bHLH gene Hes1 is essential for expansion of early T cell precursors. Genes Dev 1999; 13: 1203–1210.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hoebeke I, De Smedt M, Van de Walle I, Reynvoet K, De Smet G, Plum J et al. Overexpression of HES-1 is not sufficient to impose T-cell differentiation on human hematopoietic stem cells. Blood 2006; 107: 2879–2881.

    CAS  PubMed  Google Scholar 

  55. Taghon TN, David ES, Zuniga-Pflucker JC, Rothenberg EV . Delayed, asynchronous, and reversible T-lineage specification induced by Notch/Delta signaling. Genes Dev 2005; 19: 965–978.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Weerkamp F, Pike-Overzet K, Staal FJ . T-sing progenitors to commit. Trends Immunol 2006; 27: 125–131.

    CAS  PubMed  Google Scholar 

  57. Sambandam A, Maillard I, Zediak VP, Xu L, Gerstein RM, Aster JC et al. Notch signaling controls the generation and differentiation of early T lineage progenitors. Nat Immunol 2005; 6: 663–670.

    CAS  PubMed  Google Scholar 

  58. Tan JB, Visan I, Yuan JS, Guidos CJ . Requirement for Notch1 signals at sequential early stages of intrathymic T cell development. Nat Immunol 2005; 6: 671–679.

    CAS  PubMed  Google Scholar 

  59. Huang EY, Gallegos AM, Richards SM, Lehar SM, Bevan MJ . Surface expression of Notch1 on thymocytes: correlation with the double-negative to double-positive transition. J Immunol 2003; 171: 2296–2304.

    CAS  PubMed  Google Scholar 

  60. Yun TJ, Bevan MJ . Notch-regulated ankyrin-repeat protein inhibits Notch1 signaling: multiple Notch1 signaling pathways involved in T cell development. J Immunol 2003; 170: 5834–5841.

    CAS  PubMed  Google Scholar 

  61. Deftos ML, Huang E, Ojala EW, Forbush KA, Bevan MJ . Notch1 signaling promotes the maturation of CD4 and CD8 SP thymocytes. Immunity 2000; 13: 73–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tanigaki K, Tsuji M, Yamamoto N, Han H, Tsukada J, Inoue H et al. Regulation of alphabeta/gammadelta T cell lineage commitment and peripheral T cell responses by Notch/RBP-J signaling. Immunity 2004; 20: 611–622.

    CAS  PubMed  Google Scholar 

  63. Ciofani M, Zuniga-Pflucker JC . Notch promotes survival of pre-T cells at the beta-selection checkpoint by regulating cellular metabolism. Nat Immunol 2005; 6: 881–888.

    CAS  PubMed  Google Scholar 

  64. Wolfer A, Wilson A, Nemir M, MacDonald HR, Radtke F . Inactivation of Notch1 impairs VDJbeta rearrangement and allows pre-TCR-independent survival of early alpha beta lineage thymocytes. Immunity 2002; 16: 869–879.

    CAS  PubMed  Google Scholar 

  65. Garcia-Peydro M, de Yebenes VG, Toribio ML . Sustained Notch1 signaling instructs the earliest human intrathymic precursors to adopt a gammadelta T-cell fate in fetal thymus organ culture. Blood 2003; 102: 2444–2451.

    CAS  PubMed  Google Scholar 

  66. Washburn T, Schweighoffer E, Gridley T, Chang D, Fowlkes BJ, Cado D et al. Notch activity influences the alphabeta versus gammadelta T cell lineage decision. Cell 1997; 88: 833–843.

    CAS  PubMed  Google Scholar 

  67. Wolfer A, Bakker T, Wilson A, Nicolas M, Ioannidis V, Littman DR et al. Inactivation of Notch 1 in immature thymocytes does not perturb CD4 or CD8 T cell development. Nat Immunol 2001; 2: 235–241.

    CAS  PubMed  Google Scholar 

  68. Robey E, Chang D, Itano A, Cado D, Alexander H, Lans D et al. An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell 1996; 87: 483–492.

    CAS  PubMed  Google Scholar 

  69. Witt CM, Hurez V, Swindle CS, Hamada Y, Klug CA . Activated Notch2 potentiates CD8 lineage maturation and promotes the selective development of B1 B cells. Mol Cell Biol 2003; 23: 8637–8650.

    CAS  PubMed  Google Scholar 

  70. Nusse R, Varmus HE . Wnt genes. Cell 1992; 69: 1073–1087.

    CAS  PubMed  Google Scholar 

  71. Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y, Macke JP et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 1996; 382: 225–230.

    CAS  PubMed  Google Scholar 

  72. Wehrli M, Dougan ST, Caldwell K, O'Keefe L, Schwartz S, Vaizel-Ohayon D et al. arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 2000; 407: 527–530.

    CAS  PubMed  Google Scholar 

  73. Staal FJ, Noort Mv M, Strous GJ, Clevers HC . Wnt signals are transmitted through N-terminally dephosphorylated beta-catenin. EMBO Rep 2002; 3: 63–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R et al. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 1996; 382: 638–642.

    CAS  PubMed  Google Scholar 

  75. van de Wetering M, Cavallo R, Dooijes D, van Beest M, van Es J, Loureiro J et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 1997; 88: 789–799.

    CAS  PubMed  Google Scholar 

  76. Oosterwegel M, van de Wetering M, Dooijes D, Klomp L, Winoto A, Georgopoulos K et al. Cloning of murine TCF-1, a T cell-specific transcription factor interacting with functional motifs in the CD3-epsilon and T cell receptor alpha enhancers. J Exp Med 1991; 173: 1133–1142.

    CAS  PubMed  Google Scholar 

  77. Hattori N, Kawamoto H, Fujimoto S, Kuno K, Katsura Y . Involvement of transcription factors TCF-1 and GATA-3 in the initiation of the earliest step of T cell development in the thymus. J Exp Med 1996; 184: 1137–1147.

    CAS  PubMed  Google Scholar 

  78. Veeman MT, Axelrod JD, Moon RT . A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell 2003; 5: 367–377.

    CAS  PubMed  Google Scholar 

  79. Staal FJ, Meeldijk J, Moerer P, Jay P, van de Weerdt BC, Vainio S et al. Wnt signaling is required for thymocyte development and activates Tcf-1 mediated transcription. Eur J Immunol 2001; 31: 285–293.

    CAS  PubMed  Google Scholar 

  80. Pongracz J, Hare K, Harman B, Anderson G, Jenkinson EJ . Thymic epithelial cells provide WNT signals to developing thymocytes. Eur J Immunol 2003; 33: 1949–1956.

    CAS  PubMed  Google Scholar 

  81. Balciunaite G, Keller MP, Balciunaite E, Piali L, Zuklys S, Mathieu YD et al. Wnt glycoproteins regulate the expression of FoxN1, the gene defective in nude mice. Nat Immunol 2002; 3: 1102–1108.

    CAS  PubMed  Google Scholar 

  82. Weerkamp F, Baert MR, Naber BA, Koster EE, de Haas EF, Atkuri KR et al. Wnt signaling in the thymus is regulated by differential expression of intracellular signaling molecules. Proc Natl Acad Sci USA 2006; 103: 3322–3326.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Mulroy T, McMahon JA, Burakoff SJ, McMahon AP, Sen J . Wnt-1 and Wnt-4 regulate thymic cellularity. Eur J Immunol 2002; 32: 967–971.

    CAS  PubMed  Google Scholar 

  84. Ranheim EA, Kwan HC, Reya T, Wang YK, Weissman IL, Francke U . Frizzled 9 knock-out mice have abnormal B-cell development. Blood 2005; 105: 2487–2494.

    CAS  PubMed  Google Scholar 

  85. Verbeek S, Izon D, Hofhuis F, Robanus-Maandag E, te Riele H, van de Wetering M et al. An HMG-box-containing T-cell factor required for thymocyte differentiation. Nature 1995; 374: 70–74.

    CAS  PubMed  Google Scholar 

  86. Schilham MW, Wilson A, Moerer P, Benaissa-Trouw BJ, Cumano A, Clevers HC . Critical involvement of Tcf-1 in expansion of thymocytes. J Immunol 1998; 161: 3984–3991.

    CAS  PubMed  Google Scholar 

  87. van Genderen C, Okamura RM, Farinas I, Quo RG, Parslow TG, Bruhn L et al. Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev 1994; 8: 2691–2703.

    CAS  PubMed  Google Scholar 

  88. Okamura RM, Sigvardsson M, Galceran J, Verbeek S, Clevers H, Grosschedl R . Redundant regulation of T cell differentiation and TCRalpha gene expression by the transcription factors LEF-1 and TCF-1. Immunity 1998; 8: 11–20.

    CAS  PubMed  Google Scholar 

  89. Ioannidis V, Beermann F, Clevers H, Held W . The beta-catenin – TCF-1 pathway ensures CD4(+)CD8(+) thymocyte survival. Nat Immunol 2001; 2: 691–697.

    CAS  PubMed  Google Scholar 

  90. Xu Y, Banerjee D, Huelsken J, Birchmeier W, Sen JM . Deletion of beta-catenin impairs T cell development. Nat Immunol 2003; 4: 1177–1182.

    CAS  PubMed  Google Scholar 

  91. Cobas M, Wilson A, Ernst B, Mancini SJ, MacDonald HR, Kemler R et al. Beta-catenin is dispensable for hematopoiesis and lymphopoiesis. J Exp Med 2004; 199: 221–229.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Goux D, Coudert JD, Maurice D, Scarpellino L, Jeannet G, Piccolo S et al. Cooperating pre-T cell receptor and TCF-1-dependent signals ensure thymocyte survival. Blood 2005; 106: 1726–1733.

    CAS  PubMed  Google Scholar 

  93. Hsu W, Shakya R, Costantini F . Impaired mammary gland and lymphoid development caused by inducible expression of Axin in transgenic mice. J Cell Biol 2001; 155: 1055–1064.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Staal FJ, Weerkamp F, Baert MR, van den Burg CM, van Noort M, de Haas EF et al. Wnt target genes identified by DNA microarrays in immature CD34+ thymocytes regulate proliferation and cell adhesion. J Immunol 2004; 172: 1099–1108.

    CAS  PubMed  Google Scholar 

  95. Attar EC, Scadden DT . Regulation of hematopoietic stem cell growth. Leukemia 2004; 18: 1760–1768.

    CAS  PubMed  Google Scholar 

  96. Gounari F, Aifantis I, Khazaie K, Hoeflinger S, Harada N, Taketo MM et al. Somatic activation of beta-catenin bypasses pre-TCR signaling and TCR selection in thymocyte development. Nat Immunol 2001; 2: 863–869.

    CAS  PubMed  Google Scholar 

  97. Mulroy T, Xu Y, Sen JM . beta-Catenin expression enhances generation of mature thymocytes. Int Immunol 2003; 15: 1485–1494.

    CAS  PubMed  Google Scholar 

  98. Bellavia D, Campese AF, Alesse E, Vacca A, Felli MP, Balestri A et al. Constitutive activation of NF-kappaB and T-cell leukemia/lymphoma in Notch3 transgenic mice. EMBO J 2000; 19: 3337–3348.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Pear WS, Aster JC, Scott ML, Hasserjian RP, Soffer B, Sklar J et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med 1996; 183: 2283–2291.

    CAS  PubMed  Google Scholar 

  100. Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    CAS  PubMed  Google Scholar 

  101. Lee SY, Kumano K, Masuda S, Hangaishi A, Takita J, Nakazaki K et al. Mutations of the Notch1 gene in T-cell acute lymphoblastic leukemia: analysis in adults and children. Leukemia 2005; 19: 1841–1843.

    CAS  PubMed  Google Scholar 

  102. Mansour MR, Linch DC, Foroni L, Goldstone AH, Gale RE . High incidence of Notch-1 mutations in adult patients with T-cell acute lymphoblastic leukemia. Leukemia 2006; 20: 537–539.

    CAS  PubMed  Google Scholar 

  103. Allman D, Karnell FG, Punt JA, Bakkour S, Xu L, Myung P et al. Separation of Notch1 promoted lineage commitment and expansion/transformation in developing T cells. J Exp Med 2001; 194: 99–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Beverly LJ, Felsher DW, Capobianco AJ . Suppression of p53 by Notch in lymphomagenesis: implications for initiation and regression. Cancer Res 2005; 65: 7159–7168.

    CAS  PubMed  Google Scholar 

  105. Vacca A, Felli MP, Palermo R, Di Mario G, Calce A, Di Giovine M et al. Notch3 and pre-TCR interaction unveils distinct NF-kappaB pathways in T-cell development and leukemia. EMBO J 2006; 25: 1000–1008.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Reya T, Clevers H . Wnt signalling in stem cells and cancer. Nature 2005; 434: 843–850.

    CAS  PubMed  Google Scholar 

  107. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351: 657–667.

    CAS  PubMed  Google Scholar 

  108. Muller-Tidow C, Steffen B, Cauvet T, Tickenbrock L, Ji P, Diederichs S et al. Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol Cell Biol 2004; 24: 2890–2904.

    PubMed  PubMed Central  Google Scholar 

  109. Lu D, Zhao Y, Tawatao R, Cottam HB, Sen M, Leoni LM et al. Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2004; 101: 3118–3123.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 2003; 349: 2483–2494.

    CAS  PubMed  Google Scholar 

  111. Derksen PW, Tjin E, Meijer HP, Klok MD, MacGillavry HD, van Oers MH et al. Illegitimate WNT signaling promotes proliferation of multiple myeloma cells. Proc Natl Acad Sci USA 2004; 101: 6122–6127.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. McWhirter JR, Neuteboom ST, Wancewicz EV, Monia BP, Downing JR, Murre C . Oncogenic homeodomain transcription factor E2A-Pbx1 activates a novel WNT gene in pre-B acute lymphoblastoid leukemia. Proc Natl Acad Sci USA 1999; 96: 11464–11469.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Roose J, Huls G, van Beest M, Moerer P, van der Horn K, Goldschmeding R et al. Synergy between tumor suppressor APC and the beta-catenin-Tcf4 target Tcf1. Science 1999; 285: 1923–1926.

    CAS  PubMed  Google Scholar 

  114. Liang H, Chen Q, Coles AH, Anderson SJ, Pihan G, Bradley A et al. Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell 2003; 4: 349–360.

    CAS  PubMed  Google Scholar 

  115. Staal FJ, Clevers HC . WNT signalling and haematopoiesis: a WNT-WNT situation. Nat Rev Immunol 2005; 5: 21–30.

    CAS  PubMed  Google Scholar 

  116. Radtke F, Wilson A, Mancini SJ, MacDonald HR . Notch regulation of lymphocyte development and function. Nat Immunol 2004; 5: 247–253.

    CAS  PubMed  Google Scholar 

  117. Duncan AW, Rattis FM, DiMascio LN, Congdon KL, Pazianos G, Zhao C et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 2005; 6: 314–322.

    CAS  PubMed  Google Scholar 

  118. Espinosa L, Ingles-Esteve J, Aguilera C, Bigas A . Phosphorylation by glycogen synthase kinase-3 beta down-regulates Notch activity, a link for Notch and Wnt pathways. J Biol Chem 2003; 278: 32227–32235.

    CAS  PubMed  Google Scholar 

  119. Galceran J, Sustmann C, Hsu SC, Folberth S, Grosschedl R . LEF1-mediated regulation of Delta-like1 links Wnt and Notch signaling in somitogenesis. Genes Dev 2004; 18: 2718–2723.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Couso JP, Martinez Arias A . Notch is required for wingless signaling in the epidermis of Drosophila. Cell 1994; 79: 259–272.

    CAS  PubMed  Google Scholar 

  121. Rangarajan A, Talora C, Okuyama R, Nicolas M, Mammucari C, Oh H et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J 2001; 20: 3427–3436.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Lowell S, Jones P, Le Roux I, Dunne J, Watt FM . Stimulation of human epidermal differentiation by delta-notch signalling at the boundaries of stem-cell clusters. Curr Biol 2000; 10: 491–500.

    CAS  PubMed  Google Scholar 

  123. Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, van Noort M et al. Notch1 functions as a tumor suppressor in mouse skin. Nat Genet 2003; 33: 416–421.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Dr R Benner for continuous support and the researchers of the Molecular Immunology Unit for fruitful discussions. WM Comans-Bitter is acknowledged for preparing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F J T Staal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weerkamp, F., van Dongen, J. & Staal, F. Notch and Wnt signaling in T-lymphocyte development and acute lymphoblastic leukemia. Leukemia 20, 1197–1205 (2006). https://doi.org/10.1038/sj.leu.2404255

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404255

Keywords

This article is cited by

Search

Quick links