Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Activation of mitogen-activated protein kinase is necessary but not sufficient for proliferation of human thyroid epithelial cells induced by mutant Ras

Abstract

Given the high frequency of ras oncogene activation in several common human cancers, its signal pathways are an important target for novel therapy. For practical reasons, however, these have been studied mainly in the context of transformation of established fibroblast cell lines, whereas ras acts at an earlier stage in human tumorigenesis and predominantly on epithelial cells. Here we have developed a more directly relevant model – human primary thyroid epithelial cells – which are a major target of naturally-occurring Ras mutation, and in which expression of mutant Ras in culture induces clonal expansion without morphological transformation, closely reproducing the phenotype of the corresponding tumour in vivo. Transient or stable expression of mutant H-ras (by scrapeloading or retroviral infection) at levels which stimulated proliferation induced sustained activation and translocation of MAP kinase (MAPK) in these cells. Inhibition of the MAPK pathway at the level of MAPKK, by expression of a dominant-negative mutant or by the pharmacological inhibitor PD98059, efficiently blocked the proliferative response. Conversely, selective activation of MAPK by a constitutively-active MAPKK1 mutant failed to mimic the action of Ras and, although this was achievable with activated Raf, micro-injection of anti-ras antibodies showed that this still required endogenous wild-type Ras function. In contrast to recent results obtained with a rodent thyroid cell line (WRT), therefore, activation of the MAPK pathway is necessary, but not sufficient, for the proliferogenic action of mutant Ras on primary human thyroid cells. These data emphasize the unreliability of extrapolation from cell lines and establish the feasibility of using a more representative human epithelial model for Ras signalling studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Al-Alawi N, Rose DW, Buckmaster C, Ahn N, Rapp U, Meinkoth J and Feramisco JR. . 1995 Mol. Cell. Biol. 15: 1162–1168.

  • Alessi DR, Saito Y, Campbell DG, Cohen P, Sithanandam G, Rapp U, Ashworth A, Marshall CJ and Cowley S. . 1994 EMBO J. 13: 1610–1619.

  • Alessi DR, Cuenda A, Cohen P, Dudley DT and Saltiel AR. . 1995 J. Biol. Chem. 270: 27489–27494.

  • Boguski MS and McCormick F. . 1993 Nature 366: 643–654.

  • Bond J, Dawson T, Lemoine NR and Wynford-Thomas D. . 1992 Mol. Carcinogen. 5: 129–135.

  • Bond JA, Wyllie FS, Rowson J, Radulescu A and Wynford-Thomas D. . 1994 Oncogene 9: 281–290.

  • Bond JA, Ness GO, Rowson J, Ivan M, White D and Wynford-Thomas D. . 1996 Int. J. Cancer. 67: 56–572.

  • Bos JL. . 1989 Cancer. Res. 49: 4682–4689.

  • Cobellis G, Missero C and Di Lauro R. . 1998 Oncogene 17: 2047–2057.

  • Cowley S, Paterson H, Kemp P and Marshall CJ. . 1994 Cell 77: 841–852.

  • Cox AD and Der CJ. . 1997 Biochim. Biophys. Acta. 1333: F51–F71.

  • Dawson TP, Radulescu A and Wynford-Thomas D. . 1995 Cancer. Res. 55: 915–920.

  • Dent P, Wu J, Romero G, Vincent LA, Castle D and Sturgill TW. . 1993 Mol. Biol. Cell. 4: 483–493.

  • Diaz-Meco MT, Lozano J, Municio MM, Berra E, Frutos S, Sanz L and Moscat J. . 1994 J. Biol. Chem. 269: 31706–31710.

  • Dudley DT, Pang L, Decker SJ, Bridges AJ and Saltiel AR. . 1995 Proc. Natl. Acad. Sci., USA. 92: 7686–7689.

  • Fearon ER and Vogelstein B. . 1990 Cell 61: 759–767.

  • Furth ME, Davis LJ, Fleurdelys B and Scolnick EM. . 1982 J. Virol. 43: 294–304.

  • Galaktionov K, Jessus C and Beach D. . 1995 Genes. Dev. 9: 1046–1058.

  • Gallagher AP, Burnett AK, Dowen DT and Darley RL. . 1998 Cancer. Res. 58: 2029–2035.

  • Gire V and Wynford-Thomas D. . 1998 Mol. Cell. Biol. 18: 1611–1621.

  • Khokhlatchev AV, Canagarajah B, Wilsbacher J, Robinson M, Atkinson M, Goldsmith E and Cobb MH. . 1998 Cell 93: 605–615.

  • Khosravi-Far R, White MA, Westwick JK, Solski PA, Chrzanowska-Wodnicka M, Van Aelst L, Wigler MH and Der CJ. . 1996 Mol. Cell. Biol. 16: 3923–3933.

  • Khosravi-Far R, Solski PA, Kinch MS, Burridge K and Der CJ. . 1995 Mol. Cell. Biol. 15: 6443–6453.

  • Kolch W, Heidecker G, Lloyd P and Rapp UR. . 1991 Nature 349: 426–428.

  • Kuo W-L, Abe M, Rhee J, Eves EM, McCarthy SA, Yan M, Templeton DJ, McMahon M and Rosner MR. . 1996 Mol. Cell. Biol. 16: 1458–1470.

  • Laker C, Stocking C, Bergholz U, Hess N, DeLamarter JF and Ostertag W. . 1987 Proc. Natl. Acad. Sci., USA 84: 8458–8462.

  • Lamy F, Wilkin F, Baptist M, Posada J, Roger PP and Dumont JE. . 1993 J. Biol. Chem. 268: 8398–8401.

  • Leevers SJ and Marshall CJ. . 1992 EMBO J. 11: 569–574.

  • Lemoine NR, Mayall ES, Wyllie FS, Williams ED, Goyns M, Stringer B and Wynford-Thomas D. . 1989a Oncogene 4: 159–164.

  • Lemoine NR, Mayall ES, Jones T, Sheer D, McDermid S, Kendall-Taylor P and Wynford-Thomas D. . 1989b Br. J. Cancer 60: 897–903.

  • Lemoine NR, Staddon S, Bond J, Wyllie FS, Shaw JJ and Wynford-Thomas D. . 1990 Oncogene 5: 1833–1837.

  • Lenormand P, McMahon M and Pouyssegur J. . 1996 J. Biol. Chem. 271: 15762–15768.

  • Mansour SJ, Matten WT, Hermann AP, Candia JM, Rong S, Fukasawa K, Vande Woude GF and Ahn NG. . 1994a Science 265: 966–970.

  • Mansour SJ, Resing KA, Candi JM, Hermann AS, Gloor JW, Herskind KR, Wartmann M, Davis RJ and Ahn NG. . 1994b J. Biochem. 116: 304–314.

  • Marais R, Light Y, Paterson HF and Marshall CJ. . 1995 EMBO J. 14: 3136–3145.

  • Marais R and Marshall CJ. . 1996 Cancer Surveys 27: 101–125.

  • Marshall CJ. . 1995 Cell 80: 179–185.

  • Marshall CJ. . 1996 Current Biology 8: 197–204.

  • McNeil PL, Murphy RF, Lanni F and Taylor DL. . 1984 J. Cell. Biol. 98: 1556–1564.

  • Miller MJ, Prigent S, Kupperman E, Rioux L, Park S-H, Fermisco JR, White MA, Rutkowski JL and Meinkoth JL. . 1997 J. Biol. Chem. 272: 5600–5605.

  • Miller MJ, Rioux L, Prendergast GV, Cannon S, White MA and Meinkoth JL. . 1998 Mol. Cell. Biol. 18: 3718–3726.

  • Morris JDH, Price B, Lloyd AC, Self AJ, Marshall CJ and Hall A. . 1989 Oncogene 4: 27–31.

  • Mulcahy LS, Smith MR and Stacey DW. . 1985 Nature 313: 241–243.

  • Oldham SM, Clark GJ, Gangarosa LM, Coffey RJ and Der CJ. . 1996 Proc. Natl. Acad. Sci. USA. 93: 6924–6928.

  • Oldham SM, Cox AD, Reynolds ER, Sizemore NS, Coffey Jr RJ and Der CJ. . 1998 Oncogene 16: 2565–2573.

  • Qiu R-G, Chen J, Kirn D, McCormick F and Symons M. . 1995a Nature 374: 457–459.

  • Qiu R-G, Chen J, McCormick F and Symons M. . 1995b Proc. Natl. Acad. Sci. USA. 92: 11781–11785.

  • Rapp UR, Heidecker G, Huleihel M, Cleveland JL, Choi WC, Pawson T, Ihle JN and Anderson WB. . 1988 Cold Spring Harb. Symp. Quant. Biol. 53: 173–184.

  • Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, Waterfield MD and Downward J. . 1994 Nature 370: 527–532.

  • Rodriguez-Viciana P, Warne PH, Khwaja A, Marte BM, Pappin D, Das P, Waterfield MD, Ridley A and Downward J. . 1997 Cell 89: 457–467.

  • Russell M, Lange-Carter CA and Johnson GL. . 1995 J. Biol. Chem. 270: 11757–11760.

  • Serrano M, Lin AW, McCurrach ME, Beach D and Lowe SW. . 1997 Cell 88: 593–602.

  • Sewing A, Wiseman B, Lloyd AC and Land H. . 1997 Mol. Cell. Biol. 17: 5588–5597.

  • Suarez HG, du Villard JA, Severino M, Caillou B, Schlumberger M, Tubiana M, Parmentier C and Monier R. . 1990 Oncogene 5: 565–570.

  • Tombes RM, Auer KL, Mikkelsen R, Valerie K, Wymann MP, Marshall CJ, McMahon M and Dent P. . 1998 Biochem. J. 330: 1451–1460.

  • Trahey M, Milley RJ, Cole GE, Innis M, Paterson H, Marshall CJ, Hall A and McCormick F. . 1987 Mol. Cell. Biol. 7: 541–544.

  • Treisman R. . 1996 Current Opinion in Cell. Biol. 8: 205–215.

  • Tzivion G, Luo Z and Avruch J. . 1998 Nature 394: 88–92

  • White MA, Nicolette C, Minden A, Polverino A, Van Aelst L, Karin M and Wigler MH. . 1995 Cell 80: 533–541.

  • White MA, Vale T, Camonis JH, Schaefer E and Wigler MH. . 1996 J. Biol. Chem. 271: 16439–16442.

  • Williams DW, Williams ED and Wynford-Thomas D. . 1988 Br. J. Cancer. 57: 535–539.

  • Wynford-Thomas D. . 1991 J. Path. 165: 187–201.

  • Wynford-Thomas D. . 1993 Cancer Surveys 16: 115–133.

  • Yang J-J, Kang J-S and Krauss RS. . 1998 Mol. Cell. Biol. 18: 2586–2595.

Download references

Acknowledgements

This work was supported by grants from the Cancer Research Campaign. We thank Alan Hall for the generous gift of pGEX2T Val-12Hras expression plasmids, Natalie Ahn for the MAPKK1 fusion protein construct and Richard Darley for the ΔRaf-1 amphotropic vector. We are grateful to Theresa King for manuscript preparation and collation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gire, V., Marshall, C. & Wynford-Thomas, D. Activation of mitogen-activated protein kinase is necessary but not sufficient for proliferation of human thyroid epithelial cells induced by mutant Ras. Oncogene 18, 4819–4832 (1999). https://doi.org/10.1038/sj.onc.1202857

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1202857

Keywords

This article is cited by

Search

Quick links