Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Phorbol esters inhibit the Hedgehog signalling pathway downstream of Suppressor of Fused, but upstream of Gli

Abstract

The developmentally important Hedgehog (Hh) signal transduction pathway, which has recently been implicated in several forms of cancer, is subject to regulation by several protein kinases. Here, we address the role of protein kinase Cδ in pathway inhibition and show that cellular depletion or pharmacological inhibition of this kinase isoform results in a blockade of signalling between Suppressor of Fused and the Gli transcription factors. We further provide evidence that the observed pathway inhibition is independent of primary cilia and the mitogen-activated protein kinase kinase (Mek1) kinase. These findings allowed for the rapid dissection of downstream Hh pathway activation mechanisms in human tumour cells and demonstrate a surprising variation in how cells can activate signalling in a ligand- and receptor-independent manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Beachy PA, Karhadkar SS, Berman DM . (2004). Tissue repair and stem cell renewal in carcinogenesis. Nature 432: 324–331.

    Article  CAS  Google Scholar 

  • Bhatia N, Thiyagarajan S, Elcheva I, Saleem M, Dlugosz A, Mukhtar H et al. (2006). GLi2 is targeted for ubiquitination and degradation by beta-TrCP ubiquitin ligase. J Biol Chem 281: 19320–19326.

    Article  CAS  Google Scholar 

  • Chen JK, Taipale J, Young KE, Maiti T, Beachy PA . (2002). Small molecule modulation of Smoothened activity. Proc Natl Acad Sci USA 99: 14071–14076.

    Article  CAS  Google Scholar 

  • Eichberger T, Sander V, Schnidar H, Regl G, Kasper M, Schmid C et al. (2006). Overlapping and distinct transcriptional regulator properties of the GLI1 and GLI2 oncogenes. Genomics 87: 616–632.

    Article  CAS  PubMed Central  Google Scholar 

  • Frank-Kamenetsky M, Zhang XM, Bottega S, Guicherit O, Wichterle H, Dudek H et al. (2002). Small-molecule modulators of Hedgehog signaling: identification and characterization of Smoothened agonists and antagonists. J Biol 1: 10.

    Article  PubMed Central  Google Scholar 

  • Gschwendt M, Muller HJ, Kielbassa K, Zang R, Kittstein W, Rincke G et al. (1994). Rottlerin, a novel protein kinase inhibitor. Biochem Biophys Res Commun 199: 93–98.

    Article  CAS  Google Scholar 

  • Haycraft CJ, Banizs B, Aydin-Son Y, Zhang Q, Michaud EJ, Yoder BK . (2005). Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet 1: e53.

    Article  PubMed Central  Google Scholar 

  • Huangfu D, Liu A, Rakeman AS, Murcia NS, Niswander L, Anderson KV . (2003). Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426: 83–87.

    Article  CAS  Google Scholar 

  • Kaesler S, Luscher B, Ruther U . (2000). Transcriptional activity of GLI1 is negatively regulated by protein kinase A. Biol Chem 381: 545–551.

    Article  CAS  Google Scholar 

  • Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A et al. (2004). Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431: 707–712.

    Article  CAS  Google Scholar 

  • Kasper M, Schnidar H, Neill GW, Hanneder M, Klingler S, Blaas L et al. (2006). Selective modulation of Hedgehog/GLI target gene expression by epidermal growth factor signaling in human keratinocytes. Mol Cell Biol 26: 6283–6298.

    Article  CAS  PubMed Central  Google Scholar 

  • Kogerman P, Grimm T, Kogerman L, Krause D, Unden AB, Sandstedt B et al. (1999). Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1. Nat Cell Biol 1: 312–319.

    Article  CAS  Google Scholar 

  • Liu QY, Carson C, Ribecco M, Testolin L, Raptis L, Walker PR et al. (2000). Effects of neoplastic transformation and teniposide (VM26) on protein kinase C isoform expression in rodent fibroblasts. Cancer Lett 153: 13–23.

    Article  CAS  Google Scholar 

  • Liu WS, Heckman CA . (1998). The sevenfold way of PKC regulation. Cell Signal 10: 529–542.

    Article  CAS  Google Scholar 

  • Mao J, Maye P, Kogerman P, Tejedor FJ, Toftgard R, Xie W et al. (2002). Regulation of Gli1 transcriptional activity in the nucleus by Dyrk1. J Biol Chem 277: 35156–35161.

    Article  CAS  Google Scholar 

  • Neill GW, Ghali LR, Green JL, Ikram MS, Philpott MP, Quinn AG . (2003). Loss of protein kinase Calpha expression may enhance the tumorigenic potential of Gli1 in basal cell carcinoma. Cancer Res 63: 4692–4697.

    CAS  PubMed  Google Scholar 

  • Ohno S, Nishizuka Y . (2002). Protein kinase C isotypes and their specific functions: prologue. J Biochem (Tokyo) 132: 509–511.

    Article  CAS  Google Scholar 

  • Okazaki K, Sagata N . (1995). MAP kinase activation is essential for oncogenic transformation of NIH3T3 cells by Mos. Oncogene 10: 1149–1157.

    CAS  PubMed  Google Scholar 

  • Pan Y, Bai CB, Joyner AL, Wang B . (2006). Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation. Mol Cell Biol 26: 3365–3377.

    Article  CAS  PubMed Central  Google Scholar 

  • Regl G, Neill GW, Eichberger T, Kasper M, Ikram MS, Koller J et al. (2002). Human GLI2 and GLI1 are part of a positive feedback mechanism in Basal Cell Carcinoma. Oncogene 21: 5529–5539.

    Article  CAS  Google Scholar 

  • Riobo NA, Haines GM, Emerson Jr CP . (2006a). Protein kinase C-delta and mitogen-activated protein/extracellular signal-regulated kinase-1 control GLI activation in hedgehog signaling. Cancer Res 66: 839–845.

    Article  CAS  Google Scholar 

  • Riobo NA, Lu K, Ai X, Haines GM, Emerson Jr CP . (2006b). Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog signaling. Proc Natl Acad Sci USA 103: 4505–4510.

    Article  CAS  Google Scholar 

  • Sanchez P, Hernandez AM, Stecca B, Kahler AJ, DeGueme AM, Barrett A et al. (2004). Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc Natl Acad Sci USA 101: 12561–12566.

    Article  CAS  PubMed Central  Google Scholar 

  • Sasaki H, Hui C, Nakafuku M, Kondoh H . (1997). A binding site for Gli proteins is essential for HNF-3beta floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development 124: 1313–1322.

    CAS  PubMed  Google Scholar 

  • Schneider L, Clement CA, Teilmann SC, Pazour GJ, Hoffmann EK, Satir P et al. (2005). PDGFRalphaalpha signaling is regulated through the primary cilium in fibroblasts. Curr Biol 15: 1861–1866.

    Article  CAS  Google Scholar 

  • Sheng T, Chi S, Zhang X, Xie J . (2006). Regulation of Gli1 localization by the cAMP/protein kinase A signaling axis through a site near the nuclear localization signal. J Biol Chem 281: 9–12.

    Article  CAS  Google Scholar 

  • Svärd J, Heby-Henricson K, Persson-Lek M, Rozell B, Lauth M, Bergstrom A et al. (2006). Genetic elimination of Suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway. Dev Cell 10: 187–197.

    Article  PubMed Central  Google Scholar 

  • Taipale J, Chen JK, Cooper MK, Wang B, Mann RK, Milenkovic L et al. (2000). Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406: 1005–1009.

    Article  CAS  Google Scholar 

  • Tempe D, Casas M, Karaz S, Blanchet-Tournier MF, Concordet JP . (2006). Multisite protein kinase A and glycogen synthase kinase 3beta phosphorylation leads to Gli3 ubiquitination by SCFbetaTrCP. Mol Cell Biol 26: 4316–4326.

    Article  CAS  PubMed Central  Google Scholar 

  • Wang B, Li Y . (2006). Evidence for the direct involvement of {beta}TrCP in Gli3 protein processing. Proc Natl Acad Sci USA 103: 33–38.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to Drs P Beachy, F Aberger, H Sasaki and J Bergman for kind provision of materials. This work was supported by stipends from the Wenner-Gren-Foundation, the Swedish Cancer Association and the Karolinska Institute to ML and by grants from the Swedish Cancer Association and Swiss Bridge to RT

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Lauth.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lauth, M., Bergström, Å. & Toftgård, R. Phorbol esters inhibit the Hedgehog signalling pathway downstream of Suppressor of Fused, but upstream of Gli. Oncogene 26, 5163–5168 (2007). https://doi.org/10.1038/sj.onc.1210321

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210321

Keywords

Search

Quick links