Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Report
  • Published:

Phospholipase D confers rapamycin resistance in human breast cancer cells

Abstract

mTOR (mammalian target of rapamycin) is a protein kinase that regulates cell cycle progression and cell growth. Rapamycin is a highly specific inhibitor of mTOR in clinical trials for the treatment of breast and other cancers. mTOR signaling was reported to require phosphatidic acid (PA), the metabolic product of phospholipase D (PLD). PLD, like mTOR, has been implicated in survival signaling and the regulation of cell cycle progression. PLD activity is frequently elevated in breast cancer. We have investigated the effect of rapamycin on breast cancer cell lines with different levels of PLD activity. MCF-7 cells, with relatively low levels of PLD activity, were highly sensitive to the growth-arresting effects of rapamycin, whereas MDA-MB-231 cells, with a 10-fold higher PLD activity than MCF-7 cells, were highly resistant to rapamycin. Elevating PLD activity in MCF-7 cells led to rapamycin resistance; and inhibition of PLD activity in MDA-MB-231 cells increased rapamycin sensitivity. Elevated PLD activity in MCF-7 cells also caused rapamycin resistance for S6 kinase phosphorylation and serum-induced Myc expression. These data implicate mTOR as a critical target for survival signals generated by PLD and suggest that PLD levels in breast cancer could be a valuable indicator of the likely efficacy of rapamycin treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Aoki M, Blazek E and Vogt PK . (2001). Proc. Natl. Acad. Sci. USA, 98, 136–141.

  • Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS and Schreiber SL . (1994). Nature, 369, 756–758.

  • Cafferkey R, Young PR, McLaughlin MM, Bergsma DJ, Koltin Y, Sathe GM, Faucette L, Eng WK, Johnson RK and Livi GP . (1993). Mol. Cell. Biol., 13, 6012–6023.

  • Cantley LC and Neel BG . (1999). Proc. Natl. Acad. Sci. USA, 96, 4240–4245.

  • Chen J and Fang Y . (2002). Biochem. Pharmacol., 64, 1071–1077.

  • Chiu MI, Katz H and Berlin V . (1994). Proc. Natl. Acad. Sci. USA, 91, 12574–12578.

  • Colley WC, Sung TC, Roll R, Jenco J, Hammond SM, Altshuller Y, Bar-Sagi D, Morris AJ and Frohman MA . (1997). Curr. Biol., 7, 191–201.

  • Exton JH . (1999). Biochim. Biophys. Acta, 1439, 121–133.

  • Fang Y, Vilella-Bach M, Bachmann R, Flanigan A and Chen J . (2001). Science, 294, 1942–1945.

  • Frankel P, Ramos M, Flom J, Bychenok S, Joseph T, Kerkhoff E, Rapp UR, Feig LA and Foster DA . (1999). Biochem. Biophys. Res. Commun., 255, 502–507.

  • Fry MJ . (2001). Breast Cancer Res., 3, 304–312.

  • Ghosh S, Strum JC, Sciorra VA, Daniel L and Bell RM . (1996). J. Biol. Chem., 271, 8472–8480.

  • Grandori C, Cowley SM, James LP and Eisenman RN . (2000). The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu. Rev. Cell Dev. Biol., 16, 653–699.

    Article  CAS  Google Scholar 

  • Hidalgo M and Rowinsky EK . (2000). Oncogene, 19, 6680–6686.

  • Hornia A, Lu Z, Sukezane T, Zhong M, Joseph T, Frankel P and Foster DA . (1999). Mol. Cell. Biol., 19, 7672–7680.

  • Huang S and Houghton PJ . (2001). Drug Resist. Updat., 4, 378–391.

  • Hueber AO and Evan GI . (1998). Trends Genet., 14, 364–367.

  • Jenkins GH, Fisette PL and Anderson RA . (1994). J. Biol. Chem., 269, 11547–11554.

  • Jiang H, Lu Z, Luo J-Q, Wolfman A and Foster DA . (1995a). J. Biol. Chem., 270, 6006–6009.

  • Jiang H, Luo J-Q, Urano T, Frankel P, Lu Z, Foster DA and Feig LA . (1995b). Nature, 378, 409–412.

  • Joseph T, Bryant A, Wooden R, Kerkhoff E, Rapp UR and Foster DA . (2002). Oncogene, 21, 3651–3658.

  • Joseph T, Wooden R, Bryant A, Zhong M, Lu Z and Foster DA . (2001). Biochem. Biophys. Res. Commun., 289, 1019–1024.

  • Kuruvilla FG and Schreiber SL . (1999). Chem. Biol., 6, R129–136.

  • Lei X, Bandyopadhyay A, Le T and Sun L . (2002). Oncogene, 21, 7514–7523.

  • Lu Z, Hornia A, Joseph T, Sukezane T, Frankel P, Zhong M, Bychenok S, Xu L, Feig LA and Foster DA . (2000). Mol. Cell. Biol., 20, 462–467.

  • Mills GB, Lu Y and Kohn EC . (2001). Proc. Natl. Acad. Sci. USA, 98, 10031–10033.

  • Min DS, Kwon TK, Park WS, Chang JS, Park SK, Ahn BH, Ryoo ZY, Lee YH, Lee YS, Rhie DJ, Yoon SH, Hahn SJ, Kim MS and Jo YH . (2001). Carcinogenesis, 22, 1641–1647.

  • Moritz A, De Graan PN, Gispen WH and Wirtz KW . (1992). J. Biol. Chem., 267, 7207–7210.

  • Nave BT, Ouwens M, Withers DJ, Alessi DR and Shepherd PR . (1999). Biochem. J., 344, 427–431.

  • Neshat MS, Mellinghoff IK, Tran C, Stiles B, Thomas G, Petersen R, Frost P, Gibbons JJ, Wu H and Sawyers CL . (2001). Proc. Natl. Acad. Sci. USA, 98, 10314–10319.

  • Noh DY, Ahn SJ, Lee RA, Park IA, Kim JH, Suh PG, Ryu SH, Lee KH and Han JS . (2000). Cancer Lett., 161, 207–214.

  • Plevin R, Cook SG, Palmer S and Wakelam MJO . (1991). Biochem. J., 279, 559–565.

  • Podsypanina K, Lee RT, Politis C, Hennessy I, Crane A, Puc J, Neshat M, Wang H, Yang L, Gibbons J, Frost P, Dreisbach V, Blenis J, Gaciong Z, Fisher P, Sawyers C, Hedrick-Ellenson L and Parsons R . (2001). Proc. Natl. Acad. Sci. USA, 98, 10320–10325.

  • Prall OW, Rogan EM and Sutherland RL . (1998). J. Steroid Biochem. Mol. Biol., 65, 169–174.

  • Rizzo MA, Shome K, Vasudevan C, Stolz DB, Sung TC, Frohman MA, Watkins SC and Romero G . (1999). J. Biol. Chem., 274, 1131–1139.

  • Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P and Snyder SH . (1994). Cell, 78, 35–43.

  • Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G and Abraham RT . (1995). J. Biol. Chem., 270, 815–822.

  • Santos GF, Scott GK, Lee WM, Liu E and Benz C . (1988). J. Biol. Chem., 263, 9565–9568.

  • Schmelzie T and Hall MN . (2000). Cell, 103, 253–262.

  • Sekulic A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM and Abraham RT . (2000). Cancer Res., 60, 3504–3513.

  • Shen Y, Xu L and Foster DA . (2001). Mol. Cell. Biol., 21, 595–602.

  • Shome K, Vasudevon C and Romero G . (1997). Curr. Biol., 7, 387–396.

  • Song J, Jiang Y-W and Foster DA . (1994). Cell Growth Differ., 5, 79–85.

  • Song J, Pfeffer LM and Foster DA . (1991). Mol. Cell. Biol., 11, 4903–4908.

  • Sung TC, Altshuller YM, Morris AJ. and Frohman MA . (1999). J. Biol. Chem., 274, 494–502.

  • Sung TC, Roper RL, Zhang Y, Rudge SA, Temel R, Hammond SM, Morris AJ, Moss B, Engebrecht J and Frohman MA . (1997). EMBO J., 16, 4519–4530.

  • Tsai EM, Wang SC, Lee JN and Hung MC . (2001). Cancer Res., 61, 8390–8392.

  • West MJ, Stoneley M and Willis AE . (1998). Oncogene, 17, 769–780.

  • Yu K, Toral-Barza L, Discafani C, Zhang WG, Skotnicki J, Frost P and Gibbons JJ . (2002). Endocr. Relat. Cancer, 8, 249–258.

  • Zhong M, Shen Y, Zheng Y, Joseph T, Jackson D, Beychenok S and Foster DA . (2003). Biochem. Biophys. Res. Commun., 302, 615–619.

Download references

Acknowledgements

We thank M Frohman (SUNY, Stony Brook) for the hPLD1 and mPLD2 genes used to generate the inducible PLD expression vectors. This investigation was supported by a grant from the National Cancer Institute CA46677, and from a SCORE grant from the National Institutes of Health GM60654. Research Centers in Minority Institutions award RR-03037 from the National Center for Research Resources of the National Institutes of Health, which supports infrastructure and instrumentation in the Biological Sciences Department at Hunter College, is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A Foster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Zheng, Y. & Foster, D. Phospholipase D confers rapamycin resistance in human breast cancer cells. Oncogene 22, 3937–3942 (2003). https://doi.org/10.1038/sj.onc.1206565

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206565

Keywords

This article is cited by

Search

Quick links