Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Evidence of epigenetic changes affecting the chromatin state of the retinoic acid receptor β2 promoter in breast cancer cells

Abstract

Retinoic acid (RA)-resistance in breast cancer cells has been associated with irreversible loss of retinoic acid receptor β, RARβ, gene expression. Search of the causes affecting RARβ gene activity has been oriented at identifying possible differences either at the level of one of the RARβ promoters, RARβ2, or at regulatory factors. We hypothesized that loss of RARβ2 activity occurs as a result of multiple factors, including epigenetic modifications, which can pattern RARβ2 chromatin state. Using methylation-specific PCR, we found hypermethylation at RARβ2 in a significant proportion of both breast cancer cell lines and primary breast tumors. Treatment of cells with a methylated RARβ2 promoter, by means of the DNA methyltransferase inhibitor 5-Aza-2′-deoxycytidine (5-Aza-CdR), led to demethylation within RARβ2 and expression of RARβ indicating that DNA methylation is at least one factor, contributing to RARβ inactivity. However, identically methylated promoters can differentially respond to RA, suggesting that RARβ2 activity may be associated to different repressive chromatin states. This supposition is supported by the finding that the more stable repressive RARβ2 state in the RA-resistant MDA-MB-231 cell line can be alleviated by the HDAC inhibitor, trichostatin A (TSA), with restoration of RA-induced RARβ transcription. Thus, chromatin-remodeling drugs might provide a strategy to restore RARβ activity, and help to overcome the hurdle of RA-resistance in breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 4
Figure 1
Figure 2
Figure 3
Figure 5

Similar content being viewed by others

References

  • Baust C, Redpath L and Schwarz E . 1996 Int J Cancer 67: 409–416

  • Bhattacharyya N, Dey A, Minucci S, Zimmer A, John S, Hager G and Ozato K . 1997 Mol Cell Biol 17: 6481–6490

  • Bird A . 1986 Nature 321: 209–213

  • Bovenzi V, Le NLO, Cote' S, Sinnet D, Momparler LF and Momparler RI . 1999 Anticancer Drugs 10: 471–476

  • Cameron EE, Bachman KE, Myohanen S, Herman JG and Baylin SB . 1999 Nature Genet 21: 103–107

  • Chambon P . 1996 FASEB J 10: 940–954

  • Chiba H, Clifford J, Metzger D and Chambon P . 1997 Mol Cell Biol 17: 3013–3020

  • Cote' S and Momparler RL . 1997 Anticancer Drugs 8: 56–61

  • De The' H, del Mar Vivanco-Ruiz M, Tiollais P, Stunnenberg HG and Dejan A . 1990 Nature 343: 177–180

  • Eden S, Hashimshony T, Keshet I, Cedar H and Torne AW . 1998 Nature 394: 842

  • Ferguson AT, Lapidus RG and Davidson NE . 1998 Oncogene 17: 577–583

  • Folkers GE, van der Burg B and van der Saag PT . 1998 J Biol Chem 273: 32200–32212

  • Formantici C, Orlandi R, Ronchini C, Pilotti S, Ranzani GN, Colnaghi MI and Menard S . 1999 J Pathol 187: 424–427

  • Grignani F, Dematteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M, Fanelli M, Ruthardt M, et al. 1998 Nature 391: 815–818

  • Gudas LJ, Sporn MB and Roberts AB . 1994 In The Retinoids Biology, Chemistry and Medicine Raven Press New York pp 443–520

    Google Scholar 

  • Guidez F, Ivins S, Zhu J, Soderstrom M, Waxman S and Zelent A . 1998 Blood 91: 2634–2637

  • He LZ, Guidez F, Tribioli C, Peruzzi D, Ruthardt M, Zelent A and Pandolfi PP . 1998 Nature Genet 18: 126–135

  • Hebbes TR, Clayton AL, Thorne AW and Crane-Robinson C . 1994 EMBO J 13: 1823–1830

  • Herman JG, Graff JR, Myohanen S, Nelkin BD and Baylin SB . 1996 Proc Natl Acad Sci USA 93: 9821–9826

  • Jones PL and Wolffe AP . 1999 Semin Cancer Biol 9: 339–347

  • Keshet I, Lieman-Hurwitz J and Cedar H . 1986 Cell 44: 535–543

  • Li X-S, Shao Z-M, Sheikh MS, Eiseman JL, Sentz D, Jetten AM, Chen J-C, Dawson ML, Aisner S, Rishi AK, Gutierrez P, Schnapper L and Fontana JA . 1995 J Cell Physiol 165: 449–458

  • Lin RJ, Nagy I, Inoue S, Shao W, Miller Jr WH and Evans RM . 1998 Nature 391: 811–814

  • Liu Y, Lee M-O, Wang H-G, Li Y, Hashimoto Y, Klaus M, Reed JC and Zhang X-K . 1997 Mol Cell Biol 16: 1138–1149

  • Minucci S, Horn V, Bhattacharyya N, Russanova V, Ogryzko VV, Gabriele L, Howard BH and Ozato K . 1997 Proc Natl Acad Sci USA 94: 11295–11300

  • Minna JD and Mangeldorf DJ . 1997 J Natl Cancer Inst 89: 602–604

  • Minucci S and Pelicci P . 1999 Semin Cell Dev Biol 2: 215–225

  • Ng H-H and Bird A . 1999 Curr Opin Genet Dev 9: 158–163

  • Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN and Bird A . 1998 Nature 393: 386–389

  • Razin A . 1998 EMBO J 17: 4905–4908

  • Roman SD, Clarke CL, Hall RE, Alexander IE and Sutherland RL . 1992 Cancer Res 52: 2236–2242

  • Seewaldt VI, Johnson BS, Parker MB, Collins SJ and Swisshelm K . 1995 Cell Growth Differ 6: 1077–1088

  • Shao Z-M, Sheikh MS, Chen JC, Kute T, Aisner S, Schnaper L and Fontana JA . 1994 Int J Oncol 4: 849–853

  • Shang Y, Baumrucker CR and Green MH . 1999 J Biol Chem 274: 18005–18010

  • Shen S, Kruyt FA, den Hertog J, van der Saag FT and Kruijer W . 1991 DNA Seq 2: 111–119

  • Smith MA, Parkinson Dr, Cheson BD and Friedman MA . 1992 J Clin Oncol 10: 839–864

  • Swisshelm K, Ryan K, Lee X, Tsou HC, Peacoque M and Sager R . 1994 Cell Growth Differ 5: 133–141

  • Toulouse A, Morin J, Pelletier M and Bradley WEC . 1997 BBA 1309: 1–4

  • Tsou HC, Yao YJ, Xie XX, Ping XL and Peacocke M . 1998 Exp Cell Res 245: 221–227

  • Valcarel R, Holz H, Garcia Jimenez C, Barettino D and Stunnenberg HG . 1994 Genes Dev 8: 3068–3079

  • Van der Leede BJ, Folkers GE, Kruyt FA and van der Saag PT . 1992 Biochem Biophys Res Commun 188: 695–702

  • Wade PA, Jones PL, Vermaak D, Veenstra GJ, Imhof A, Sera T, Tse C, Ge H, Shi YB, Hansen JC and Wolfee AP . 1998 Cold Spring Harb Symp Quant Biol 63: 435–445

  • Warrell Jr, RP, He LZ, Richon V, Callega E and Pandolfi PP . 1998 J Natl Cancer Inst 90: 1621–1625

  • Widschwendtner M, Berger J, Daxenbichler G, Muller-Holzner E, Widschwendtner A, Mayr A, Marth C and Zeimet AG . 1997 Cancer Res 17: 4158–4161

  • Xu XC, Sneige N, Liu X, Nandagiri R, Lee JJ, Lukumanji F, Hortobagy G, Lippman SM, Dhingra K and Lotan R . 1997 Cancer Res 57: 4992–4996

  • Yoshida M, Horinouchi S and Beppu T . 1995 Bioessays 17: 423–430

Download references

Acknowledgements

We thank Drs WEC Bradley (Montreal) and X-Q Zhang (La Jolla) for initial helpful discussions on the idea behind this work and reagents and Dr A Hoogeveen for critical suggestions; Dr M Stampfer for the gift of the HMEC strains; Dr A de Klein for providing DNA from breast tumors. Funding for this work were provided by Associazione Italiana Ricerca sul Cancro (AIRC) and by BC980803 (USA) to N Sacchi.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sirchia, S., Ferguson, A., Sironi, E. et al. Evidence of epigenetic changes affecting the chromatin state of the retinoic acid receptor β2 promoter in breast cancer cells. Oncogene 19, 1556–1563 (2000). https://doi.org/10.1038/sj.onc.1203456

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1203456

Keywords

This article is cited by

Search

Quick links