Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

DIM stimulates IFNγ gene expression in human breast cancer cells via the specific activation of JNK and p38 pathways

Abstract

3,3′-Diindolylmethane (DIM) is a promising anticancer agent derived from Brassica vegetables, but the mechanisms of DIM action are largely unknown. We have shown that DIM can upregulate the expression and stimulate the secretion of interferon-gamma (IFNγ) in the human MCF-7 breast cancer cell line. This novel effect may provide important clues to explain the anticancer effects of DIM because it is well known that IFNγ plays an important role in preventing the development of primary and transplanted tumors. Utilizing promoter deletions, we show here that the region between −108 and −36 bp in the IFNγ promoter, which contains two conserved and essential regulatory elements, is required for DIM-induced IFNγ expression. DIM activates both JNK and p38 pathways, induces the phosphorylation of c-Jun and ATF-2, and increases the binding of the homodimer or heterodimer of c-Jun/ATF-2 to the proximal AP-1·CREB-ATF-binding element. Moreover, studies with specific enzyme inhibitors showed that up-stream Ca2+-dependent kinase(s) is required for the inducing effects of DIM in MCF-7 cells. These results establish that DIM-induced IFNγ expression in human breast tumor cells is mediated by activation of both JNK and p38 pathways, which is ultimately dependent on intracellular calcium signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Abbreviations

DIM:

3,3′-diindolylmethane

I3C:

indole-3-carbinol

IFNγ:

interferon-gamma

DMSO:

dimethylbenzanthracene

PMA:

phorbol 12-myristate 13-acetate

CsA:

cyclosporin A

CN:

calcineurin

BAPTA:

1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetra(acetoxymethyl) ester

MAPK:

mitogen-activated protein kinase

ERK:

extracellular signal-regulated kinase

JNK:

c-Jun N-terminal kinase

PKC:

protein kinase C

PKA:

protein kinase A

CAT:

chloramphenicol acetyltransferase

EMSA:

electrophoretic mobility shift assay

Sp1:

promoter-specific transcription factor 1

Sp3:

promoter-specific transcription factor 3

ER:

endoplasmic reticulum

References

  • Abate C, Luk D and Curran T . (1991). Mol. Cell. Biol., 11, 3624–3632.

  • Abdelhafiz HA, Heasley LE, Kyriakis JM, Avruch J, Kroll DJ, Johnson GL and Hoeffler JP . (1992). Mol. Endocrinol., 6, 2079–2089.

  • Alsayed Y, Uddin S, Mahmud N, Lekmine F, Kalvakolanu DV, Minucci S, Bokoch G and Platanias LC . (2001). J. Biol. Chem., 276, 4012–4019.

  • Auborn KJ . (2002). Antiviral Ther., 7, 1–9.

  • Awasthi N and Wagner BJ . (2004). Invest. Ophthalmol. Vis. Sci., 45, 222–229.

  • Benjamin D, Hartmann DP, Bazar LS and Jacobson RJ . (1986). Am. J. Hematol., 22, 169–177.

  • Burchert A, Cai D, Hofbauer LC, Samuelsson MKR, Slater EP, Duyster J, Ritter M, Hochhaus A, Muller R, Eilers M, Schmidt M and Neubauer A . (2004). Blood, 103, 3480–3489.

  • Chawla-Sarkar M, Lindner DJ, Liu YF, Williams B, Sen GC, Silverman RH and Borden EC . (2003). Apoptosis, 8, 237–249.

  • Chen I, McDougal A, Wang F and Safe S . (1998). Carcinogenesis, 19, 1631–1639.

  • Chrivia JC, Wedrychowicz T, Young HA and Hardy KJ . (1990). J. Exp. Med., 172, 661–664.

  • Cippitelli M, Sica A, Viggiano V, Ye JP, Ghosh P, Birrer MJ and Young HA . (1995). J. Biol. Chem., 270, 12548–12556.

  • Clipstone NA and Crabtree GR . (1992). Nature, 357, 695–697.

  • Crabtree GR and Clipstone NA . (1994). Annu. Rev. Biochem., 63, 1045–1083.

  • Cram EJ, Liu BD, Bjeldanes LF and Firestone GL . (2001). J. Biol. Chem., 276, 22332–22340.

  • Csiszar A, Nagy G, Gergely P, Pozsonyi T and Pocsik E . (2000). Clin. Exp. Immunol., 122, 464–470.

  • Cui XJ, Zhang P, Deng WL, Oesterreich S, Lu YL, Mills GB and Lee AV . (2003). Mol. Endocrinol., 17, 575–588.

  • Dalton DK, Pittsmeek S, Keshav S, Figari IS, Bradley A and Stewart TA . (1993). Science, 259, 1739–1742.

  • de Veer MJ, Holko M, Frevel M, Walker E, Der S, Paranjape JM, Silverman RH and Williams BRG . (2001). J. Leukocyte Biol., 69, 912–920.

  • Dighe AS, Richards E, Old LJ and Schreiber RD . (1994). Immunity, 1, 447–456.

  • Dimarzio P, Puddu P, Conti L, Belardelli F and Gessani S . (1994). J. Exp. Med., 179, 1731–1736.

  • Farrar MA and Schreiber RD . (1993). Annu. Rev. Immunol., 11, 571–611.

  • Firestone GL and Bjeldanes LF . (2003). J. Nutr., 133, 2448S–2455S.

  • Garcia-Fernandez MO, Schally AV, Varga JL, Groot K and Busto R . (2003). Breast Cancer Res. Treat., 77, 15–26.

  • Ge XK, Yannai S, Rennert G, Gruener N and Fares FA . (1996). Biochem. Biophys. Res. Commun., 228, 153–158.

  • Gentz R, Rauscher FJ, Abate C and Curran T . (1989). Science, 243, 1695–1699.

  • Grubbs CJ, Steele VE, Casebolt T, Juliana MM, Eto I, Whitaker LM, Dragnev KH, Kelloff GJ and Lubet RL . (1995). Anticancer Res., 15, 709–716.

  • Hong C, Firestone GL and Bjeldanes LF . (2002a). Biochem. Pharmac., 63, 1085–1097.

  • Hong CB, Kim HA, Firestone GL and Bjeldanes LF . (2002b). Carcinogenesis, 23, 1297–1305.

  • Horsley V and Pavlath GK . (2002). J. Cell Biol., 156, 771–774.

  • Ikeda H, Old LJ and Schreiber RD . (2002). Cytokine Growth Factor Rev., 13, 95–109.

  • Isakov N and Altman A . (2002). Annu. Rev. Immunol., 20, 761–794.

  • Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ and Schreiber RD . (1998). Proc. Natl. Acad. Sci. USA, 95, 7556–7561.

  • Kasahara T, Djeu JY, Dougherty SF and Oppenheim JJ . (1983a). J. Immunol., 131, 2379–2385.

  • Kasahara T, Hooks JJ, Dougherty SF and Oppenheim JJ . (1983b). J. Immunol., 130, 1784–1789.

  • Kerppola TK and Curran T . (1993). Mol. Cell. Biol., 13, 5479–5489.

  • Kiang JG, Gist ID and Tsokos GC . (1999). Mol. Cell. Biochem., 199, 179–188.

  • Laird PW and Jaenisch R . (1994). Human Mol. Genet., 3, 1487–1495.

  • Lazennec G, Thomas JA and Katzenellenbogen BS . (2001). J. Steroid Biochem. Mol. Biol., 77, 193–203.

  • McCaffrey PG, Perrino BA, Soderling TR and Rao A . (1993). J. Biol. Chem., 268, 3747–3752.

  • Mueller H, Liu R, David F and Eppenberger U . (1997). Biol. Chem., 378, 1023–1029.

  • Nachshon-Kedmi M, Yannai S and Fares FA . (2004). Br. J. Cancer, 91, 1358–1363.

  • Nachshon-Kedmi M, Yannai S, Haj A and Fares FA . (2003). Food Chem. Toxicol., 41, 745–752.

  • Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA and Yuan JY . (2000). Nature, 403, 98–103.

  • Ogretmen B and Safa AR . (1996). Int. J. Cancer, 67, 608–614.

  • Ossina NK, Cannas A, Powers VC, Fitzpatrick PA, Knight JD, Gilbert JR, Shekhtman EM, Tomei LD, Umansky SR and Kiefer MC . (1997). J. Biol. Chem., 272, 16351–16357.

  • Pang YB, Norihisa Y, Benjamin D, Kantor RRS and Young HA . (1992). Blood, 80, 724–732.

  • Penix L, Weaver WM, Pang Y, Young HA and Wilson CB . (1993). J. Exp. Med., 178, 1483–1496.

  • Penix LA, Sweetser MT, Weaver WM, Hoeffler JP, Kerppola TK and Wilson CB . (1996). J. Biol. Chem., 271, 31964–31972.

  • Rady PL, Cadet P, Bui TK, Tyring SK, Baron S, Stanton GJ and Hughes TK . (1995). Cytokine, 7, 793–798.

  • Riby JE, Chang GHF, Firestone GL and Bjeldanes LF . (2000). Biochem. Pharmacol., 60, 167–177.

  • Rosfjord EC, Maemura M, Johnson MD, Torri JA, Akiyama SK, Woods VL and Dickson RB . (1999). Exp. Cell Res., 248, 260–271.

  • Ruiz-Ruiz C, Munoz-Pinedo C and Lopez-Rivas A . (2000). Cancer Res., 60, 5673–5680.

  • Sun SS, Han J, Ralph WM, Chandrasekaran A, Liu K, Auborn KJ and Carter TH . (2004). Cell Stress Chaperones, 9, 76–87.

  • Walton KM, Rehfuss RP, Chrivia JC, Lochner JE and Goodman RH . (1992). Mol. Endocrinol., 6, 647–655.

  • Wattenberg LW and Loub WD . (1978). Cancer Res., 38, 1410–1413.

  • Wiatrak BJ . (2003). Curr. Opin. Otolaryngol. Head Neck Surg., 11, 433–441.

  • Ye JP, Cippitelli M, Dorman L, Ortaldo JR and Young HA . (1996). Mol. Cell. Biol., 16, 4744–4753.

  • Yin F, Bruemmer D, Blaschke F, Hsueh WA, Law RE and Van Herle AJ . (2004). Oncogene, 23, 4614–4623.

  • Young HA and Ghosh P . (1997). Prog. Nucleic Acid Res. Mol. Biol., 56, 109–127.

Download references

Acknowledgements

We are grateful to Dr Christopher B Wilson for generously providing the constructs, pIFN-538, pIFN-339, pIFN-108, and plasmids, ATF-2FL, ATF-2BR, wild-type c-Jun, and c-JunΔBR. We are particularly indebted to Dr Howard A Young for kindly providing the plasmids 3 × (−66/−47)CAT, 3 × (−96/−75)CAT, (−108 to −36)CAT, and (−108 to −36)ΔΔ′CAT. We also thank Dr Richard H Goodman for providing the plasmids wild-type CREB and dominant-negative kCREB. This work was supported by the Department of Defense, Army Breast Cancer Research Program Grant DAMDI7-96-1-6149 (BC990908), and by Grants CA69056 and CA102360 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard F Bjeldanes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, L., Firestone, G. & Bjeldanes, L. DIM stimulates IFNγ gene expression in human breast cancer cells via the specific activation of JNK and p38 pathways. Oncogene 24, 2343–2353 (2005). https://doi.org/10.1038/sj.onc.1208434

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208434

Keywords

This article is cited by

Search

Quick links