Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chemotherapy resistance of mouse WAP-SVT/t breast cancer cells is mediated by osteopontin, inhibiting apoptosis downstream of caspase-3

Abstract

Impairment of the complex regulatory network of cell death and survival is frequently the reason for therapy resistance of breast cancer cells and a major cause of tumor progression. We established two independent cell lines from a fast growing mouse breast tumor (WAP-SVT/t transgenic animal). Cells from one line (ME-A cells) are sensitive to apoptotic stimuli such as growth factor depletion or treatment with antitumor agents (e.g. doxorubicin). Cells from the second line (ME-C cells), which carry a missense mutation at the p53 codon 242, are very insensitive to apoptotic stimuli. Co-cultivation experiments revealed that the ME-C cells mediate cell death resistance to the ME-A cells. Microarray and Western blot analysis showed that osteopontin (OPN) is selectively overexpressed by the ME-C cells. This glycoprotein is the most abundant protein secreted by the ME-C cells and we obtained strong indications that OPN is the main antiapoptotic factor. However, the OPN containing ME-C cell medium does not alter the expression level of pro- or antiapoptotic genes or known inhibitors of apoptosis (IAPs). Its signaling involves mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK)1/2 as the kinase inhibitor PD98059 restores apoptosis but not the Akt inhibitor. In the ME-A cells, mitochondrial cytochrome c release occurs with and without external apoptotic stimuli. OPN containing ME-C cell medium does not prevent the mitochondrial cytochrome c release and caspase-9 processing. In serum starved ME-A cells, the OPN containing ME-C cell medium prevents caspase-3 activation. However, in doxorubicin-treated cells, although apoptosis is blocked, it does not inhibit caspase-3. This indicates that the ME-A cells distinguish between the initial apoptotic stimuli and that the cells possess a further uncharacterized control element acting downstream from caspase-3.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Allan LA, Morrice N, Brady S, Magee G, Pathak S, Clarke PR . (2003). Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nat Cell Biol 5: 647–654.

    Article  CAS  Google Scholar 

  • Ashkenazi A, Dixit VM . (1998). Death receptors: signaling and modulation. Science 281: 1305–1319.

    Article  CAS  Google Scholar 

  • Beere HM . (2004). The stress of dying: the role of heat shock proteins in the regulation of apoptosis. J Cell Sci 117: 2641–2651.

    Article  CAS  Google Scholar 

  • Brown JM, Attardi LD . (2005). The role of apoptosis in cancer development and treatment response. Nat Rev Cancer 5: 231–237.

    Article  CAS  Google Scholar 

  • Caudevilla C, Da Silva-Azevedo L, Berg B, Guhl E, Graessmann M, Graessmann A . (2001). Heterologous HIV-nef mRNA trans-splicing: a new principle how mammalian cells generate hybrid mRNA and protein molecules. FEBS Lett 507: 269–279.

    Article  CAS  Google Scholar 

  • Christensen B, Nielsen MS, Haselmann KF, Petersen TE, Sorensen ES . (2005). Post-translationally modified residues of native human osteopontin are located in clusters: identification of 36 phosphorylation and five O-glycosylation sites and their biological implications. Biochem J 390: 285–292.

    Article  CAS  Google Scholar 

  • Costantini P, Bruey JM, Castedo M, Métivier D, Loeffler M, Susin SA et al. (2002). Pre-processed caspase-9 contained in mitochondria participates in apoptosis. Cell Death Differ 9: 82–88.

    Article  CAS  Google Scholar 

  • Denhardt DT, Guo X . (1993). Osteopontin: a protein with diverse functions. FASEB J 7: 1475–1482.

    Article  CAS  Google Scholar 

  • Erhardt P, Schremser EJ, Cooper GM . (1999). B-Raf inhibits programmed cell death downstream of cytochrome c release from mitochondria by activating the MEK/Erk pathway. Mol Cell Biol 19: 5308–5315.

    Article  CAS  Google Scholar 

  • Fujita E, Jinbo A, Matuzaki H, Konishi H, Kikkawa U, Momoi T . (1999). Akt phosphorylation site found in human caspase-9 is absent in mouse caspase-9. Biochem Biophys Res Commun 264: 550–555.

    Article  CAS  Google Scholar 

  • Furger KA, Menon RK, Tuck AB, Bramwell VHC, Chambers AF . (2001). The functional and clinical roles of osteopontin in cancer and metastasis. Curr Mol Med 1: 621–632.

    Article  CAS  Google Scholar 

  • Gardai SJ, Whitlock BB, Qun Xiao Y, Bratton DB, Henson PM . (2004). Phosphorylation of Bax Ser184 by Akt regulates its activity and apoptosis in neutrophils. J Biol Chem 279: 44695–44703.

    Article  CAS  Google Scholar 

  • Green DR, Reed JC . (1998). Mitochondria and apoptosis. Science 281: 1309–1312.

    Article  CAS  Google Scholar 

  • Hu DD, Lin EC, Kovach NL, Hoyer JR, Smith JW . (1995). A biochemical characterization of the binding of osteopontin to integrins alpha v beta 1 and alpha v beta 5. J Biol Chem 270: 26232–26238.

    Article  CAS  Google Scholar 

  • Hu P, Han Z, Couvillon AD, Exton JH . (2004). Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. J Biol Chem 279: 49420–49429.

    Article  CAS  Google Scholar 

  • Igney FH, Krammer PH . (2002). Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2: 277–288.

    Article  CAS  Google Scholar 

  • Jiang X, Wang X . (2004). Cytochrome c-mediated apoptosis. Annu Rev Biochem 73: 87–106.

    Article  CAS  Google Scholar 

  • Johnson CR, Jarvis WD . (2004). Caspase-9 regulation: an update. Apoptosis 9: 423–427.

    Article  CAS  Google Scholar 

  • Kanda H, Miura M . (2004). Regulatory roles of JNK in programmed cell death. J Biochem 136: 1–6.

    Article  CAS  Google Scholar 

  • Khan SA, Lopez-Chua CA, Zhang J, Fisher LW, SØrensen ES, Denhartd DT . (2002). J. Cell. Biochem. Soluble osteopontin inhibits apoptosis of adherent endothelial cells deprived of growth factors. J Cell Biochem 85: 728–736.

    Article  CAS  Google Scholar 

  • Klein A, Guhl E, Zollinger R, Tzeng YJ, Wessel R, Hummel M et al. (2005). Gene expression profiling: cell cycle deregulation and aneuploidy do not cause breast cancer formation in WAP-SVT/t transgenic animals. J Mol Med 83: 362–376.

    Article  CAS  Google Scholar 

  • Kohlhoff S, Ziechmann C, Gottlob K, Graessmann M . (2000). SV40 T/t-antigens sensitize mammary gland epithelial cells to oxidative stress and apoptosis. Free Radic Biol Med 29: 497–506.

    Article  CAS  Google Scholar 

  • Krause D, Lyons A, Fennelly C, O'Connor R . (2001). Transient activation of Jun N-terminal kinases and protection from apoptosis by the insulin-like growth factor I receptor can be suppressed by dicoumarol. J Biol Chem 276: 19244–19252.

    Article  CAS  Google Scholar 

  • Kreuz S, Siegmund D, Rumpf JJ, Samel D, Leverkus M, Janssen O et al. (2004). NFkappaB activation by Fas is mediated through FADD, caspase-8, and RIP and is inhibited by FLIP. J Cell Biol 166: 369–380.

    Article  CAS  Google Scholar 

  • LaCasse EC, Baird S, Korneluk RG, MacKenzie AE . (1998). The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 17: 3247–3259.

    Article  Google Scholar 

  • Lin YH, Yang-Yen HF . (2001). The osteopontin-CD44 survival signal involves activation of the phosphatidylinositol 3-kinase/Akt signaling pathway. J Biol Chem 276: 46024–46030.

    Article  CAS  Google Scholar 

  • Mitra SK, Hanson DA, Schlaepfer DD . (2005). Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6: 56–68.

    Article  CAS  Google Scholar 

  • Morimoto I., Sasaki Y, Ishida S, Imai K, Tokino T . (2002). Identification of the osteopontin gene as a direct target of TP53. Genes Chromosomes and Cancer 33: 270–278.

    Article  CAS  Google Scholar 

  • Nechushtan A, Smith CL, Lamensdorf I, Yoon S H, Youle RJ . (2001). Bax and Bak coalesce into novel mitochondria-associated clusters during apoptosis. J Cell Biol 153: 1265–1276.

    Article  CAS  Google Scholar 

  • Nomura M, Shimizu S, Sugiyama T, Narita M, Ito T, Matsuda H et al. (2003). 14-3-3 Interacts directly with and negatively regulates pro-apoptotic Bax. J Biol Chem 278: 2058–2065.

    Article  CAS  Google Scholar 

  • Osaki M, Oshimura M, Ito H . (2004). PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis 9: 667–676.

    Article  CAS  Google Scholar 

  • Pommier Y, Sordet O, Antony S, Hayward RL, Kohn KW . (2004). Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene 23: 2934–2949.

    Article  CAS  Google Scholar 

  • Reed JC . (2001). Apoptosis-regulating proteins as targets for drug discovery. Trends Mol Med 7: 314–319.

    Article  CAS  Google Scholar 

  • Riedl SJ, Shi Y . (2004). Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5: 897–907.

    Article  CAS  Google Scholar 

  • Schimmer AD . (2004). Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Res 64: 7183–7190.

    Article  CAS  Google Scholar 

  • Shanmugam V, Chackalaparampil I, Kundu GC, Mukherjee AB, Mukherjee BB . (1997). Altered sialylation of osteopontin prevents its receptor-mediated binding on the surface of oncogenically transformed tsB77 cells. Biochemistry 36: 5729–5738.

    Article  CAS  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M . (1996). Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68: 850–856.

    Article  CAS  Google Scholar 

  • Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES . (1998). Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell 1: 949–957.

    Article  CAS  Google Scholar 

  • Talanian RV, Quinlan C, Trautz S, Hackett MC, Mankovich JA, Banach D et al. (1997). Substrate specificities of caspase family proteases. J Biol Chem 272: 9677–9682.

    Article  CAS  Google Scholar 

  • Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A et al. (2000). Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288: 870–874.

    Article  CAS  Google Scholar 

  • Tuck AB, Chambers AF . (2001). The role of osteopontin in breast cancer: clinical and experimental studies. J of Mammary Gland Biology and Neoplasia 6: 419–429.

    Article  CAS  Google Scholar 

  • Tzeng YJ, Guhl E, Graessmann M, Graessmann A . (1993). Breast cancer formation in transgenic animals induced by the whey acidic protein SV40 T antigen (WAP-SV-T) hybrid gene. Oncogene 8: 1965–1971.

    CAS  PubMed  Google Scholar 

  • Tzeng YJ, Zimmermann C, Guhl E, Berg B, Avantaggiati ML, Graessmann A . (1998). SV40 T/t-antigen induces premature mammary gland involution by apoptosis and selects for p53 missense mutation in mammary tumors. Oncogene 16: 2103–2114.

    Article  CAS  Google Scholar 

  • Wai PY, Kuo PC . (2004). The role of Osteopontin in tumor metastasis. J Surg Res 121: 228–241.

    Article  CAS  Google Scholar 

  • Weber GF, Ashkar S, Glimcher MJ, Cantor H . (1996). Receptor-ligand interaction between CD44 and osteopontin (Eta-1). Science 271: 509–512.

    Article  CAS  Google Scholar 

  • Wessel R, Foos V, Aspelmeier A, Juergens M, Graessmann A, Klein A . (2006). CorrXpression - identification of significant groups of genes and experiments by means of correspondence analysis and ratio analysis. In Silico Biol 6: 0007.

    Google Scholar 

Download references

Acknowledgements

We thank Dr L Da Silva-Azevedo for his help performing the 2D electrophoresis, Dr R Nuck for the chromatography on Superdex G200 and Dr A Corfield for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Graessmann.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graessmann, M., Berg, B., Fuchs, B. et al. Chemotherapy resistance of mouse WAP-SVT/t breast cancer cells is mediated by osteopontin, inhibiting apoptosis downstream of caspase-3. Oncogene 26, 2840–2850 (2007). https://doi.org/10.1038/sj.onc.1210096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210096

Keywords

This article is cited by

Search

Quick links