Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Downregulation of c-fos gene transcription in cells transformed by E1A and cHa-ras oncogenes: a role of sustained activation of MAP/ERK kinase cascade and of inactive chromatin structure at c-fos promoter

Abstract

REF cells transformed by oncogenes E1A and cHa-ras reveal high and constitutive DNA-binding activity of AP-1 factor lacking in c-Fos protein. Consistently, the transcription of c-fos gene has been found to be downregulated. To elucidate the mechanisms of c-fos downregulation in E1A+cHa-ras transformants, we studied the levels of activity of ERK, JNK/SAPK and p38 kinases and phosphorylation state of Elk-1 transcription factor involved in regulation of c-fos gene. Using two approaches, Western blot analysis with phospho-specific antibodies to MAP kinases and in vitro kinase assay with specific substrates, we show here that ectopic expression of E1A and ras oncogenes leads to a sustained activation of ERK and p38 kinases, whereas JNK/SAPK kinase activity is similar to that in non-transformed REF52 cells. Due to sustained activity of the MAP kinase cascades, Elk-1 transcription factor is being phosphorylated even in serum-starved E1A+cHa-ras cells; moreover, serum does not additionally increase phosphorylation of Elk-1, which is predominant TCF protein bound to SRE region of c-fos gene promoter in these cells. Although the amount of ternary complexes SRE/SRF/TCF estimated by EMSA was similar both in serum-starved and serum-stimulated transformed cells, serum addition still caused a modest activation of c-fos gene transcription at the level of 20% to normal REF cells. In attempt to determine how serum caused the stimulatory effect, we found that PD98059, an inhibitor of MEK/ERK kinase cascade, completely suppressed serum-induced c-fos transcription both in REF and E1A+cHa-ras cells, implicating the ERK as primary kinase for c-fos transcription in these cells. In contrast, SB203580, an inhibitor of p38 kinase, augmented noticeably serum-stimulated transcription of c-fos gene in REF cells, implying the involvement of p38 kinase in negative regulation of c-fos. Furthermore, sodium butyrate, an inhibitor of histone deacetylase activity, was capable of activating c-fos transcription both in serum-stimulated and even in serum-starved E1A+cHa-ras cells. Conversely, serum-starved REF cells fail to respond to sodium butyrate treatment by c-fos activation confirming necessity of prior Elk-1 phosphorylation. Taken together, these data suggest that downregulation of c-fos in E1A+cHa-ras cells seems to occur due to a maintenance of a refractory state that arises in normal REF cells after serum-stimulation. The refractory state of c-fos in E1A+cHa-ras cells is likely a consequence of Ras-induced sustained activation of MAPK (ERK) cascade and persistent phosphorylation of TCF (Elk-1) bound to SRE. Combination of these events eventually does contribute to formation of an inactive chromatin structure at c-fos promoter mediated through recruitment of histone deacetylase activity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abramova MV, Kukushkin AN, Pospelova TV, Svetlikova SB, Pospelov VA . 2002 Mol. Biol. (Moscow) 36: N1

  • Alberts AS, Geneste O, Treisman R . 1998 Cell 92: 475–487

  • Amundadottir LT, Leder P . 1998 Oncogene 16: 737–746

  • Bradford MM . 1976 Analyt. Biochem. 72: 248–254

  • Bulavin DV, Tararova ND, Aksenov ND, Pospelov VA, Pospelova TV . 1999 Oncogene 18: 5611–5619

  • Chomczynski P, Sacchi N . 1987 Analyt. Biochem. 162: 156–159

  • Clarke N, Arenzana N, Hai T, Minden A, Prywes R . 1998 Mol. Cell. Biol. 18: 1065–1073

  • Cowley S, Paterson H, Kemp P, Marshall CJ . 1994 Cell 77: 841–852

  • Criqui-Filipe P, Ducret C, Maira S-M, Wasylyk B . 1999 EMBO J. 18: 3392–3403

  • Cruzalegui FH, Cano E, Treisman R . 1999 Oncogene 18: 7948–7957

  • Ding X-Z, Adrian TE . 2001 Biochem. Biophys. Res. Comm. 282: 447–453

  • Gille H, Downward J . 1999 J. Biol. Chem. 274: 22033–22040

  • Giovane A, Sobieszczuk P, Ayad A, Maira S-M, Wasylyk B . 1997 Mol. Cell. Biol. 17: 5667–5678

  • Graham SM, Oldham SM, Martin CB, Drugan JK, Zohn IE, Campbell S, Der CJ . 1999 Oncogene 18: 2107–2116

  • Grunstein M . 1997 Nature 389: 349–352

  • Hazzalin CA, Cuenda A, Cano E, Cohen P, Mahadevan LS . 1997 Oncogene 15: 2321–2331

  • Herrera RE, Shaw PE, Nordheim A . 1989 Nature 340: 68–70

  • Herrera RE, Nordheim A, Stewart AF . 1997 Chromosoma 106: 284–292

  • Hibi M, Liu A, Smeal T, Minden A, Karin M . 1993 Genes Dev. 7: 2135–2148

  • Hill CS, Wynne J, Treisman R . 1995 Cell 81: 1159–1170

  • Janknecht R, Ernst WH, Pingoud V, Nordheim A . 1993 EMBO J. 12: 5097–5104

  • Kessler R, Zacharova-Ablinger A, Laursen NB, Kalousere M, Klemenz R . 1999 Oncogene 18: 1733–1744

  • Konig H, Ponta H, Rahmsdorf U, Buscher M, Schonthal A, Rahmsdorf HJ, Herrlich P . 1989 EMBO J. 8: 2559–2566

  • Kouzarides T . 1999 Curr. Opin. Genet. Dev. 9: 40–48

  • Lavarone A, Massague J . 1999 Mol. Cell. Biol. 19: 916–922

  • Luo RX, Postigo AA, Dean DC . 1998 Cell 92: 463–473

  • Mechta F, Lallemand D, Pfarr CM, Yaniv M . 1997 Oncogene 14: 837–847

  • Malashicheva AB, Kislyakova TV, Aksenov ND, Osipov KA, Pospelov VA . 2000 Oncogene 19: 3858–3865

  • Morgan A, Dolp O, Reuter CWM . 2001 Blood 97: 1823–1834

  • Murphy M, Ahn J, Walker KK, Hoffman WH, Evans RM, Levine AJ, George DL . 1999 Genes Dev. 13: 2490–2501

  • Nakajima T, Morita K, Tsunoda H, Imajoh-Ohmi S, Tanaka H, Yasuda H, Oda K . 1998 J. Biol. Chem. 273: 20036–20045

  • Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y . 1996 Cell 87: 953–959

  • Pospelova TV, Kukushkin AN, Medvedev AV, Savel'ev AK, Pospelov VA . 1996 Mol. Biol. (Engl. Transl.) 30: 662–672

  • Pospelova TV, Medvedev AV, Kukushkin AN, Svetlikova SB, van der Eb AJ, Dorsman JC, Pospelov VA . 1999 Gene Expression 8: 19–32

  • Raitano AB, Halpern JR, Hambuch TM, Sawyers CL . 1995 Proc. Natl Acad. Sci. USA 92: 11746–11750

  • Rosenberger SF, Finch JS, Gupta A, Bowden GT . 1999a J. Biol. Chem. 274: 1124–1130

  • Rosenberger SF, Gupta A, Bowden GT . 1999b Oncogene 18: 3626–3632

  • Rozek D, Pfeifer GP . 1995 J. Cell. Biochem. 57: 479–487

  • Sasaki S, Lesoon-Wood LA, Dey A, Kuwata T, Weintraub BD, Humphrey G, Yang W-M, Seto E, Yen PM, Howard BH, Ozato K . 1999 EMBO J. 18: 5389–5398

  • Schonthal A, Tsukitani Y, Feramisco JR . 1991 Oncogene 6: 423–430

  • Schreiber E, Matthias P, Muller MM, Schaffner W . 1989 Nucl. Acids Res. 17: 6419–

  • Silberman S, Janulis M, Schultz RM . 1997 J. Biol. Chem. 272: 5927–5935

  • Singh RP, Dhawan P, Golden C, Kapoor GS, Mehta KD . 1999 J. Biol. Chem. 274: 19593–19600

  • Treisman R . 1994 Curr. Opin. Genet. Dev. 4: 96–101

  • Treisman R . 1996 Curr. Opin. Cell. Biol. 8: 205–215

  • van Dam H, Huguer S, Kooistra K, Baguet J, Vial E, van der Eb AJ, Herrlich P, Angel P, Castellazzi M . 1998 Genes Dev. 12: 1227–1239

  • Westermarck J, Li S-P, Kallunki T, Han J, Kahari V-M . 2001 Mol. Cell. Biol. 21: 2373–2383

  • Whitmarsh AJ, Shore P, Sharrocks AD, Davis RJ . 1995 Science 269: 403–407

  • Whitmarsh AJ, Yang S-H, Su MS, Sharrocks AD, Davis RJ . 1997 Mol. Cell. Biol. 17: 2360–2375

  • Wang Y, Prywes R . 2000 Oncogene 19: 1379–1385

  • Watts RG, Huang C, Young MR, Li JJ, Dong Z, Pennie WD, Colburn NH . 1998 Oncogene 17: 3493–3498

  • Westwick JK, Cox AD, Der CJ, Cobb MH, Hibi M, Karin M, Brenner DA . 1994 Proc. Natl. Acad. Sci. USA 91: 6030–6034

  • Xie W, Herschman HR . 1995 J. Biol. Chem. 270: 27622–27628

  • Yang S-H, Whitmarsh AJ, Davis RJ, Sharrocks AD . 1998 EMBO J. 17: 1740–1749

  • Yang S-H, Shore P, Willingham N, Lakey JH, Sharrocks AD . 1999 EMBO J. 20: 5666–5674

  • Yang S-H, Vickers E, Brehm A, Kouzarides T, Sharrocks AD . 2001 Mol. Cell. Biol. 21: 2802–2814

  • Yates PR, Atherton GT, Deed RW, Norton JD, Sharrocks AD . 1999 EMBO J. 18: 968–976

  • Yoshida M, Horinouchi S, Beppu T . 1995 BioEssay 17: 423–430

  • Yu CL, Prochownik EV, Imperiale MJ, Jove R . 1993 Mol. Cell. Biol. 13: 2011–2019

  • Zhang H, Shi X, Hampong M, Blanis L, Pelech S . 2001 J. Biol. Chem. 276: 6905–6908

  • Zinck R, Hipskind RA, Pingoud V, Nordheim A . 1993 EMBO J. 12: 2377–2387

Download references

Acknowledgements

The authors wish to thank Alexander Erkin for BL21 strain of E. coli, Bohdan Wasylyk for polyclonal antisera to Elk-1, Sap-1, Net, Net-b proteins, Roger Davis for plasmids pGEX-Elk-C and pGEX-Sap1-C, K.-L. Guan for plasmid pcDNA3-HA-Elk1, Andy Sharrocks for kind gift of GST-Jun, GST-ATF2 and GST-MEF2A constructs. We acknowledge Vadim Ivanov for his help in preparation of polyclonal antibodies to Elk-1 and Sap-1. This work was supported by grants of the Russian Foundation for Basic Research (RFBR) 00-04-49389 (VA Pospelov), 01-04-49422 (TV Pospelova), and INTAS grant 99–1036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana V Pospelova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kukushkin, A., Abramova, M., Svetlikova, S. et al. Downregulation of c-fos gene transcription in cells transformed by E1A and cHa-ras oncogenes: a role of sustained activation of MAP/ERK kinase cascade and of inactive chromatin structure at c-fos promoter. Oncogene 21, 719–730 (2002). https://doi.org/10.1038/sj.onc.1205118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205118

Keywords

This article is cited by

Search

Quick links