Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Attenuation of the TGF-β-Smad signaling pathway in pancreatic tumor cells confers resistance to TGF-β-induced growth arrest

Abstract

We have investigated the mechanism whereby tumor cells become resistant to the antiproliferative effects of transforming growth factor (TGF)-β, while maintaining other responses that can lead to increased malignancy and invasiveness. TGF-β signaling results in nuclear accumulation of active Smad complexes which regulate transcription of target genes. Here we show that in two pancreatic carcinoma cell lines, PT45 and Panc-1, that are resistant to TGF-β-induced growth arrest, the TGF-β-Smad signaling pathway is attenuated compared with epithelial cells that are sensitive to the antiproliferative effects of TGF-β (HaCaT and Colo-357). In PT45 and Panc-1 cells, active Smad complexes remain nuclear for only 1–2 h compared with more than 6 h in HaCaT and Colo-357 cells. The attenuated pathway in PT45 and Panc-1 cells correlates with low levels of TGF-β type I receptor and results in an altered expression profile of TGF-β-inducible genes required for cell cycle arrest. Most significantly, expression of the CDK inhibitor, p21Cip1/WAF1, which is required for TGF-β-induced growth arrest in these cells, is not maintained. Moreover, we show that artificially attenuating the TGF-β-Smad signaling pathway in HaCaT cells is sufficient to prevent TGF-β-induced growth arrest. Our results demonstrate that the duration of TGF-β-Smad signaling is a critical determinant of the specificity of the TGF-β response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Akhurst RJ and Derynck R . (2001). Trends Cell Biol., 11, S44–S51.

  • Baldwin RL, Friess H, Yokoyama M, Lopez ME, Kobrin MS, Buchler MW and Korc M . (1996). Int. J. Cancer, 67, 283–288.

  • Callahan JF, Burgess JL, Fornwald JA, Gaster LM, Harling JD, Harrington FP, Heer J, Kwon C, Lehr R, Mathur A, Olson BA, Weinstock J and Laping NJ . (2002). J. Med. Chem., 45, 999–1001.

  • Chen CR, Kang Y and Massagué J . (2001). Proc. Natl. Acad. Sci. USA, 98, 992–999.

  • Claassen GF and Hann SR . (2000). Proc. Natl. Acad. Sci. USA, 97, 9498–9503.

  • Dai JL, Schutte M, Bansal RK, Wilentz RE, Sugar AY and Kern SE . (1999). Mol. Carcinogen., 26, 37–43.

  • Datto MB, Yu Y and Wang X-F . (1995). J. Biol. Chem., 270, 28623–28628.

  • Denissova NG, Pouponnot C, Long J, He D and Liu F . (2000). Proc. Natl. Acad. Sci. USA, 97, 6397–6402.

  • Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S and Gauthier JM . (1998). EMBO J., 17, 3091–3100.

  • Derynck R, Ackhurst RJ and Balmain A . (2001). Nat. Genet., 29, 117–129.

  • Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T and Miyazono K . (2001). J. Biol. Chem., 276, 12477–12480.

  • Enoch T, Zinn K and Maniatis T . (1986). Mol. Cell. Biol., 6, 801–810.

  • Faure S, Lee MA, Keller T, ten Dijke P and Whitman M . (2000). Development, 127, 2917–2931.

  • Fink SP, Swinler SE, Lutterbaugh JD, Massagué J, Thiagalingam S, Kinzler KW, Vogelstein B, Willson JK and Markowitz S . (2001). Cancer Res., 61, 256–260.

  • Florenes VA, Bhattacharya N, Bani MR, Ben-David Y, Kerbel RS and Slingerland JM . (1996). Oncogene, 13, 2447–2457.

  • Friess H, Yamanaka Y, Buchler M, Ebert M, Beger HG, Gold LI and Korc M . (1993). Gastroenterology, 105, 1846–1856.

  • Goggins M, Shekher M, Turnacioglu K, Yeo CJ, Hruban RH and Kern SE . (1998). Cancer Res., 58, 5329–5332.

  • Gurdon JB and Bourillot PY . (2001). Nature, 413, 797–803.

  • Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH and Kern SE . (1996). Science, 271, 350–353.

  • Hannon GJ and Beach D . (1994). Nature, 371, 257–261.

  • Harlow E and Lane D . (1988). Antibodies. A Laboratory Manual. Cold Spring Harbor Laboratory Press: New York.

    Google Scholar 

  • Hay ED . (1995). Acta Anat., 154, 8–20.

  • Hill CS . (2001). Curr. Opin. Genet. Dev., 11, 534–541.

  • Howell M and Hill CS . (1997). EMBO J., 16, 7411–7421.

  • Howell M, Itoh F, Pierreux CE, Valgeirsdottir S, Itoh S, ten Dijke P and Hill CS . (1999). Dev. Biol., 214, 354–369.

  • Hua X, Liu X, Ansari DO and Lodish HF . (1998). Genes Dev., 12, 3084–3095.

  • Hua X, Miller ZA, Benchabane H, Wrana JL and Lodish HF . (2000). J. Biol. Chem., 275, 33205–33208.

  • Iavarone A and Massagué J . (1997). Nature, 387, 417–422.

  • Iavarone A and Massagué J . (1999). Mol. Cell. Biol., 19, 916–922.

  • Inman GJ, Nicolás, FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ and Hill CS . (2002a). Mol. Pharmacol., 62, 65–72.

  • Inman GJ, Nicolás FJ, and Hill CS . (2002b). Mol. Cell, 10, 283–294.

  • Jonson T, Albrechtsson E, Axelson J, Heidenblad M, Gorunova L, Johansson B and Hoglund M . (2001). Int. J. Oncol., 19, 71–81.

  • Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH and Wrana JL . (2000). Mol. Cell, 6, 1365–1375.

  • Kim SJ, Angel P, Lafyatis R, Hattori K, Kim KY, Sporn MB, Karin M and Roberts AB . (1990). Mol. Cell. Biol., 10, 1492–1497.

  • Kim SJ, Im YH, Markowitz SD and Bang YJ . (2000). Cytokine Growth Factor Rev., 11, 159–168.

  • Kleeff J, Ishiwata T, Maruyama H, Friess H, Truong P, Buchler MW, Falb D and Korc M . (1999). Oncogene, 18, 5363–5372.

  • Kleeff J and Korc M . (1998). J. Biol. Chem., 273, 7495–7500.

  • Kretzschmar M, Doody J, Timokhina I and Massagué J . (1999). Genes Dev., 13, 804–816.

  • Laiho M, Saksela O, Andreasen PA and Keski-Oja J . (1986). J. Cell Biol., 103, 2403–2410.

  • Lehmann K, Janda E, Pierreux CE, Rytomaa M, Schulze A, McMahon M, Hill CS, Beug H and Downward J . (2000). Genes Dev., 14, 2610–2622.

  • Liu F, Pouponnot C and Massagué J . (1997). Genes Dev., 11, 3157–3167.

  • Massagué J, Blain SW and Lo RS . (2000). Cell, 103, 295–309.

  • Massagué J and Wotton D . (2000). EMBO J., 19, 1745–1754.

  • Moore PS, Sipos B, Orlandini S, Sorio C, Real FX, Lemoine NR, Gress T, Bassi C, Klöppel G, Kalthoff H, Ungefroren H, Löhr M and Scarpa A . (2001). Virchows Arch., 439, 798–802.

  • Nakao A, Afrakhte M, Moren A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH and ten Dijke P . (1997). Nature, 389, 631–635.

  • Passegue E and Wagner EF . (2000). EMBO J., 19, 2969–2979.

  • Pertovaara L, Sistonen L, Bos TJ, Vogt PK, Keski-Oja J and Alitalo K . (1989). Mol. Cell. Biol., 9, 1255–1262.

  • Pierreux CE, Nicolás FJ and Hill CS . (2000). Mol. Cell. Biol., 20, 9041–9054.

  • Price MA, Cruzalegui FH and Treisman R . (1996). EMBO J., 15, 6552–6563.

  • Reynisdottir I, Polyak K, Iavarone A and Massagué J . (1995). Genes Dev., 9, 1831–1845.

  • Rowland-Goldsmith MA, Maruyama H, Kusama T, Ralli S and Korc M . (2001). Clin. Cancer Res., 7, 2931–2940.

  • Schutte M, Hruban RH, Hedrick L, Cho KR, Nadasdy GM, Weinstein CL, Bova GS, Isaacs WB, Cairns P, Nawroz H, Sidransky D, Casero RA Jr, Meltzer PS, Hahn SA and Kern SE . (1996). Cancer Res., 56, 2527–2530.

  • Seoane J, Pouponnot C, Staller P, Schader M, Eilers M and Massagué J . (2001). Nat. Cell Biol., 3, 400–408.

  • Sherr CJ and Roberts JM . (1999). Genes Dev., 13, 1501–1512.

  • Shimizu K and Gurdon JB . (1999). Proc. Natl. Acad. Sci. USA, 96, 6791–6796.

  • Sirard C, Kim S, Mirtsos C, Tadich P, Hoodless PA, Itie A, Maxson R, Wrana JL and Mak TW . (2000). J. Biol. Chem., 275, 2063–2070.

  • Sirivatanauksorn V, Sirivatanauksorn Y, Gorman PA, Davidson JM, Sheer D, Moore PS, Scarpa A, Edwards PA and Lemoine NR . (2001). Int. J. Cancer., 91, 350–358.

  • Staller P, Peukert K, Kiermaier A, Seoane J, Lukas J, Karsunky H, Moroy T, Bartek J, Massagué J, Hanel F and Eilers M . (2001). Nat. Cell Biol., 3, 392–399.

  • Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden KH and Peters G . (1998). EMBO J., 17, 5001–5014.

  • Touitou R, Richardson J, Bose S, Nakanishi M, Rivett J and Allday MJ . (2001). EMBO J., 20, 2367–2375.

  • Villanueva A, Garcia C, Paules AB, Vicente M, Megias M, Reyes G, de Villalonga P, Agell N, Lluis F, Bachs O and Capella G . (1998). Oncogene, 17, 1969–1978.

  • Wagner M, Kleeff J, Lopez ME, Bockman I, Massaque J and Korc M . (1998). Int. J. Cancer, 78, 255–260.

  • Wakefield LM and Roberts AB . (2002). Curr. Opin. Genet. Dev., 12, 22–29.

  • Wells RG, Yankelev H, Lin HY and Lodish HF . (1997). J. Biol. Chem., 272, 11444–11451.

  • Wieser R, Wrana JL and Massagué J . (1995). EMBO J., 14, 2199–2208.

  • Wilson PA, Lagna G, Suzuki A and Hemmati-Brivanlou A . (1997). Development, 124, 3177–3184.

  • Wong C, Rougier-Chapman EM, Frederick JP, Datto MB, Liberati NT, Li JM and Wang XF . (1999). Mol. Cell. Biol., 19, 1821–1830.

Download references

Acknowledgements

We thank Mike Howell, Carl-Henrick Heldin, Nick Lemoine, Anita Roberts, Peter ten Dijke and Richard Treisman for reagents and cell lines and Nicholas Laping and Alastair Reith at GlaxoSmithKline Pharmaceuticals for SB-431542. We are very grateful to the Cancer Research UK FACS lab for FACS analysis, in particular Ayad Eddaoudi, to Yogi Jayaram and Ruth Peat for invaluable help with cell culture, to Peter Jordan and Giovanna Lalli for help with confocal microscopy, to Kelly Woodford-Richens for genomic characterization of Smad4 in SW-979 cells and to Gareth Inman for receptor characterization in CF-Pac1 cells. We thank Julian Downward, Nick Lemoine, Christophe Pierreux, Anita Roberts, Richard Treisman and members of the lab for useful discussions and/or helpful comments on the manuscript. The work was supported by the Imperial Cancer Research Fund (now Cancer Research, UK) and an MRC training Fellowship to FJN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline S Hill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicolás, F., Hill, C. Attenuation of the TGF-β-Smad signaling pathway in pancreatic tumor cells confers resistance to TGF-β-induced growth arrest. Oncogene 22, 3698–3711 (2003). https://doi.org/10.1038/sj.onc.1206420

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206420

Keywords

This article is cited by

Search

Quick links