Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Dopamine induces a biphasic modulation of hypothalamic ANF neurons: a ligand concentration-dependent effect involving D5 and D2 receptor interaction

Abstract

Increasing evidence now suggests that more than one subtype of dopamine receptors is co-expressed in some of the central neurons. The neurobiological effects on the host cells when these receptors are concurrently activated by their common physiological ligand, dopamine, however, remains elusive. Among the members of the family of dopamine receptors, coupling of D1-like dopamine receptors to Gs and D2-like receptors to Gi proteins are known to augment or suppress cellular functions respectively, through modulation of adenylyl cyclase activity and consequently cAMP generation. Simultaneous activation of D1 and D2 receptors in transfected cell lines expressing the two cloned receptors, however, produced antagonistic effects. This is in contrast to in vivo studies, in which concurrent activation of D1-like and D2-like receptors by their respective agonists may induce synergistic or antagonistic effects or both. We report here that in long-term rat hypothalamic cell cultures, activation of both D1-like (D1 and D5) and D2 receptors on atrial natriuretic factor-producing neurons by dopamine yields a biphasic response. The response is ligand concentration-dependent and involves type II adenylyl cyclases. This process is mediated primarily through antagonistic and synergistic interactions of D5and D2 receptors as the event is mimicked by the concurrent activation of these two receptors co-transfected in CHO cells. Our present findings suggest a novel action of dopamine, and the biochemical processes involved may underlie some of the pharmacological actions of atypical anti-psychotic drugs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Civelli O, Bunzow JR, Grandy DK, Zhou QY, Van Tol HHM . Molecular biology of the dopamine receptors Eur J Pharmacol 1991; 207: 227–286

    Article  Google Scholar 

  2. Hartman DS, Civelli O . Molecular attributes of dopamine receptors: new potential for antipsychotic drug development Ann Med 1996; 28: 211–219

    Article  CAS  Google Scholar 

  3. Sanyal S, Van Tol HH . Review the role of dopamine D4 receptors in schizophrenia and antipsychotic action J Psychiatr Res 1997; 31: 219–232

    Article  CAS  Google Scholar 

  4. Weinberger DR . The biological basis of schizophrenia: new directions J Clin Psychiatry 1997; 58 Suppl 10: 22–27

    PubMed  Google Scholar 

  5. Wolfarth S, Ossowska K . Dopamine receptors—the present state of research and perspectives Pol J Pharmacol 1995; 47: 207–218

    CAS  PubMed  Google Scholar 

  6. Brunello N, Masotto C, Steardo L, Markstein R, Racagni G . New insights into the biology of schizophrenia through the mechanism of action of clozapine Neuropsychopharmacology 1995; 13: 177–213

    Article  CAS  Google Scholar 

  7. Seeman P, Van Tol HH . Dopamine receptor pharmacology Trends Pharmacol Sci 1994; 15: 264–270

    Article  CAS  Google Scholar 

  8. Hartman DS, Lanau F . Diversity of dopamine receptors: new molecular and pharmacological developments Pol J Pharmacol 1997; 49: 191–199

    CAS  PubMed  Google Scholar 

  9. Lachowicz JE, Sibley DR . Molecular characteristics of mammalian dopamine receptors Pharmacol Toxicol 1997; 81: 105–113

    Article  CAS  Google Scholar 

  10. Ogawa N . Molecular and chemical neuropharmacology of dopamine receptor subtypes Acta Med Okayama 1995; 49: 1–11

    CAS  PubMed  Google Scholar 

  11. Rappaport MS, Sealfon SC, Prikhozhan A, Huntley GW, Morrison JH . Heterogeneous distribution of D1, D2 and D5 receptor mRNAs in monkey striatum Brain Res 1993; 616: 242–250

    Article  CAS  Google Scholar 

  12. De Keyser J . Subtypes and localization of dopamine receptors in human brain Neurochem Int 1993; 22: 83–93

    Article  CAS  Google Scholar 

  13. Huntley GW, Morrison JH, Prikhozhan A, Sealfon SC . Localization of multiple dopamine receptor subtype mRNAs in human and monkey motor cortex and striatum Brain Res Mol Brain Res 1992; 15: 181–188

    Article  CAS  Google Scholar 

  14. Tiberi M, Jarvie KR, Silvia C, Falardeau P, Gingrich JA, Godinot N et al. Cloning, molecular characterization, and chromosomal assignment of a gene encoding a second D1 dopamine receptor subtype: differential expression pattern in rat brain compared with the D1A receptor Proc Natl Acad Sci USA 1991; 88: 7491–7495

    Article  CAS  Google Scholar 

  15. Meador Woodruff JH, Mansour A, Grandy DK, Damask SP, Civelli O, Watson SJJ . Distribution of D5 dopamine receptor mRNA in rat brain Neurosci Lett 1992; 145: 209–212

    Article  CAS  Google Scholar 

  16. Bergson C, Mrzljak L, Smiley JF, Pappy M, Levenson R, Goldman Rakic PS . Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain J Neurosci 1995; 15: 7821–7836

    Article  CAS  Google Scholar 

  17. Meador Woodruff JH, Grandy DK, Van Tol HH, Damask SP, Little KY, Civelli O et al. Dopamine receptor gene expression in the human medial temporal lobe Neuropsychopharmacology 1994; 10: 239–248

    Article  CAS  Google Scholar 

  18. Piomelli D, Pilon C, Giros B, Sokoloff P, Martres MP, Schwartz JC . Dopamine activation of the arachidonic acid cascade as a basis for D1/D2 receptor synergism Nature 1991; 353: 164–167

    Article  CAS  Google Scholar 

  19. Lee D, Huang W, Copolov DL, Lim AT . D2 receptors mediate dopamine suppression of irANF release and pro-ANF mRNA expression of rat hypothalamic neurons in culture Mol Cell Neurosci 1994; 5: 523–529

    Article  CAS  Google Scholar 

  20. Lee D, Huang W, Lim AT . D1 receptors mediate dopamine stimulation of irANF release and pro-ANF mRNA expression of rat hypothalamic neurons in culture Endocrinology 1995; 131: 911–918

    Google Scholar 

  21. Lee D, Dong P, Copolov DL, Lim AT . D5 dopamine receptors mediate estrogen-induced stimulation of hypothalamic ANF neurons Mol Endocrinol 1999; 13: 344–352

    Article  CAS  Google Scholar 

  22. Huang W, Choi CL, Yang Z, Copolov DL, Lim AT . Forskolin induced immunoreactive atrial natriuretic peptide secretion and pro-ANP mRNA expression of hypothalamic neurons in culture: modulation by glucocorticoids Endocrinology 1991; 128: 2591–2600

    Article  CAS  Google Scholar 

  23. Lee D, Huang W, Yang Z, Copolov DL, Lim AT . In vitro evidence for modulation of morphological and functional development of hypothalamic ir-ANP neurons by 3′5′-cyclic-adenosine monophosphate Endocrinology 1992; 131: 911–918

    CAS  Google Scholar 

  24. Lee D, Huang W, Copolov DL, Lim AT . Glucocorticoids inhibit D1b, but not D2, receptor-mediated effects on hypothalamic atrial natriuretic factor neurons Endocrinology 1995; 136: 5570–5576

    Article  CAS  Google Scholar 

  25. Huang W, Lee D, Yang Z, Copolov DL, Lim AT . Norepinephrine stimulates immunoreactive (ir) atrial natriuretic peptide (ANP) secretion and pro-ANP mRNA expression from rat hypothalamic neurons in culture: effect of α2-adrenoceptors Endocrinology 1992; 130: 2426–2428

    CAS  Google Scholar 

  26. Alonso G, Szafarczyk A, Assenmacher I . Immunoreactivity of hypothalamo-neurohypophysial neurons which secrete corticotrophin-releasing hormone (CRH) and vasopressin (Vp): immunocytochemical evidence for a correlation with their functional state in colchicine treated rats Exp Brain Res 1986; 61: 497–505

    Article  CAS  Google Scholar 

  27. Bush AI, Huang W, Copolov DL, Lim AT . Hypothalamic atrial natriuretic peptide secretion plasticity: differential modulation of α- and β-adrenoceptors Neuroendocrinology 1990; 52: 65–69

    Article  CAS  Google Scholar 

  28. Lim AT, Dean B, Copolov DL . Evidence for post-translational processing of auriculin B to atriopeptin III immediately prior to secretion by hypothalamic neurons in culture Endocrinology 1990; 127: 2598–2600

    Article  CAS  Google Scholar 

  29. Huang W, Lee D, Yang Z, Copolov DL, Lim AT . Plasticity of adrenoceptor responsiveness on irANP secretion and pro-ANP mRNA expression in hypothalamic neuron cultures: modulation by dexamethasone Endocrinology 1992; 131: 1562–1564

    Article  CAS  Google Scholar 

  30. Marley PD, Thomson KA, Jachno K, Johnston MJ . Histamine-induced increases in cyclic AMP levels in bovine adrenal medullary cells Br J Pharmacol 1991; 104: 839–846

    Article  CAS  Google Scholar 

  31. Huang W, Lee D, Yang Z, Casley DJ, Throsby M, Copolov DL et al. Evidence for ANP (5–28) production by rat placental cytotrophoblasts Endocrinology 1992; 131: 919–924

    CAS  Google Scholar 

  32. Throsby M, Lee D, Huang W, Yang Z, Copolov DL, Lim AT . Evidence for ANP(5×28) production by macrophages of the rat spleen: an immunochemical and non-radioactive in situ hybridization approach Endocrinology 1991; 129: 991–1000

    Article  CAS  Google Scholar 

  33. Throsby M, Yang Z, Lee D, Huang W, Copolov DL, Lim AT . Co-expression of atrial natriuretic factor and β-endorphin in a sub-population of rat splenic macrophages: age related differences Endocrinology 1993; 133: 2889–2896

    Article  CAS  Google Scholar 

  34. Hayes G, Biden TJ, Selbie LA, Shine J . Structure subtypes of the dopamine D2 receptor are functionally distinct: expression of the cloned D2A and D2B subtypes in a heterologous cell line Mol Endocrinol 1992; 6: 920–926

    CAS  PubMed  Google Scholar 

  35. Civelli O, Bunzow JR, Grandy DK . Molecular diversity of the dopamine receptors Annu Rev Pharmacol Toxicol 1993; 33: 281–307

    Article  CAS  Google Scholar 

  36. Sibley DR, Monsma FJJ, Shen Y . Molecular neurobiology of dopaminergic receptors Int Rev Neurobiol 1993; 35: 391–415

    Article  CAS  Google Scholar 

  37. Ogawa N . Molecular and chemical neuropharmacology of dopamine receptor subtypes Acta Med Okayama 1995; 49: 1–11

    CAS  PubMed  Google Scholar 

  38. Nozaki M, Sperelakis N . Cholera toxin and Gs protein modulation of synaptic transmission in guinea pig mesenteric artery Eur J Pharmacol 1991; 197: 57–62

    Article  CAS  Google Scholar 

  39. Mousli M, Bueb JL, Bronner C, Rouot B, Landry Y . G protein activation: a receptor-independent mode of action for cationic amphiphilic neuropeptides and venom peptides Trends Pharmacol Sci 1990; 11: 358–362

    Article  CAS  Google Scholar 

  40. Tiberi M, Caron MG . High agonist-independent activity is a distinguishing feature of the dopamine D1B receptor subtype J Biol Chem 1994; 269: 27925–27931

    CAS  Google Scholar 

  41. Kimura K, White BH, Sidhu A . Coupling of human D-1 dopamine receptors to different guanine nucleotide binding proteins. Evidence that D-1 dopamine receptors can couple to both Gs and G(o) J Biol Chem 1995; 270: 14672–14678

    Article  CAS  Google Scholar 

  42. Tang WJ, Gilman AG . Type-specific regulation of adenylyl cyclase by G protein βτ subunits Science 1991; 254: 1500–1503

    Article  CAS  Google Scholar 

  43. Clapham DE, Neer EJ . New roles for G-protein beta gamma-dimers in transmembrane signalling Nature 1993; 365: 403–406

    Article  CAS  Google Scholar 

  44. Pieroni JP, Jacobowitz O, Chen JQ, Lyengar R . Signal recognition and integration by Gs-stimulated adenylyl cyclases Curr Opin Neurobiol 1993; 3: 345–351

    Article  CAS  Google Scholar 

  45. Tang WJ, Gilman AG . Adenylyl cyclases Cell 1992; 70: 869–872

    Article  CAS  Google Scholar 

  46. Iyengar R . Molecular and functional diversity of mammalian Gs-stimulated adenylyl cyclases FASEB J 1993; 7: 768–775

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Woods Family Research Program, a contracted research grant from the State Health Department of Victoria and an equipment grant from The Rebecca L Cooper Medical Research Foundation Ltd, Sydney, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A T Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D., Huang, W. & Lim, A. Dopamine induces a biphasic modulation of hypothalamic ANF neurons: a ligand concentration-dependent effect involving D5 and D2 receptor interaction. Mol Psychiatry 5, 39–48 (2000). https://doi.org/10.1038/sj.mp.4000601

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4000601

Keywords

This article is cited by

Search

Quick links