Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Repression of RAD51 gene expression by E2F4/p130 complexes in hypoxia

Abstract

We and others have shown that the dysregulation of DNA repair pathways can contribute to the phenomenon of hypoxia-induced genetic instability within the tumor microenvironment. Several studies have revealed that the recombinational repair genes, RAD51 and BRCA1, and the DNA mismatch repair genes, MLH1 and MSH2, are decreased in expression in response to hypoxic stress, prompting interest in elucidating the mechanistic basis for these responses. Here we report that the downregulation of RAD51 by hypoxia is specifically mediated by repressive E2F4/p130 complexes that bind to a single E2F site in the proximal promoter of the gene. Intriguingly, this E2F site is conserved in the promoter of the BRCA1 gene, which is also regulated by a similar mechanism in hypoxia. Mechanistically, we have found that hypoxia induces substantial p130 dephosphorylation and nuclear accumulation, leading to the formation of E2F4/p130 complexes and increased occupancy of E2F4 and p130 at the RAD51 and BRCA1 promoters. These findings reveal a coordinated transcriptional program mediated by the formation of repressive E2F4/p130 complexes that represents an integral response to hypoxic stress. In addition, this co-regulation of key factors within the homology-dependent DNA repair pathway provides a further basis for understanding genetic instability in tumors and may guide the design of new therapeutic strategies for cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Attwooll C, Denchi EL, Helin K . (2004). The E2F family: specific functions and overlapping interests. EMBO J 23: 4709–4716.

    Article  CAS  Google Scholar 

  • Avni D, Yang H, Martelli F, Hofmann F, ElShamy WM, Ganesan S et al. (2003). Active localization of the retinoblastoma protein in chromatin and its response to S phase DNA damage. Mol Cell 12: 735–746.

    Article  CAS  Google Scholar 

  • Bindra RS, Gibson SL, Meng A, Westermark U, Jasin M, Pierce AJ et al. (2005). Hypoxia-induced down-regulation of BRCA1 expression by E2Fs. Cancer Res 65: 11597–11604.

    Article  CAS  Google Scholar 

  • Bindra RS, Schaffer PJ, Meng A, Woo J, Maseide K, Roth ME et al. (2004). Down-regulation of Rad51 and decreased homologous recombination in hypoxic cancer cells. Mol Cell Biol 24: 8504–8518.

    Article  CAS  Google Scholar 

  • Cam H, Dynlacht BD . (2003). Emerging roles for E2F: beyond the G1/S transition and DNA replication. Cancer Cell 3: 311–316.

    Article  CAS  Google Scholar 

  • Chowdhury D, Keogh MC, Ishii H, Peterson CL, Buratowski S, Lieberman J . (2005). gamma-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Mol Cell 20: 801–809.

    Article  CAS  Google Scholar 

  • Cicchillitti L, Fasanaro P, Biglioli P, Capogrossi MC, Martelli F . (2003). Oxidative stress induces protein phosphatase 2A-dependent dephosphorylation of the pocket proteins pRb, p107, and p130. J Biol Chem 278: 19509–19517.

    Article  CAS  Google Scholar 

  • Classon M, Dyson N . (2001). p107 and p130: versatile proteins with interesting pockets. Exp Cell Res 264: 135–147.

    Article  CAS  Google Scholar 

  • Cobrinik D . (2005). Pocket proteins and cell cycle control. Oncogene 24: 2796–2809.

    Article  CAS  Google Scholar 

  • Coquelle A, Toledo F, Stern S, Bieth A, Debatisse M . (1998). A new role for hypoxia in tumor progression: induction of fragile site triggering genomic rearrangements and formation of complex DMs and HSRs. Mol Cell 2: 259–265.

    Article  CAS  Google Scholar 

  • DuPree EL, Mazumder S, Almasan A . (2004). Genotoxic stress induces expression of E2F4, leading to its association with p130 in prostate carcinoma cells. Cancer Res 64: 4390–4393.

    Article  CAS  Google Scholar 

  • Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB et al. (2005). Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434: 917–921.

    Article  CAS  Google Scholar 

  • Garriga J, Jayaraman AL, Limon A, Jayadeva G, Sotillo E, Truongcao M et al. (2004). A dynamic equilibrium between CDKs and PP2A modulates phosphorylation of pRB, p107 and p130. Cell Cycle 3: 1320–1330.

    Article  CAS  Google Scholar 

  • Hammond EM, Denko NC, Dorie MJ, Abraham RT, Giaccia AJ . (2002). Hypoxia links ATR and p53 through replication arrest. Mol Cell Biol 22: 1834–1843.

    Article  CAS  Google Scholar 

  • Harris AL . (2002). Hypoxia – a key regulatory factor in tumour growth. Nat Rev Cancer 2: 38–47.

    Article  CAS  Google Scholar 

  • Helt AM, Galloway DA . (2001). Destabilization of the retinoblastoma tumor suppressor by human papillomavirus type 16 E7 is not sufficient to overcome cell cycle arrest in human keratinocytes. J Virol 75: 6737–6747.

    Article  CAS  Google Scholar 

  • Iwanaga R, Komori H, Ohtani K . (2004). Differential regulation of expression of the mammalian DNA repair genes by growth stimulation. Oncogene 23: 8581–8590.

    Article  CAS  Google Scholar 

  • Kel AE, Kel-Margoulis OV, Farnham PJ, Bartley SM, Wingender E, Zhang MQ . (2001). Computer-assisted identification of cell cycle-related genes: new targets for E2F transcription factors. J Mol Biol 309: 99–120.

    Article  CAS  Google Scholar 

  • Koshiji M, Kageyama Y, Pete EA, Horikawa I, Barrett JC, Huang LE . (2004). HIF-1alpha induces cell cycle arrest by functionally counteracting Myc. EMBO J 23: 1949–1956.

    Article  CAS  Google Scholar 

  • Koshiji M, To KK, Hammer S, Kumamoto K, Harris AL, Modrich P et al. (2005). HIF-1alpha induces genetic instability by transcriptionally downregulating MutSalpha expression. Mol Cell 17: 793–803.

    Article  CAS  Google Scholar 

  • Li CY, Little JB, Hu K, Zhang W, Zhang L, Dewhirst MW et al. (2001). Persistent genetic instability in cancer cells induced by non-DNA-damaging stress exposures. Cancer Res 61: 428–432.

    CAS  PubMed  Google Scholar 

  • Lin WC, Lin FT, Nevins JR . (2001). Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev 15: 1833–1844.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meng AX, Jalali F, Cuddihy A, Chan N, Bindra RS, Glazer PM et al. (2005). Hypoxia down-regulates DNA double strand break repair gene expression in prostate cancer cells. Radiother Oncol 76: 168–176.

    Article  CAS  Google Scholar 

  • Mihaylova VT, Bindra RS, Yuan J, Campisi D, Narayanan L, Jensen R et al. (2003). Decreased expression of the DNA mismatch repair gene Mlh1 under hypoxic stress in mammalian cells. Mol Cell Biol 23: 3265–3273.

    Article  CAS  Google Scholar 

  • North S, Moenner M, Bikfalvi A . (2005). Recent developments in the regulation of the angiogenic switch by cellular stress factors in tumors. Cancer Lett 218: 1–14.

    Article  CAS  Google Scholar 

  • Paquette B, Little JB . (1994). In vivo enhancement of genomic instability in minisatellite sequences of mouse C3H/10T1/2 cells transformed in vitro by X-rays. Cancer Res 54: 3173–3178.

    CAS  PubMed  Google Scholar 

  • Pediconi N, Ianari A, Costanzo A, Belloni L, Gallo R, Cimino L et al. (2003). Differential regulation of E2F1 apoptotic target genes in response to DNA damage. Nat Cell Biol 5: 552–558.

    Article  CAS  Google Scholar 

  • Reynolds TY, Rockwell S, Glazer PM . (1996). Genetic instability induced by the tumor microenvironment. Cancer Res 56: 5754–5757.

    CAS  PubMed  Google Scholar 

  • Roth ME, Feng L, McConnell KJ, Schaffer PJ, Guerra CE, Affourtit JP et al. (2004). Expression profiling using a hexamer-based universal microarray. Nat Biotechnol 22: 418–426.

    Article  CAS  Google Scholar 

  • Sandelin A, Alkema W, Engstrom P, Wasserman WW, Lenhard B . (2004). JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res 32: Database issue(D91–4.

  • Stevens C, La Thangue NB . (2003). A new role for E2F-1 in checkpoint control. Cell Cycle 2: 435–437.

    Article  CAS  Google Scholar 

  • Stevens C, La Thangue NB . (2004). The emerging role of E2F-1 in the DNA damage response and checkpoint control. DNA Repair (Amsterdam) 3: 1071–1079.

    Article  CAS  Google Scholar 

  • Subarsky P, Hill RP . (2003). The hypoxic tumour microenvironment and metastatic progression. Clin Exp Metastasis 20: 237–250.

    Article  CAS  Google Scholar 

  • Thompson LH, Schild D . (2002). Recombinational DNA repair and human disease. Mutat Res 509: 49–78.

    Article  CAS  Google Scholar 

  • Voorhoeve PM, Watson RJ, Farlie PG, Bernards R, Lam EW . (1999). Rapid dephosphorylation of p107 following UV irradiation. Oncogene 18: 679–688.

    Article  CAS  Google Scholar 

  • Weinmann AS, Yan PS, Oberley MJ, Huang TH, Farnham PJ . (2002). Isolating human transcription factor targets by coupling chromatin immunoprecipitation and CpG island microarray analysis. Genes Dev 16: 235–244.

    Article  CAS  Google Scholar 

  • Wells J, Graveel CR, Bartley SM, Madore SJ, Farnham PJ . (2002). The identification of E2F1-specific target genes. Proc Natl Acad Sci USA 99: 3890–3895.

    Article  CAS  Google Scholar 

  • Young SD, Marshall RS, Hill RP . (1988). Hypoxia induces DNA overreplication and enhances metastatic potential of murine tumor cells. Proc Natl Acad Sci USA 85: 9533–9537.

    Article  CAS  Google Scholar 

  • Yuan J, Narayanan L, Rockwell S, Glazer PM . (2000). Diminished DNA repair and elevated mutagenesis in mammalian cells exposed to hypoxia and low pH. Cancer Res 60: 4372–4376.

    CAS  PubMed  Google Scholar 

  • Zhu W, Giangrande PH, Nevins JR . (2004). E2Fs link the control of G1/S and G2/M transcription. EMBO J 23: 4615–4626.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Xavier Grana, Zhong Yun and members of the Glazer Laboratory for insightful discussions regarding this manuscript. This work was partially supported by a grant from the NIH (ES05775) to PMG and RSB was supported by the NIH/National Institute of General Medical Sciences Medical Scientist Training Grant GM07205.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P M Glazer.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bindra, R., Glazer, P. Repression of RAD51 gene expression by E2F4/p130 complexes in hypoxia. Oncogene 26, 2048–2057 (2007). https://doi.org/10.1038/sj.onc.1210001

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210001

Keywords

This article is cited by

Search

Quick links