Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Induction of apoptosis in human leukemia cells by the tyrosine kinase inhibitor adaphostin proceeds through a RAF-1/MEK/ERK- and AKT-dependent process

Abstract

Effects of the tyrphostin tyrosine kinase inhibitor adaphostin (NSC 680410) have been examined in human leukemia cells (Jurkat, U937) in relation to mitochondrial events, apoptosis, and perturbations in signaling and cell cycle regulatory events. Exposure of cells to adaphostin concentrations 0.75 μ M for intervals 6 h resulted in a pronounced release of cytochrome c and AIF, activation of caspase-9, -8, and -3, and apoptosis. These events were accompanied by the caspase-independent downregulation of Raf-1, inactivation of MEK1/2, ERK, Akt, p70S6K, dephosphorylation of GSK-3, and activation of c-Jun-N-terminal kinase (JNK) and p38 MAPK. Adaphostin also induced cleavage and dephosphorylation of pRb on CDK2- and CDK4-specific sites, as well as the caspase-dependent downregulation of cyclin D1. Inducible expression of a constitutively active MEK1 construct markedly diminished adaphostin-induced cytochrome c and AIF release, JNK activation, and apoptosis in Jurkat cells. Ectopic expression of Raf-1 or constitutively activated (myristolated) Akt also significantly attenuated adaphostin-induced apoptosis, but protection was less than that conferred by enforced activation of MEK. Lastly, antioxidants (e.g., L-N-acetylcysteine; L-NAC) opposed adaphostin-mediated mitochondrial dysfunction, Raf-1/MEK/ERK downregulation, JNK activation, and apoptosis. However, in contrast to L-NAC, enforced activation of MEK failed to block adaphostin-mediated ROS generation. Together, these findings demonstrate that the tyrphostin adaphostin induces multiple perturbations in signal transduction pathways in human leukemia cells, particularly inactivation of the cytoprotective Raf-1/MEK/ERK and Akt cascades, that culminate in mitochondrial injury, caspase activation, and apoptosis. They also suggest that adaphostin-related oxidative stress acts upstream of perturbations in these signaling pathways to trigger the cell death process.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Allan LA, Morrice N, Brady S, Magee G, Pathak S and Clarke PR . (2003). Nat. Cell Biol., 5, 647–654.

  • Arguello F, Alexander M, Sterry JA, Tudor G, Smith EM, Kalavar NT, Greene Jr JF, Koss W, Morgan CD, Stinson SF, Siford TJ, Alvord WG, Klabansky RL and Sausville EA . (1998). Blood, 91, 2482–2490.

  • Avramis IA, Christodoulopoulos G, Suzuki A, Laug WE, Gonzalez-Gomez I, McNamara G, Sausville EA and Avramis VI . (2002). Cancer Chemother. Pharmacol., 50, 479–489.

  • Bonni A, Brunet A, West AE, Datta SR, Takasu MA and Greenberg ME . (1999). Science, 286, 1358–1362.

    Article  CAS  Google Scholar 

  • Carlson B, Lahusen T, Singh S, Loaiza-Perez A, Worland PJ, Pestell R, Albanese C, Sausville EA and Senderowicz AM . (1999). Cancer Res., 59, 4634–4641.

  • Chandra J, Hackbarth J, Le S, Loegering D, Bone N, Bruzek LM, Narayanan VL, Adjei AA, Kay NE, Tefferi A, Karp JE, Sausville EA and Kaufmann SH . (2003). Blood, [Epub ahead of print].

  • Chang F, Steelman LS, Lee JT, Shelton JG, Navolanic PM, Blalock WL, Franklin RA and McCubrey JA . (2003). Leukemia, 17, 1263–1293.

    Article  CAS  Google Scholar 

  • Chang L and Karin M . (2001). Nature, 410, 37–40.

    Article  CAS  Google Scholar 

  • Chau BN, Borges HL, Chen TT, Masselli A, Hunton IC and Wang JY . (2002). Nat. Cell Biol., 4, 757–765.

  • Clarke PA, Hostein I, Banerji U, Stefano FD, Maloney A, Walton M, Judson I and Workman P . (2000). Oncogene, 19, 4125–4133.

    Article  CAS  Google Scholar 

  • Dan S, Naito M and Tsuruo T . (1998). Cell Death Differ., 5, 710–715.

    Article  CAS  Google Scholar 

  • Datta SR, Brunet A and Greenberg ME . (1999). Genes Dev., 13, 2905–2927.

  • Franke TF, Kaplan DR and Cantley LC . (1997). Cell, 88, 435–437.

    Article  CAS  Google Scholar 

  • Hu Y, Qiao L, Wang S, Rong SB, Meuillet EJ, Berggren M, Gallegos A, Powis G and Kozikowski AP . (2000). J. Med. Chem., 43, 3045–3051.

    Article  CAS  Google Scholar 

  • Inoshita S, Takeda K, Hatai T, Terada Y, Sano M, Hata J, Umezawa A and Ichijo H . (2002). J. Biol. Chem., 277, 43730–43734.

    Article  CAS  Google Scholar 

  • Jarvis WD, Auer KL, Spector M, Kunos G, Grant S, Hylemon P, Mikkelsen R and Dent P . (1997). FEBS Lett., 412, 9–14.

  • Jia W, Yu C, Rahmani M, Krystal G, Sausville EA, Dent P and Grant S . (2003). Blood, 102, 1824–1832.

    Article  CAS  Google Scholar 

  • Johnson GL and Lapadat R . (2002). Science, 298, 1911–1912.

    Article  CAS  Google Scholar 

  • Kaur G, Gazit A, Levitzki A, Stowe E, Cooney DA and Sausville EA . (1994). Anticancer Drugs, 5, 213–222.

  • Kim AH, Khursigara G, Sun X, Franke TF and Chao MV . (2001). Mol. Cell. Biol., 21, 893–901.

  • Krystal GW, Honsawek S, Litz J and Buchdunger E . (2000). Clin. Cancer Res., 6, 3319–3326.

  • Lei K and Davis RJ . (2003). Proc. Natl. Acad. Sci. USA, 100, 2432–2437.

  • Levitzki A and Gazit A . (1995). Science, 267, 1782–1788.

    Article  CAS  Google Scholar 

  • Liu SX, Athar M, Lippai I, Waldren C and Hei TK . (2001). Proc. Natl. Acad. Sci. USA, 98, 1643–1648.

  • Milella M, Kornblau SM, Estrov Z, Carter BZ, Lapillonne H, Harris D, Konopleva M, Zhao S, Estey E and Andreeff M . (2001). J. Clin. Invest., 108, 851–859.

    Article  CAS  Google Scholar 

  • Moldeus P and Cotgreave IA . (1994). Methods Enzymol., 234, 482–492.

  • Muda M, Theodosiou A, Rodrigues N, Boschert U, Camps M, Gillieron C, Davies K, Ashworth A and Arkinstall S . (1996). J. Biol. Chem., 271, 27205–27208.

    Article  CAS  Google Scholar 

  • Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K and Cobb MH . (2001). Endocr. Rev., 22, 153–183.

  • Platanias LC . (2003). Blood, 101, 4667–4679.

    Article  CAS  Google Scholar 

  • Scheid MP, Schubert KM and Duronio V . (1999). J. Biol. Chem., 274, 31108–31113.

    Article  CAS  Google Scholar 

  • Scheid MP and Woodgett JR . (2001). Nat. Rev. Mol. Cell. Biol., 2, 760–768.

  • Sebolt-Leopold JS, Dudley DT, Herrera R, Van Becelaere K, Wiland A, Gowan RC, Tecle H, Barrett SD, Bridges A, Przybranowski S, Leopold WR and Saltiel AR . (1999). Nat. Med., 5, 810–816.

  • Sparrow JR, Vollmer-Snarr HR, Zhou J, Jang YP, Jockusch S, Itagaki Y and Nakanishi K . (2003). J. Biol. Chem., 278, 18207–18213.

    Article  CAS  Google Scholar 

  • Svingen PA, Tefferi A, Kottke TJ, Kaur G, Narayanan VL, Sausville EA and Kaufmann SH . (2000). Clin. Cancer Res., 6, 237–249.

  • Tobiume K, Matsuzawa A, Takahashi T, Nishitoh H, Morita K, Takeda K, Minowa O, Miyazono K, Noda T and Ichijo H . (2001). EMBO Rep., 2, 222–228.

  • Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA and Davis RJ . (2000). Science, 288, 870–874.

    Article  CAS  Google Scholar 

  • Turner NA, Xia F, Azhar G, Zhang X, Liu L and Wei JY . (1998). J. Mol. Cell. Cardiol., 30, 1789–1801.

  • Wang X, Martindale JL, Liu Y and Holbrook NJ . (1998). Biochem. J., 333, 291–300.

    Article  CAS  Google Scholar 

  • Wennstrom S and Downward J . (1999). Mol. Cell. Biol., 19, 4279–4288.

    Article  Google Scholar 

  • Wolf G, Hannken T, Schroeder R, Zahner G, Ziyadeh FN and Stahl RA . (2001). FEBS Lett., 488, 154–159.

  • Wu CJ, O'Rourke DM, Feng GS, Johnson GR, Wang Q and Greene MI . (2001). Oncogene, 20, 6018–6025.

    Article  CAS  Google Scholar 

  • Xia Z, Dickens M, Raingeaud J, Davis RJ and Greenberg ME . (1995). Science, 270, 1326–1331.

    Article  CAS  Google Scholar 

  • Yamamoto K, Ichijo H and Korsmeyer SJ . (1999). Mol. Cell. Biol., 19, 8469–8478.

    Article  CAS  Google Scholar 

  • Yu C, Rahmani M, Dai Y, Conrad D, Krystal G, Dent P and Grant S . (2003a). Cancer Res., 63, 1822–1833.

  • Yu C, Rahmani M, Almenara J, Subler M, Krystal G, Conrad D, Varticovski L, Dent P and Grant S . (2003b). Cancer Res., 63, 2118–2126.

  • Yu C, Wang S, Dent P and Grant S . (2001). Mol. Pharmacol., 60, 143–154.

Download references

Acknowledgements

This work was supported by awards CA63753 and CA 93738 from the NIH, award 6045-03 from the Leukemia and Lymphoma Society of America, and award DAMD-17-03-1-0209 from the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, C., Rahmani, M., Almenara, J. et al. Induction of apoptosis in human leukemia cells by the tyrosine kinase inhibitor adaphostin proceeds through a RAF-1/MEK/ERK- and AKT-dependent process. Oncogene 23, 1364–1376 (2004). https://doi.org/10.1038/sj.onc.1207248

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1207248

Keywords

This article is cited by

Search

Quick links