Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

SAGE and antibody array analysis of melanoma-infiltrated lymph nodes: identification of Ubc9 as an important molecule in advanced-stage melanomas

Abstract

Although patients diagnosed with melanoma of 1.00 mm thickness have a relatively good cure rate, the prognosis for patients with locally advanced and metastatic melanoma is grave. The discovery of new and effective therapies for this disease depends in large part on molecular studies that will resolve why advanced-stage melanoma is refractory to conventional chemotherapy and radiation therapy. To identify genes that have important functions in advanced-stage melanomas, in particular, in melanoma-infiltrated lymph nodes, which are not well characterized at the molecular level, we generated a LongSAGE library from a melanoma-positive lymph node, and subjected melanoma-infiltrated lymph nodes to protein expression profiling. The data document that the molecular signature of melanoma, which has spread to regional lymph nodes, is very similar to the molecular signature of primary melanomas. Equally important, we provide evidence that the ubiquitin-conjugating enzyme, Ubc9, is expressed at high levels in melanoma-positive lymph nodes, and that it plays a crucial role in preventing advanced-stage melanomas from undergoing chemotherapy-induced apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Balch CM, Buzaid AC, Atkins MB, Cascinelli N, Coit DG, Fleming ID et al. (2000). A New American Joint Committee on Cancer staging system for cutaneous melanoma. Cancer 88: 1484–1491.

    Article  CAS  Google Scholar 

  • Balch CM, Soong SJ, Atkins MB, Buzaid AC, Cascinelli N, Coit DG et al. (2004). An evidence-based staging system for cutaneous melanoma. CA Cancer J Clin 54: 131–149.

    Article  Google Scholar 

  • Becker D, Meier CB, Herlyn M . (1989). Proliferation of human malignant melanomas is inhibited by antisense oligodeoxynucleotides targeted against basic fibroblast growth factor. EMBO J 8: 3685–3691.

    Article  CAS  Google Scholar 

  • Bolstad BM, Irizarry RA, Astrand M, Speed TP . (2003). A comparison of normalization methods for high-density oligonucleotide array data based on bias and variance. Bioinformatics 19: 185–193.

    Article  CAS  Google Scholar 

  • Edwards D . (2003). Non-linear normalization and background correction in one-channel cDNA microarray studies. Bioinformatics 19: 825–833.

    Article  CAS  Google Scholar 

  • Hayashi T, Seki M, Maeda D, Wang W, Kawabe Y, Seki T et al. (2002). Ubc9 is essential for viability of higher eukaryotic cells. Exp Cell Res 280: 212–221.

    Article  CAS  Google Scholar 

  • Herlyn M . (2006). Molecular targets in melanoma: strategies and challenges for diagnosis and therapy. Int J Cancer 118: 523–526.

    Article  CAS  Google Scholar 

  • Herlyn M, Rodeck U, Mancianti M, Cardillo FM, Lang A, Ross AH et al. (1987). Expression of melanoma-associated antigens in rapidly dividing human melanocytes in culture. Cancer Res 47: 3057–3061.

    CAS  PubMed  Google Scholar 

  • Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S . (2002). RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419: 135–141.

    Article  CAS  Google Scholar 

  • Johnson ES, Blobel G . (1997). Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J Biol Chem 272: 26799–26802.

    Article  CAS  Google Scholar 

  • Kovalenko OV, Plug AW, Haaf T, Gonda DK, Ashley T, Ward DC et al. (1996). Mammalian ubiquitin-conjugating enzyme Ubc9 interacts with Rad51 recombination protein and localizes in synaptonemal complexes. Proc Natl Acad Sci USA 93: 2958–2963.

    Article  CAS  Google Scholar 

  • Lin X, Liang M, Liang YY, Brunicardi FC, Feng XH . (2003). SUMO-1/Ubc9 promotes nuclear accumulation and metabolic stability of tumor suppressor Smad4. J Biol Chem 278: 31043–31048.

    Article  CAS  Google Scholar 

  • Lin JY, Ohshima T, Shimotohno K . (2004). Association of Ubc9, an E2 ligase for SUMO conjugation, with p53 is regulated by phosphorylation of p53. FEBS Lett 573: 15–18.

    Article  CAS  Google Scholar 

  • McDonald SL, Edington HD, Kirkwood JM, Becker D . (2004). Expression analysis of genes identified by molecular profiling of VGP melanomas and MGP melanoma-positive lymph nodes. Cancer Biol Ther 3: 121–123.

    Article  Google Scholar 

  • Mo YY, Yu Y, Ee PL, Beck WT . (2004). Overexpression of a dominant-negative mutant Ubc9 is associated with increased sensitivity to anticancer drugs. Cancer Res 64: 2793–2798.

    Article  CAS  Google Scholar 

  • Mo YY, Yu Y, Theodosiou E, Rachel Ee PL, Beck WT . (2005). A role for Ubc9 in tumorigenesis. Oncogene 24: 2677–2683.

    Article  CAS  Google Scholar 

  • Nacerddine K, Lehembre F, Bhaumik M, Artus J, Cohen-Tannoudji M, Babinet C et al. (2005). The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev Cell 9: 769–779.

    Article  CAS  Google Scholar 

  • Perlis C, Herlyn M . (2004). Recent advances in melanoma biology. Oncologist 9: 182–187.

    Article  Google Scholar 

  • Premont RT, Claing A, Vitale N, Freeman JL, Pitcher JA, Patton WA et al. (1998). β2-adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein. Proc Natl Acad Sci USA 95: 14082–14087.

    Article  CAS  Google Scholar 

  • Rizos H, Woodruff S, Kefford RF . (2005). p14ARF interacts with the SUMO-conjugating enzyme Ubc9 and promotes the sumoylation of its binding partners. Cell Cycle 4: 597–603.

    Article  CAS  Google Scholar 

  • Rodriguez MS, Desterro JM, Lain S, Midgley CA, Lane DP, Hay RT . (1999). SUMO-1 modification activates the transcriptional response of p53. EMBO J 18: 6455–6461.

    Article  CAS  Google Scholar 

  • Saha S, Sparks AB, Rago C, Akmaev V, Wang CJ, Vogelstein B et al. (2002). Using the transcriptome to annotate the genome. Nat Biotechnol 20: 508–512.

    Article  CAS  Google Scholar 

  • Seufert W, Futcher B, Jentsch S . (1995). Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature 373: 78–81.

    Article  CAS  Google Scholar 

  • Smith AP, Hoek K, Becker D . (2005). Whole-genome expression profiling of the melanoma progression pathway reveals marked molecular differences between nevi/melanoma in situ and advanced-stage melanomas. Cancer Biol Ther 4: 1018–1029.

    Article  CAS  Google Scholar 

  • Smith AP, Weeraratna AT, Spears JR, Meltzer PS, Becker D . (2004). SAGE identification and fluorescence imaging analysis of genes and transcripts in melanomas and precursor lesions. Cancer Biol Ther 3: 104–109.

    Article  CAS  Google Scholar 

  • Tago K, Chiocca S, Sherr CJ . (2005). Sumoylation induced by the Arf tumor suppressor: a p53-independent function. Proc Natl Acad Sci USA 102: 7689–7694.

    Article  CAS  Google Scholar 

  • Tashiro K, Pando MP, Kanegae Y, Wamsley PM, Inoue S, Verma IM . (1997). Direct involvement of the ubiquitin-conjugating enzyme Ubc9/Hus5 in the degradation of IkappaB alpha. Proc Natl Acad Sci USA 94: 7862–7867.

    Article  CAS  Google Scholar 

  • Tsao H, Atkins MB, Sober AJ . (2004). Management of cutaneous melanoma. N Engl J Med 351: 998–1012.

    Article  CAS  Google Scholar 

  • Ungureanu D, Vanhatupa S, Kotaja N, Yang J, Aittomaki S, Janne OA et al. (2003). PIAS proteins promote SUMO-1 conjugation to STAT1. Blood 102: 3311–3313.

    Article  CAS  Google Scholar 

  • Valesky M, Spang AJ, Fisher GW, Farkas DL, Becker D . (2002). Noninvasive dynamic fluorescence imaging of human melanomas reveals that targeted inhibition of bFGF or FGFR-1 in melanoma cells blocks tumor growth by apoptosis. Mol Med 8: 103–112.

    Article  CAS  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW . (1995). Serial analysis of gene expression. Science 270: 484–487.

    Article  CAS  Google Scholar 

  • Wang Y, Becker D . (1997). Antisense targeting of basic fibroblast growth factor and fibroblast growth factor receptor-1 in human melanomas blocks intratumoral angiogenesis and tumor growth. Nat Med 3: 887–893.

    Article  CAS  Google Scholar 

  • Wang E, Panelli MC, Zavaglia K, Mandruzzato S, Hu N, Taylor PR et al. (2004). Melanoma-restricted genes. J Transl Med 15: 34.

    Article  Google Scholar 

  • Wang ZY, Qiu QQ, Seufert W, Taguchi T, Testa JR, Whitmore SA et al. (1996a). Molecular cloning of the cDNA and chromosome localization of the gene for human ubiquitin-conjugating enzyme 9. J Biol Chem 271: 24811–24816.

    Article  CAS  Google Scholar 

  • Wang Y, Rao U, Mascari R, Richards TJ, Panson AJ, Edington HD et al. (1996b). Molecular analysis of melanoma precursor lesions. Cell Growth Differ 7: 1733–1740.

    CAS  PubMed  Google Scholar 

  • Watanabe TK, Fujiwara T, Kawai A, Shimizu F, Takami S, Hirano H et al. (1996). Cloning, expression, and mapping of UBE2I, a novel gene encoding a human homologue of yeast ubiquitin-conjugating enzymes, which are critical for regulating the cell cycle. Cytogenet Cell Genet 72: 86–89.

    Article  CAS  Google Scholar 

  • Weeraratna AT, Becker D, Carr KM, Duray PH, Rosenblatt KP, Yang S et al. (2004). Generation and analysis of melanoma SAGE libraries: SAGE advice on the melanoma transcriptome. Oncogene 23: 2264–2274.

    Article  CAS  Google Scholar 

  • Xu W, Gong L, Haddad MM, Bischof O, Campisi J, Yeh ET et al. (2000). Regulation of microphthalmia-associated transcription factor MITF protein levels by association with the ubiquitin-conjugating enzyme hUBC9. Exp Cell Res 255: 135–143.

    Article  CAS  Google Scholar 

  • Yasugi T, Howley PM . (1996). Identification of the structural and functional human homolog of the yeast ubiquitin conjugating enzyme UBC9. Nucleic Acids Res 24: 2005–2010.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Marie Acquafondata for Ubc9 antibody staining of the TMAs. This work was supported by grants from the National Institutes of Health (DB), and the Robert Johnson Foundation (SJM). The authors declare that they have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Becker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moschos, S., Smith, A., Mandic, M. et al. SAGE and antibody array analysis of melanoma-infiltrated lymph nodes: identification of Ubc9 as an important molecule in advanced-stage melanomas. Oncogene 26, 4216–4225 (2007). https://doi.org/10.1038/sj.onc.1210216

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210216

Keywords

This article is cited by

Search

Quick links