Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Regulation of 92 kDa type IV collagenase expression by the jun aminoterminal kinase- and the extracellular signal-regulated kinase-dependent signaling cascades

Abstract

The 92 kDa type IV collagenase (MMP-9), which degrades type IV collagen, has been implicated in tissue remodeling. The purpose of the current study was to determine the role of Jun amino-terminal kinase (JNK)- and extracellular signal-regulated kinase- (ERK)-dependent signaling cascades in the regulation of MMP-9 expression. Towards this end, we first determined the transcriptional requirements for MMP-9 promoter activity in a cell line (UM-SCC-1) which is an avid secretor of this collagenase. Transfection of these cells with a CAT reporter driven by progressive 5′ deleted fragments of the MMP-9 promoter indicated the requirement of a region spanning −144 to −73 for optimal promoter activity. DNase I footprinting revealed a protected region of the promoter spanning nucleotides −91 to −68 and containing a consensus AP-1 motif at −79. Mutation of this AP-1 motif practically abolished the activity of the MMP-9 promoter-driven CAT reporter. Mobility shift assays indicated c-Fos and Jun-D bound to this motif and transfection of the cells with a mutated c-Jun, which quenches the function of endogenous Jun and Fos proteins, decreased MMP-9 promoter activity by 80%. UM-SCC-1 cells contained a constitutively activated JNK and the expression of a kinase-deficient JNK1 reduced the activity of a CAT reporter driven either by the MMP-9 promoter or by three tandem AP-1 repeats upstream of a thymidine kinase minimal promoter. Conditioned medium collected from UM-SCC-1 cells transfected with the dominant negative JNK1 expression vector diminished 92 kDa gelatinolysis. Similarly, interfering with MEKK, which lies upstream of JNK1, using a dominant negative expression vector reduced MMP-9 promoter activity over the same concentration range which repressed the AP-1-thymidine kinase CAT reporter construct. UM-SCC-1 cells also contained a constitutively activated ERK1. MMP-9 expression, as determined by CAT assays and by zymography, was reduced by the co-expression of a kinase-deficient ERK1. Interfering with MEK1, which is an upstream activator of ERK1, either with PD 098059, which prevents the activation of MEK1, or with a dominant negative expression construct, reduced 92 kDa gelatinolysis and MMP-9 promoter activity respectively. c-Raf-1 is an upstream activator of MEK1 and a kinase-deficient c-Raf-1 expression construct decreased the activity of a promoter driven by either the MMP-9 promoter or three tandem AP-1 repeats. Conversely, treatment of UM-SCC-1 cells with PMA, which activates c-Raf-1, increased 92 kDa gelatinolysis. These data suggest that MMP-9 expression in UM-SCC-1 cells, is regulated by JNK- and ERK-dependent signaling pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gum, R., Wang, H., Lengyel, E. et al. Regulation of 92 kDa type IV collagenase expression by the jun aminoterminal kinase- and the extracellular signal-regulated kinase-dependent signaling cascades. Oncogene 14, 1481–1493 (1997). https://doi.org/10.1038/sj.onc.1200973

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1200973

Keywords

This article is cited by

Search

Quick links